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Data-driven approaches are particularly useful for computational materials discovery and design as they can
be used for rapidly screening over a very large number of materials, thus suggesting lead candidates for further
in-depth investigations. A central challenge of such approaches is to develop a numerical representation, often
referred to as a fingerprint, of the materials. Inspired by recent developments in cheminformatics, we propose a
class of hierarchical motif-based topological fingerprints for materials composed of elements such as C, O, H, N,
F, etc., whose coordination preferences are well understood. We show that these fingerprints, when representing
either molecules or crystals, may be effectively mapped onto a variety of properties using a similarity-based
learning model and hence can be used to predict the relevant properties of a material, given that its fingerprint
can be defined. Two simple machine-learning-based procedures are introduced to demonstrate that the learning
model can be inverted to identify the desired fingerprints and then to reconstruct molecules which possess a set
of targeted properties.
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I. INTRODUCTION

Data-driven approaches towards materials design and dis-
covery are rapidly increasing in popularity, demand, and
potency [1–15]. This emerging trend is fueled by the avail-
ability and emergence of large materials databases [16–18], as
well as our ability to progressively accumulate materials data
via high-throughput computations [19,20] and experiments
[16–18]. Data-driven strategies aimed at rapid property predic-
tions and ultimately at rational or informed materials design
rely on exploiting the information content of past data and
using such information within heuristic or statistical inter-
polative learning models to provide estimates of properties of
a new material. This approach is entirely analogous to similar
pursuits undertaken within chem- and bioinformatics wherein
lead candidates worthy of further in-depth investigations are
identified rapidly in a first level of screening [4,5,14].

Data-driven property-prediction strategies have two steps.
The first involves representing materials numerically via de-
scriptors, attribute vectors, or fingerprints. In the second step,
using available “training” data sets, a mapping is established
between the numerical representation of materials and their
properties, thus leading to a prediction model. Subsequently,
the properties of a new material are estimated using this model
after reducing the material to its numerical representation.

One of the central challenges in this whole process is decid-
ing an appropriate and acceptable numerical representation of
materials. The specific choice of this representation is entirely
application dependent and can range from high-level descrip-
tors (e.g., d-band center, atomic electronegativities) [21,22] to
topological features (e.g., substructural motifs) [20,23,24] to
microscopic fingerprints that may capture chemical and con-
figurational degrees of freedom (e.g., Coulomb matrix, sym-
metry functions) [25–28]. Regardless of the specific choice, the
representations are expected to satisfy certain basic require-
ments. These include invariance of the representation with
respect to transformations of the material such as translation,
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rotation, and permutation of like elements. Moreover, it
is desired that the representation be intuitive, elegant, and
physically and chemically meaningful.

In this contribution, inspired by developments in cheminfor-
matics [14,15], we propose a class of hierarchical motif-based
topological fingerprints (Fig. 1). This choice, in which the
motifs are molecular fragments of varying sizes, is particularly
suited to representing molecules and solids composed of
elements such as H, C, N, O, F, etc., whose coordination
preferences are well understood. Large data sets of molecules
and solids are considered, and it is shown that the fingerprints
may be effectively mapped to a variety of properties using a
similarity-based learning algorithm. Moreover, it is demon-
strated that the learning model may be inverted to identify
fingerprints and, subsequently, to reconstruct actual molecules
that possess a desired set of target properties.

II. DATA SETS

In the present work, we restrict ourselves to systems
composed of C, O, and H. We used two data sets, one for
molecules and one for crystals, to demonstrate the applicability
of the proposed fingerprints. Of these two data sets, the former
was taken from Ref. [19], while the latter was prepared by us.

