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A phenomenological model of magnetic nanoparticle composites consisting of ideal lossless parti-
cles with identical properties embedded in a non-magnetic matrix has been developed. The input
material parameter for this model include the saturation magnetization (Ms) and the crystal aniso-
tropy field (Hk) of the particles. The relationships between key magnetic properties like the low
frequency effective permeability and the FMR frequency, and the material and physical attributes
(such as shape, volume fraction, and packing type) of the particles have been identified using an
iterative extension of the Bruggeman effective medium theory.

1. Introduction

The integration of on-chip inductors and transformers with magnetic materials of high
permeability offers the potential benefits of a reduction in device size and an increase
in performance – essential attributes for current high frequency technologies to remain
competitive [1–4]. However, accomplishing these attributes without introducing signifi-
cant losses, especially at GHz frequencies, appears to be a challenge. For instance, the
ferromagnetic resonance (FMR) frequency, close to which a drastic degradation in per-
meability is observed, typically occurs at GHz (or even lower) frequencies in most high
permeability materials. Thus, in addition to a large low frequency permeability, a large
FMR frequency is also desired.
Promising soft magnetic materials for high frequency applications are nanostructured

materials sputter deposited as thin films [5–9] and magnetic nanoparticle composites
[10–13], the latter being the focus of the present study. The composite material is as-
sumed here to consist of identical ideal ellipsoidal or cylindrical metallic ferromagnetic
nanoparticles embedded in a non-magnetic matrix.
The FMR behavior of an individual particle is mainly determined by its shape and its

intrinsic material properties [14, 15]. The present work establishes a connection be-
tween the intrinsic material properties of individual particles of given shape and the
composite magnetic properties by generalizing the Bruggeman effective medium theory
(EMT) [16–18] via an iterative scheme (which is necessary when the composite consists
of non-spherical particles). It will be shown that the shape of the particles, along with
their volume fraction and packing geometry, crucially determines tradeoffs between the
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low frequency effective permeability of the composite and its FMR frequency. An addi-
tional degradation of the permeability could be caused by eddy current and magnetic
damping losses of the particles, and dielectric losses of the non-magnetic matrix. These
losses have not been included in the present model but will be explicitly considered
elsewhere [19].
The composite model presented here requires the following material properties of

the magnetic particles as input: The saturation magnetization, Ms, and the crystal aniso-
tropy field, Hk. The saturation magnetization is the maximum attainable magnetization
(at 0 K) per unit volume and is related to the number of electrons with unpaired spin
in the material. The crystal anisotropy field is a measure of the extent to which magne-
tization in the bulk is preferred along one direction (the ‘‘easy” axis) versus others (the
‘‘hard” axes). The particles are assumed to have reached the saturation magnetization
along the easy axis; under this assumption, the rotational permeability is maximal along
the hard axes and unity along the easy axis [14, 15]2). It is further assumed that the
directions of the hard axes are orthogonal to the easy axis3).
It is worth mentioning that the magnetic permeability is, in general, a tensor. Unless

otherwise stated, ‘‘permeability” in the present work refers to the diagonal components
of the low frequency relative rotational permeability tensor along the direction of an
appropriate hard axis4). Furthermore, we distinguish between three different permeabil-
ities: Those of the bulk (mbulk), the particle (mp), and the composite (meff). While mbulk is
determined by Ms and Hk, mp is determined by Ms, Hk, and the particle shape, and meff

is determined by Ms, Hk, the particle shape, and the volume fraction (mp and meff will
also depend on the particle conductivity and the particle size if eddy current losses are
explicitly taken into account [19]). It is implicitly assumed in this work that the particles
are all aligned in a way that their easy axes are parallel to each other and that the
minor, major, and cylindrical axes, respectively, of the oblate ellipsoidal, prolate ellipsoi-
dal, and cylindrical particles are coincident with their easy axes.
This paper is organized as follows: Section 2 provides details about the theoretical

framework used here, Section 2.1 discusses the Bruggeman effective medium theory,
and Section 2.2 describes how the FMR behavior of ellipsoidal and cylindrical particles
can be included self-consistently within the Bruggeman EMT approach. Results are pre-
sented and discussed in Section 3. Finally, the conclusions of this work are summarized
in Section 4.
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2) In general, the permeability can be different along different hard axes. For instance, a disc
(or thin film) with its easy axis parallel to the plane of the disc displays a high permeability (equal
to the bulk value) along a direction normal to both the easy axis and the disc normal, while a very
low permeability is displayed parallel to the disc normal. In the case of spheres and cylindrical
rods with the easy axis along the rod axis (like the particles considered here), the permeabilities
are equal along all the hard axes due to symmetry effects.