A. Molecule data set

A data set of more than 134 000 small molecules made
up of C, O, H, N, and F was reported in Ref. [19]. This
reliable data set, which contains the optimized geometries
and energetic, electronic, and thermodynamic properties
calculated using the Becke, three-parameter, Lee-Yang-Parr
(B3LYP) hybrid exchange-correlation (XC) functional and
the split-valence basis set of 6-31G(2d,p) type basis set
with the GAUSSIAN 09 software, sets the stage for many
interesting data-mining works [29,30]. A subset of this
data set, containing 45 708 molecules composed of C, O,
and H, was used in this work. Five properties were con-
sidered, including the atomization energy Eat, the energy
gap EHL between the highest occupied and lowest unoccu-
pied molecular orbitals (HOMO-LUMO gap), the isotropic
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FIG. 1. (Color online) Illustration of motifs of several types,
including the atom types (Ai, top row), some of the bond types
(Ai-Bj , middle row), and two-bond catenations (Ai-Bj -Ck, bottom
row) of materials composed by carbon, oxygen, and hydrogen.

polarizability α, the heat capacity Cv, and the zero-point
vibration energy EZP.

B. Crystal data set

In addition to the molecule data set, we prepared another
data set of 215 organic crystals comprising C, O, and H. This
includes (1) 12 existing polymers composed of C, O, and H, (2)
16 new polymer structures predicted by the minima-hopping
method [31–33] and USPEX [34] for 16 quasi-one-dimensional
polymer chain models reported in Ref. [3], and (3) 34 organic
crystals composed of C and H and 153 organic crystals
composed of C, O, and H obtained from the Crystallography
Open Database [18].

The obtained structures were optimized by first-principles
calculations within the density functional theory (DFT) for-
malism as implemented in the Vienna Ab initio Simula-
tion Package (VASP) [35–38], utilizing the semilocal refitted
Perdew-Wang 86 (rPW86) XC functional [39] and a plane-
wave energy cutoff of 400 eV. A Monkhorst-Pack k-point
mesh [40] with a spacing of no more than 0.15 Å−1 in the
reciprocal space were used for sampling the Brillouin zone,
while the van der Waals interactions were estimated with the
nonlocal density functional vdW-DF2 [41]. Convergence was
assumed when the atomic forces exerting on the atomic sites
were smaller than 0.01 eV/Å. The entire crystal data set, which
includes the optimized structures, the atomization energies
Eat, the band gaps Eg, and the electronic and ionic parts of
the dielectric constants, εelec and εion, can be found in the
Supplemental Material [42].

III. FINGERPRINTS

A hierarchy of equilibrium structure fingerprints of the
same family with increasing levels of sophistication is pro-
posed here. The construction of fingerprints was guided
by two simple chemical concepts, i.e., chemical bonds and
coordination number. The former intuitively characterizes the

short-range interatomic interactions [43], while the latter is the
number of bonds involving a given atom. In major classes of
materials composed of light elements such as C, H, O, N, and
F, these concepts are well defined. In particular, the length of
a given bond involving these elements falls in a narrow range
(see Refs. [44,45] for a comprehensive bond length statistics).
For instance, the equilibrium length of a single bond between
two C atoms is �1.50 Å, the length of a double bond between
two C atoms is �1.45 Å, and the length of a double bond
between a C atom and an O atom is �1.20 Å [44,45]. The
coordination number is also well defined; that is, for a C atom,
it can be only 2, 3, or 4, while each O atom can generally bond
with 1 or 2 other atoms. Therefore, atoms in a structure can be
unambiguously classified (or labeled) by Ai, where A is the
type of the element (A ∈ {C,O,H}) and i is its coordination
number. Likewise, bonds can be specified by the types of its
two ends, e.g., Ai-Bj . For the data sets of C, O, and H, the
six possible atom types are C2, C3, C4, O1, O2, and H1,
while there are 16 chemically permissible types of bonds,
namely, C2–C2, C2–C3, C2–C4, C2–O1, C2–O2, C2–H1,
C3–C3, C3–C4, C3–O1, C3–O2, C3–H1, C4–C4, C4–O2,
C4–H1, O2–O2, and O2–H1. Except for C2–O1, C2–O2, and
O2–O2, 13 of them are present in our molecule and crystal data
sets. The atom and bond types belong to a family of related
structural building units (Fig. 1, subsequently described) that
can be used to numerically represent the materials structures
and hence are used to define the fingerprints. In particular, the
ith-order fingerprint f(i) is defined in terms of its components as

f (i)
κ = n(i)

κ

Nat
. (1)

Here, n(i)
κ is the number of building units (or fragments or

motifs) of type κ , and Nat is the number of atoms either in
the molecule or in the unit cell of a crystal. Four types of
fingerprints, namely, f(0), f(1), f(2), and f(3), are discussed in
the following sections.

A. Zeroth-order fingerprint f(0)

The simplest (zeroth-order) fingerprint f(0) represents the
fractions of all the element types A existing in the structures,
i.e., κ ≡ A. Therefore, in the definition (1) of f(0), n

(0)
κ≡A is

the number of atoms of element A. This fingerprint is a
three-dimensional vector whose components satisfy a simple
normalization condition

∑
A∈{C,O,H} f

(i)
A = 1.

B. First-order fingerprint f(1)

Next in the hierarchy is the case κ ≡ Ai, in which n
(1)
κ≡Ai

is the number of A atoms which are i-fold coordinated.
f(1) is a six-dimensional vector satisfying several constraints
established from the definition or from the chemistry. The first
one is the normalization condition, given as∑

Ai

f
(1)
Ai = 1. (2)

Within the two data sets, all the C2 atoms should be grouped by
pairs, forming triple C ≡ C bonds. Therefore, the number of
C2 atoms, which is Natf

(1)
C2 , must be an even integer. Moreover,

since each C3 atom makes only a double bond with either
an O1 atom or another C3 atom, one must have f

(1)
C3 � f

(1)
O1
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while Nat[f
(1)
C3 − f

(1)
O1 ] is an even number. By examining the

connectivity of a structure, another constraint reads

f
(1)
H1 − 2f

(1)
C4 − f

(1)
C3 + f

(1)
O1 = 2

Nat
(1 − N© − d), (3)

where N© is the number of closed loops of bonds and d is
a structure-dependent parameter. For molecules and crystals
composed of isolated substructures (or molecules), d = 0,
while for crystals composed of connected substructures, d >

0. The derivation of this constraint is given in Appendix A.
The last constraint of f(1) is written in the form of a recursion
relation, i.e., ∑

i

f
(1)
Ai = f

(0)
A . (4)

C. Second-order fingerprint f(2)

Both f(0) and f(1) are local, representing the density of the
atom types of a material. The equilibrium interatomic distance
is somehow captured by the second-order fingerprint f(2) where
all the possible bonds are counted. f(2) is a 13-dimensional
vector whose components f

(2)
Ai-Bj represent the normalized

number n
(2)
Ai-Bj of the Ai-Bj bonds in the structure. From

f(2), f(1) can readily be determined by a recursion relation

f
(1)
Ai =

∑
Bj

2δAi,Bj −1

i
f

(2)
Ai-Bj , (5)

where δAi,Bj is used to remove the double counting when
Ai ≡ Bj [see Appendix B for the derivation of (5)]. Through
this recursion relation, all the constraints that f(1) obeys are
applicable for f(2). We note that f(2) was discussed in several
previous works, e.g., in Refs. [25,46,47] under the name of
“bond counting.” This fingerprint can also be regarded as a
generalization of “doubles,” the fingerprint defined in Ref. [20]
for the chain models of polymers.

D. Third-order fingerprint f(3)

In the third-order fingerprint f(3), the number of two-bond
catenation is represented, i.e., κ ≡ Ai-Bj -Ck. In particular,
the definition (1) for f

(3)
κ≡Ai-Bj-Ck involves nAi-Bj-Ck , which

is the number of Ai-Bj -Ck sequences, or, equivalently, the
catenation of two bonds Ai-Bj and Bj -Ck. Considering
compounds of C, O, and H, there are 125 possible distinct
catenations of two bonds Ai-Bj and Bj -Ck. From f(3), f(2) can
be determined as (see Appendix B)

f
(2)
Ai-Bj =

∑
Ck

[
2δAi,Ck−1

j − 1
f

(3)
Ai-Bj-Ck

]

=
∑
Ck

[
2δBj,Ck−1

i − 1
f

(3)
Bj-Ai-Ck

]
. (6)

Similar to f(2), f(3) can be viewed as a generalization of
“triples,” the fingerprint examined in Ref. [20].