3) This is strictly true only in materials that show uniaxial crystal anisotropy (like Co). In the
case of systems that display cubic crystal symmetry (like Fe), directions perpendicular to the easy
axis can be other easy axes. Nevertheless, the permeability along any direction perpendicular to
the saturation magnetization direction is still given by the formalism described here. We thus con-
tinue to use the nomenclature ‘‘hard” axis for directions orthogonal to the magnetization direction,
even in the case of crystals that do not display uniaxial anisotropy.

4) In the case of a thin film (or disc) with its easy axis parallel to the plane of the film, ‘‘per-
meability” refers to the relative permeability along the direction normal to both the easy axis and
the film normal.



2. Details of the Theoretical Framework

2.1 Bruggeman EMT

Many types of EMTs have been discussed in the literature [17, 18]; these theories at-
tempted to determine the properties of the effective medium (like the effective perme-
ability or the effective permittivity) in terms of the properties of the components for
given component volume fractions. In the present work, we have used the Bruggeman
EMTwhich is supported by experimental data [20].
For a two-component system with one component representing the ellipsoidal or cy-

lindrical magnetic particles (with permeability mp and volume fraction c) and the other
component representing the non-magnetic matrix (with permeability 1 and volume frac-
tion 1� c), the Bruggeman formalism leads to [21]

cðmp � meffÞ
meff þ ðmp � meffÞNk

þ ð1� cÞ ð1� meffÞ
meff þ ð1� meffÞNk

¼ 0 : ð1Þ

Here, the particles are assumed to be aligned with their easy axes oriented along the z
axis and Nk (with k ¼ x or y) is the shape factor (tabulated elsewhere [15]5) of the
particles along the direction of the rf magnetic field which is assumed to be transverse
to the easy axis. We will consider this factor more detailed in Section 2.2; for spherical
particles Nx; y ¼ 1=3.

2.2 FMR behavior of the composite

The solution of the Landau-Lifshitz equation [14, 15] yields the frequency dependent
relative permeability tensor (in terms of Ms, Hk, and the shape factors of the particle).
As mentioned earlier, we only focus on the low frequency permeability and the FMR
frequency. The diagonal components of the low frequency relative permeability tensor
for particles with their easy axis parallel to the z-axis are given by [14, 15]

mxx ¼
Ms

Hk þMsðAx �AzÞ
þ 1 ; ð2Þ

myy ¼
Ms

Hk þMsðAy �AzÞ
þ 1 ; ð3Þ

mzz ¼ 1 ; ð4Þ

mxx and myy are the hard axes permeabilities, and mzz is the easy axis permeability. In
the case of the particles considered here (ellipsoidal and cylindrical particles with the
minor, major, and cylindrical axes of the oblate ellipsoids, prolate ellipsoids, and cylin-
ders, respectively, coinciding with the easy axis), mp � mxx ¼ myy due to symmetry rea-
sons. Within the present development, the demagnetizing factors ðAx;Ay;AzÞ � A in-
clude the effects due to volume fraction and are given by [22–24]

A ¼ mbulk � meff

meffðmbulk � 1Þ N ; ð5Þ
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5) See also Tables 1 and 2 for examples of demagnetizing factors. It should be noted that a zero
demagnetizing shape factor along a particular direction implies that the demagnetizing field set up
by an external field along that direction is zero.



where N � ðNx; Ny; NzÞ are the shape factors discussed above and mbulk ¼ Ms=Hk þ 1
(equal to mxx and myy with A ¼ 0; see below). In essence, A is the demagnetizing factor
for a particle embedded in a medium with permeability meff (as the Bruggeman EMT
demands [17, 18]), while N is that for a particle embedded in a non-magnetic environ-
ment. It can be seen that A given by the above equation has the expected limiting
behavior. For instance, at low volume fraction (isolated particle limit), meff � 1, implying
A � N; at high volume fraction (bulk limit), meff � mbulk, implying A � 0, as one would
expect for bulk materials.
When Ax ¼ Ay ¼ Az ¼ A, a condition satisfied by bulk materials and spherical parti-