IV. PROPERTY PREDICTION MODEL

A learning model is critical in order to map the fingerprints
to properties. In this work, we chose Gaussian kernel

ridge regression (KRR) [5,48,49], the technique which has
successfully been used in material properties predictions
[20,25,28–30]. Within this model, the input fingerprints
are transformed into higher-dimensional space whereby a
linear relation between the transformed fingerprints and
the associated properties can be established. This mapping
involves the distances between fingerprints and can be
regarded as a similarity-based prediction model; that is,
similar properties may be predicted for materials with similar
fingerprints.

In the KRR model, the property Pμ of a structure μ is
predicted as a weighted sum of Gaussians,

Pμ =
∑

ν

αν exp

[
−1

2

(
dμν

σ

)2]
, (7)

where ν runs over all the fingerprints in the training data
set. Here, dμν is the distance between fingerprints μ and ν,
defined as the Euclidean metric dμν =

√∑
κ (f μ

κ − f ν
κ )2. The

Gaussian width parameter σ and the regression coefficients αν

are determined within the training phase when a regularized
objective function is minimized [5,48,49]. During this phase,
σ and the regularization parameter are determined by k-fold
cross validation on the training set (k = 5 in this work). Within
this method, the training data set is split into k bins; any of the
bins is considered to be a new test data set, while the remaining
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FIG. 2. (Color online) Learning curves corresponding to Eat, EZP,
α, Cv , and EHL. For each model, f(0), f(1), f(2), and f(3) are used to
represent the molecules. Calculated data are given by symbols, while
curves are a guide for the eye.
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FIG. 3. (Color online) Predictions for Eat, EZP, α, Cv , and EHL of the molecule data set, using f(0), f(1), f(2), and f(3) (from top row to bottom
row). For each prediction, the training data set consists of 1000 points, while the test data set includes the remaining 44 708 data points.

k − 1 bins form a new training data set. This procedure is
repeated for each of the k bins and for every value of σ

and λ on a preselected logarithmic-scale grid. The optimal
values of σ and λ, i.e., those leading to the minimum k-fold
cross-validation (mean absolute) error, are used to compute αν

of the entire data set.

V. PROPERTY PREDICTION RESULTS

A. Molecule data set

The four fingerprints considered, namely, f(0), f(1), f(2), and
f(3), were used to represent the molecule data set. To mimic the
learning and prediction processes, the data set was randomly
partitioned into a training data set and a test data set. The KRR
model was then trained on the training data set using fivefold
cross validation before predictions were made on the test data
set. We show in Fig. 2 the learning curves of Eat, EZP, α, Cv , and
EHL, plotting the training and test errors against the number of
molecules in the training data set (data reported in Fig. 2 were
averaged over 30 independent runs). In addition, predictions
for the test data set of 44 708 molecules after training the KRR
model on a data set of 1000 molecules are shown in Fig. 3. As
discussed in detail below, both Figs. 2 and 3 indicate that all of
these properties can be very well predicted by using either f(2)

or f(3), provided that the KRR model is trained on a training
data set of �200 or more data points.

The general tendency, as revealed by Fig. 2, is that
higher-order fingerprints offer more accurate predictions. The

zeroth-order fingerprint f(0) can be used to roughly estimate
energy-related quantities, i.e., Eat and EZP, while it cannot be
used for others. For instance, EHL cannot be predicted with
f(0) because this fingerprint is totally local in nature, encoding
no information at any finite range. Consequently, the finite
conjugation length, known to signal the energy-gap reduction
in complex (conjugated) systems (see, for example, Ref. [50]),
is not captured by f(0). Fingerprints of higher orders, e.g.,
f(1), f(2), and f(3), contain some information at increasing
ranges, allowing for systematically better predicting EHL.
These fingerprints also work sufficiently well in predicting Eat

and EZP. With f(1), the average error in predicting Eat is �25
meV/atom, while this error is reduced to �20 meV/atom
and �18 meV/atom if f(2) and f(3), respectively, are used.
The very good power of f(2) in predicting Eat reproduces the
similar conclusions drawn for the bond-counting fingerprint
by Ref. [47]. This behavior is understandable because the
dissociation energy of chemical bonds in organic molecules
and crystals, which dominates the stability of these systems,
is well defined [46] in the same fashion as the bond length, as
previously discussed. Interestingly, this predictive power can
significantly be improved if more advanced fingerprints, i.e.,
those that can capture the small perturbations of interatomic
distances like the Coulomb matrix, are used [29,30]. Compared
to f(1) and f(2), f(3) is significantly better in predicting Cv . The
considerable improvement in the predictions of α when f(2)

is used instead of f(1) may indicate the key contribution from
polar bonds to the high-value regime of α.

014106-4



ACCELERATED MATERIALS PROPERTY PREDICTIONS . . . PHYSICAL REVIEW B 92, 014106 (2015)

0

50

100

A
ve

ra
ge

d 
pr

ed
ic

tio
n 

er
ro

r

Atomization energy
(meV/atom)

f(0), training
f(1), training
f(2), training
f(3), training

0.0

0.3

0.6

0.9
Band gap (eV)

10 100 200
Training set size

0.0

0.1

0.2
Electronic dielectric constant

f(0), test
f(1), test
f(2), test
f(3), test

0.0

0.1

0.2
Ionic dielectric constant

0.0

0.1

0.2

0.3 Total dielectric constant

FIG. 4. (Color online) Learning curves corresponding toEat, εelec,
εion, ε, and Eg determined by using f(0), f(1), f(2), and f(3) for
representing the crystals structures. Calculated data are shown by
symbols, while curves are a guide for the eye.

B. Crystal data set

We performed similar predictions for the data set of 215
crystals containing C, O, and H. Using the KRR model coupled
with f(0), f(1), f(2), and f(3), five properties of these crystals,
including the atomization energies Eat, the band gap Eg, the
electronic dielectric constant εelec, the ionic dielectric constant
εion, and the total dielectric constant εtot = εelec + εion, were
predicted. We show in Fig. 4 the learning curves, representing
the errors of the predictions using these fingerprints, averaged
over 100 independent runs. In Fig. 5, the predictions for the
five properties are given using the KRR model trained on a
random training set of 150 data points.

Clearly, the tendency of the prediction performances on
the crystal data set is similar to that of the molecule data
set; that is, high accuracies are obtained with fingerprints of
higher orders, and properties which are governed by long-
range information, e.g., band gap Eg, can be predicted with
only high-order fingerprints. For the atomization energy Eat,
predictions with f(0) and f(1) lead to quite high average errors,
which reduced to �18 and �15 meV/atom when f(2) and f(3),
respectively, were used. Overall, all five examined properties
can be predicted well when high-order fingerprints are used
to represent the crystals. For instance, by employing f(3), the
average error in predicting Eg is �0.45 eV, while the electronic
dielectric constant εelec and the ionic dielectric constant εion can
be predicted with an average error of 0.1–0.2.

VI. UTILITIES OF THE FINGERPRINTS

The demonstrated predictive power of the KRR model,
which uses f(i) to represent materials structures, inspires the
idea of using this model to rationally optimize materials
for a targeted property Popt, a concept often referred to as
“inverse design” [51–54]. In fact, a large number of success
stories along this direction have been reported in the past,
using various approaches, e.g., iteratively optimizing the
properties of a given compound or on-the-fly screening when
searching for stable structures [9,55–66]. Here, our idea is
that starting from a trained KRR model, fingerprints which
correspond to the desired properties can be predicted. Then,
molecular structures will be reconstructed from the predicted
fingerprints. Finally, the targeted properties will be verified by
DFT calculations at the same level as those used for the training
data set.

The greatest challenge of this procedure is to ensure that the
predicted fingerprint is physically and chemically meaningful;
that is, at least one material structure can be reconstructed
from it [67,68]. Therefore, one must mathematically define
the subspace of the meaningful fingerprints and then limit
the search for desired fingerprints within this subspace. We
present two approaches which can be used for designing
molecules (the work of designing crystals is not considered
here).