cles embedded in any matrix (note that A ¼ 0 and A ¼ 1=3, respectively, in the case of
bulk materials and in the case of an isolated spherical particle in a non-magnetic ma-
trix), Eqs. (2) and (3) simplify to mxx ¼ myy ¼ Ms=Hk þ 1 (independent of A). Thus, the
determination of meff using Eq. (1) in the case of spherical particles requires only the
knowledge of mp (� mxx ¼ myy). In the case of non-spherical particles, however, the
determination of mp requires the knowledge of A, which in turn requires the know-
ledge of meff. Thus, Eqs. (1)–(3), and (5) need to be solved self-consistently for a given
magnetic particle volume fraction and particle shape. The solution process is heuristi-
cally depicted in Fig. 1 and needs to be performed iteratively6). The self-consistent solu-
tion (mp, meff , and A) is determined at zero frequency and the resulting A is used to
calculate the FMR frequency of the composite using the well known Kittel equation
[14, 25]

wfmr ¼ m0g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Hk þ ðAx �AzÞMs� ½Hk þ ðAy �AzÞMs�

q
; ð6Þ

where m0 is the permeability of free space and g is the gyromagnetic ratio.

3. Results and Discussion

We now use the theory outlined above to investigate the relationship between the prop-
erties of the particles (Ms, Hk, shape, and volume fraction) and the magnetic properties
of the composite (the low frequency effective permeability and the FMR frequency).
Values of 2.4 T and 0.049 T were chosen for m0Ms and m0Hk, respectively, correspond-
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6) The self-consistent solution was obtained by discretizing the volume fraction axis in steps of
0.001 and determining meff at a particular volume fraction step from mp, and A determined in the
previous step; note that Aðc ¼ 0Þ ¼ N.

Fig. 1. Flowchart describing the process
of self-consistently determining the par-
ticle and effective permeabilities at a
non-zero particle volume fraction for
non-spherical particles



ing to a bulk permeability (¼ Ms=Hk þ 1) of 50. We first draw some general conclu-
sions regarding the desired particle shape and the nature of the final packing geometry
before we address the impact of the particle volume fraction.
The shape factors (Nx;Ny;Nz), the low frequency permeability (determined using

Eqs. (2) and (3)), and the FMR frequency (determined using Eq. (6)) for some repre-
sentative examples are listed in Tables 1 and 2. The FMR frequency is smallest for the
bulk (and the sphere) configuration. The thin film configuration (with the easy axis
along the surface of the film) shows the bulk low frequency permeability (albeit along
only one direction) but a higher FMR frequency. Infinite or finite rods or cylinders
(with the easy axis parallel to the cylinder axis) have even higher FMR frequencies
than the thin film case but low permeabilities. Spheres have properties identical to the
bulk. Rods or cylinders with the easy axis parallel to the radial direction are not consid-
ered here since the practical growth of such structures is not expected to be easy. From
Tables 1 and 2 it is clear that nearly spherical particles (between spherical and rod like
with an aspect ratio of 2) are desired, in order to achieve an optimal particle permeabil-
ity and FMR frequency.
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Tab l e 1
Analytical expressions for the low frequency relative permeability along the two hard
axes and the FMR frequency for particles with different geometries; the easy axis is
assumed to be parallel to the z-axis and Ms � Hk

shape Nx Ny Nz mxx myy wfmr

bulk 0 0 0
Ms

Hk
þ 1

Ms

Hk
þ 1 m0gHk

thin filma) 1 0 0 � 2
Ms

Hk
þ 1 � m0g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MsHk

p

infinite rodb) 0.5 0.5 0 � 3 � 3 � m0gMs=2

sphere 1/3 1/3 1/3
Ms

Hk
þ 1

Ms

Hk
þ 1 m0gHk

a) film normal parallel to x-axis
b) rod axis parallel to z-axis

Tab l e 2
Same as Table 1 with m0Ms ¼ 2:4 T and m0Hk ¼ 0:049 T (parameters chosen in this
study); an additional entry for a finite rod with an aspect ratio of two has also been
included ðffmr ¼ wfmr=2pÞ

shape Nx Ny Nz mxx myy ffmr

(GHz)

bulk 0 0 0 50 50 1.4
thin filma) 1 0 0 2 50 9.7
infinite rodb) 0.5 0.5 0 2.9 2.9 33.6
finite rodc) 0.43 0.43 0.14 4.2 4.2 20.9
sphere 1/3 1/3 1/3 50 50 1.4

a) film normal parallel to x-axis
b) rod axis parallel to z-axis
c) rod axis parallel to z-axis; aspect ratio ¼ 2