A. Design via enumeration

The central idea of this approach is that the components
of a given fingerprint can be enumerated in a given way so
that it is meaningful. We used f(2) for a demonstration because
predictions using this fingerprint are good, while its dimen-
sionality is not too high like that of f(3). We first implemented
the applicable rules involving bonds and coordination numbers
by defining five “backbone” blocks. They include C4, C = C
(a pair of C3 atoms with a double bond), C ≡ C (a pair of
C2 atoms with a triple bond), C = O (one C3 and one O1
atom linked by a double bond), and O2. By definition, all
of the dangling bonds starting from these blocks are single
bonds; thus any of them can be connected to others without
any constraint. Then, given a set of backbone blocks, all the
possible arrangements can be scanned, keeping track of the
connectivity to eliminate some dangling bonds and saturating
the remaining dangling bonds by either H1 or OH, referred
to as “ending” blocks. From the obtained arrangements, f(2)

could be unambiguously determined, and their properties were
predicted. Those with targeted properties were singled out to
rebuild molecular structures for validating calculations. We
show in Fig. 6 two optimized molecules constructed from two
of the predicted fingerprints, labeled by A and B, accompanied
by the predicted and calculated EHL and α. The results
given in Fig. 6 indicate that the desired molecules are indeed
obtained.

B. Design via inversion

Different from the enumeration approach, this procedure
aims to directly determine the fingerprints, starting from
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FIG. 5. (Color online) Predictions for Eat, εelec, εion, ε, and Egap of the crystal data set, using f(0), f(1), f(2), and f(3) (from top row to bottom
row). For each prediction, the training set size is 150, and the remaining 70 points form the test set.

desired properties. This goal can be achieved by optimizing an
objective function, aiming towards the desired properties while
applying the constraints that ensure the fingerprints considered
are meaningful. Because the reconstruction step requires a
simple enough fingerprint, f(1) was selected for this approach.
Among the constraints established for f(1), (2) and (3) are

FIG. 6. (Color online) Optimized molecules, constructed from
two predicted fingerprints A and B, shown with the predicted and
calculated values of EHL and α. Carbon, oxygen, and hydrogen atoms
are given in dark brown, red, and pink, respectively.

explicitly imposed in the objective function

G[f(1),λ1,λ2] = (P − Popt)
2 + λ1

[∑
Ai

f
(1)
Ai − 1

]2

+ λ2
[
f

(1)
H1 − 2f

(1)
C4 − f

(1)
C3 + f

(1)
O1

]2
. (8)

Here, λ1 and λ2 are the Lagrange multipliers associated with
the constraints, while P is the property (or properties) of the
trial fingerprint f(1) predicted by the trained KRR model. In
practice, we evaluated P by averaging many predictions; each
of them was given by the KRR model trained on a randomly
selected training data set of 1000 data points. All the terms
in (8) are given in the quadratic form to smoothen G. Generally,
the problem of minimizing G[f(1),λ1,λ2] (performed with
simulated annealing [69] in this work) returns many solutions
F(1). For each of them, Nat was determined by minimizing
another objective function D[F], defined as

D[F(1)] =
∑
Ai

[
NatF

(1)
Ai − nint

(
NatF

(1)
Ai

)]2
, (9)

where nint(x) returns the closest integer to x. Once Nat is
determined, a postscreening step is performed to consider the
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FIG. 7. (Color online) EHL − α log-log plot of the molecule data
set, shown by green symbols, with the predicted fingerprints shown
by red diamonds within the regime of desired properties, i.e.,
0.6 � α � 0.7 Å3/atom and EHL � 7.0 eV. In the inset, the predicted
and calculated properties of the molecules reconstructed from three
predicted fingerprints, i.e., C, D, and E, are shown by solid and open
symbols: triangles for C, circles for D, and squares for E. The dashed
line sketches the limit α ∼ 1/EHL addressed in the text.

possibility of N© > 0 and to single out the fingerprints so that
NatF

(1)
C2 and Nat[F

(1)
C3 − F

(1)
O1 ] are positive even numbers. Such

fingerprints are meaningful; that is, molecules can be built up
from any of them.

We demonstrate this procedure by optimizing two prop-
erties simultaneously, i.e., the HOMO-LUMO gap EHL and
the isotropic polarizability α. Because α is a measure of the
response, in terms of charge redistribution, of a molecule to
the external electric field, this quantity is closely related to the
electronic contribution of the dielectric constant εelec. We note
that these properties seem to be competing, as shown in Fig. 7,
where an asymptotic limit of the form α ∼ 1/EHL can be seen
(a similar limit between two related properties of crystals,
namely, εelec and Eg, was documented earlier in Ref. [70]). An
examination of Fig. 3 reveals that the prediction of α using f(1)

is fairly good in the region of α < 0.8 Å3/atom. For this reason,
we searched for new molecules, i.e., those that do not exist in
the molecule data set, for which 0.6 � α � 0.7 Å3/atom while
EHL � 7 eV and show the results in Fig. 7. While the calculated
EHL of the molecule data set can reach the upper limit of
�10 eV, all the predictions for EHL by the KRR model are
below 9 eV. The reason is given in Fig. 3, which clearly implies
that when f(1) is coupled with the KRR model, high values
of EHL (8 � EHL � 10 eV) are generally underestimated by
roughly 1 eV. Three of the predicted fingerprints, labeled by
C, D, and E, were selected for rebuilding new molecules.
From either C or E, only one molecule can be constructed,
while many different molecules correspond to D. All of the
molecules reconstructed from C, D, and E were optimized,
and then their α and EHL were calculated with GAUSSIAN

09 [71], using the 6-31G(2df,p) basis set and the B3LYP XC
functional [72,73]. The results are summarized in Table I and
in the inset of Fig. 7, demonstrating that the molecules with
desired values of α and EHL were actually obtained. Detailed

TABLE I. Predicted and calculated values of α (in Å3/atom)
and EHL (in eV) of the molecules designed from three predicted
fingerprints, C, D, and E. Data from this table are also shown in the
inset of Fig. 7.

Predicted Calculated

Label Nat α EHL α EHL

C 11 0.689 7.273 0.654 7.964
D 18 0.670 7.363 0.664–0.699 6.502–7.348
E 14 0.607 8.612 0.597 8.909

information on all of the designed molecules can be found in
the Supplemental Material [42].

C. Remarks

It is worth noting that the key feature of f(i) which is usable
for the described enumeration and inversion design procedures
is their discontinuity with respect to slight configurational per-
turbations. Because all the possible chemical bonds appearing
in a molecule comprising C, O, and H are well defined, it
is very likely that the optimization step performed on the
reconstructed molecules preserves the predicted fingerprint.
Moreover, the efficiency of the design approaches depends
on several factors, including the prediction accuracy of
the fingerprints used. Although predictions using high-order
fingerprints are systematically better, the complexity generated
by their high dimensionality is significant. Compared to the
procedure described above, that utilizing f(2) or f(3) needs
roughly 10 or 100 more constraints to ensure the considered
fingerprints are meaningful. If the dimensionality of f(2) can
be considerably reduced, it may then be used for the inversion
approach.

VII. CONCLUSIONS

To summarize, we have systematically studied a family of
motif-based topological fingerprints which can numerically
represent major classes of molecules and crystals. By using
a similarity-based learning algorithm, these fingerprints can
be mapped onto various properties of molecules and crystals,
thus leading to an accelerated property prediction capability.
A major advantage of these fingerprints is clearly demon-
strated via two procedures for designing molecules, one by
enumeration and the other by inversion. These procedures rely
on the accelerated property prediction capability to identify
the desired fingerprints and then to reconstruct molecules
that possess one or more targeted properties. We note that
although only molecules and crystals comprising C, O,
and H are considered in this contribution, our results can
straightforwardly be generalized to those containing other light
elements whose coordination preferences are well established,
e.g., N and F.
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APPENDIX A: CONSTRAINT ON f(1) DERIVED FROM
ELEMENTARY CHEMICAL RULES