Another important factor to achieve a final geometric structure is the packing of the
particles: assuming that the particles are all aligned so that their magnetization (easy)
axes are parallel to each other, the particles can be packed in a way that either the
bulk or the thin film final geometry limits are reached. Here, the ‘‘bulk limit” is defined
as the situation when an appreciable magnetic field exists only in the interior of the
composite system, i.e. the surfaces or boundaries of the composite system are located in
regions of negligible magnetic field, thereby generating negligible demagnetizing fields
in any direction. The ‘‘thin film limit” is defined as the situation when the thin film
surfaces (but not the edges) are located in regions of appreciable magnetic field, there-
by generating demagnetizing fields only along the film normal. The relationship be-
tween geometry and magnetic properties listed in Tables 1 and 2 indicates that the
packing of (approximately spherical) particles achieving the thin film limit with the
particle easy axes oriented along the film surface leads to a desired configuration.
It should be mentioned that the properties listed in Tables 1 and 2 for the rods and

spheres hold only for isolated particles (Nx;Ny;Nz are the demagnetizing shape factors
for isolated particles in a non-magnetic environment), corresponding to low magnetic
particle volume fractions. An increase in the particle volume fraction implies that particles
are no longer in a non-magnetic environment but embedded in an effective medium of
permeability meff which means the self-consistent procedure described in Section 2.2
should be adopted to determine meff and A as a function of the volume fraction. It should
be noted that the bulk and thin film limits are characterized by the demagnetizing factors
(and by the low frequency permeability and ffmr) listed in the first and third row of Tables
1 and 2, respectively, which must be reached again for c ! 1. Adopting the procedure
outlined in Section 2.2 automatically ensures achieving the bulk limit (A ! 0 as c ! 1).
The thin film limit is achieved by using Eq. (5) for calculating Ay and Az (both of which
approach zero for c ! 1), and by requiring that Ax ¼ 1� ðAy þAzÞ, such that the thin
film demagnetizing factors are reached again for c ! 1. It should be noted that while the
self-consistent procedure to determine meff and ffmr is not required in the case of spherical
particles packed to achieve the bulk limit, this procedure is necessary in the case of
spherical particles packed to achieve the thin film geometry.
Figures 2 and 3 show the low frequency effective permeability and the FMR fre-

quency, respectively, as a function of the particle volume fraction for spherical and
finite rod (aspect ratio 2) particles
packed to achieve the bulk and the
thin film limits. The values have
been calculated using the proce-
dure described in Section 2.2 with
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Fig. 2. Effective low frequency perme-
ability, meff , versus magnetic particle
volume fraction for spherical and finite
rod (aspect ratio of 2) particle compo-
sites determined by self-consistently
solving Eqs. (1), (2), and (5); the pack-
ing type does not effect meff



the modification identified above for the thin film limit. The packing limit affects the
FMR frequency but not meff , as the latter is calculated along the relevant hard axis (the
one parallel to the film plane in the case of thin film packing) and the demagnetizing
factor along this direction is the same for both packing types. As expected, meff for the
spherical particle composite is higher than for the finite rod composite. It should be
noted that the maximum volume fractions achievable for spheres and cylinders with
identical radii are 0.74 and 0.91, respectively. The FMR frequency for the bulk limit
packing does not change with volume fraction for the spherical particle composite (as
isolated spherical particles already have properties identical to that of the bulk), but
decreases for the finite rod particle composite. For the thin film packing, ffmr increases
very fast for the spherical particle composite and reaches the saturation value of about
10 GHz at a volume fraction of �0.4, whereas for the finite rod particle composite it
decreases relatively slowly to the 10 GHz value. Assuming that achievable thin film
packing densities of approximately spherical particles are in the 0.45–0.55 range, meff

values in the 3–18 range, and ffmr values in the 18–10 GHz range can be expected (for
the material parameters chosen here).

4. Summary

A phenomenological model of magnetic nanoparticle composites consisting of ideal
lossless particles with identical properties embedded in a non-magnetic matrix has been
developed. The input material parameters for this model include the saturation magne-
tization (Ms) and the crystal anisotropy field (Hk) of the particles. An attempt has been
made to relate key magnetic properties like the low frequency effective permeability or
the FMR frequency to the physical properties of the particles (such as shape, volume
fraction, and packing type). For the material parameters of the particles chosen here
(m0Ms ¼ 2:4 T and m0Hk ¼ 0:049 T, resulting in a bulk permeability of 50), composites
consisting of approximately spherical particles packed to achieve the thin film limit with
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a volume fraction in the 0.45–0.55 range are expected to display low frequency
effective permeability and FMR frequency values in the 3–18 and 18–10 GHz ranges,
respectively.
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