Constraint (3) was derived with an assumption that the
desired molecular structure is connected; that is, any pair of
atoms is connected by at least one sequence of the allowed
chemical bonds. Let us take a molecule in which nAi is the
number of blocks Ai. Starting from the applicable chemical
rules, all the twofold-coordinated carbon atoms are grouped
by pairs, forming nC2/2 units of C ≡ C, each of which
is a pair of carbon atoms linked by a triple bond. Next,
nO1 onefold-coordinated oxygen atoms must bond with nO1

threefold-coordinated carbon atoms to form nO1 units of
C = O. Then, the remaining nC3 − nO1 threefold-coordinated
carbon atoms are grouped together by pairs, forming (nC3 −
nO1)/2 units of C = C. Therefore, the set of blocks Ai now
contains nC2/2 + nO1 + (nC3 − nO1)/2 + nC4 + nO2 units of
C ≡ C, CO, C = C, C4, and O2. Assuming that these units
are isolated, the total number of dangling bonds starting from
them is 2(nC2/2) + 2nO1 + 4[(nC3 − nO1)/2] + 4nC4 + 2nO2,
or simply

nC2 + 2nC3 + 4nC4 + 2nO2. (A1)

By joining nC2/2 + nO1 + (nC3 − nO1)/2 + nC4 + nO2 units
together, the number of dangling bonds that will be annihilated
to form interunit bonds is 2[nC2/2 + nO1 + (nC3 − nO1)/2 +
nC4 + nO2 − 1] + 2n©, where n© is the number of loops of
bonds, each of which costs two extra bonds. Therefore, the
number of remaining dangling bonds is

nC3 + 2nC4 − nO1 − 2n© + 2. (A2)

All of these dangling bonds must be saturated by nH1 hydrogen
atoms; thus,

nH1 = nC3 + 2nC4 − nO1 − 2n© + 2. (A3)

The constraint (3) can then be obtained when we divide
Eq. (A3) by Nat. This constraint is applicable not only for
molecules but also for crystals formed by repeatedly placing
an isolated molecule in a periodic grid. If these molecules
are not isolated, i.e., if they form a network of d dimensions,

2d dangling bonds are used to form the network (assuming that
the network is formed by only single bonds). Thus, Eq. (A3)
is given as

nH1 = nC3 + 2nC4 − nO1 − 2n© − 2d + 2. (A4)

In the general case when not only single bonds are involved
in the network formation, the parameter d used in Eq. (A4) is
not necessarily an integer.

APPENDIX B: DERIVATION OF THE RECURSION
RELATIONS OF f(2) AND f(3)

1. Recursion relations of f(2)

The number nAi of blocks Ai can be determined by
counting all the bonds of the Ai-Bj type. By summing all
the number of Ai-Bj bonds, the Ai-Ai bonds are counted
twice. Therefore,

nAi = 1

i

⎡
⎣∑

Bj

nAi-Bj − 1

2
nAi-Ai

⎤
⎦. (B1)

Then, the recursion relation of f(2) can be obtained by
dividing (B1) by the total number of atoms Nat.

2. Recursion relations of f(3)

Similar to the derivation of (B1), the fingerprint component
f

(2)
Ai-Bj can be determined by counting the number ofAi-Bj -Ck

sequences before dividing by j − 1. In such a procedure, the
Ai-Bj -Ai sequences are counted twice. Thus, after removing
the double counting, we obtain

nAi-Bj = 1

j − 1

[∑
Ck

nAi-Bj-Ck − 1

2
nAi-Bj-Ai

]
. (B2)

We note that one can also count the number of Bj -Ai-Ck

sequences before dividing the total number by i − 1. Thus,

nAi-Bj = 1

i − 1

[∑
Ck

nBj-Ai-Ck − 1

2
nBj-Ai-Bj

]
. (B3)

By dividing (B2) and (B3) by Nat, two equivalent recursion
relations are obtained. Moreover, we note that (B2) and (B3)
set up a constraint that f(3) must also satisfy.
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