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ABSTRACT: A rich body of literature has emerged in recent years that discusses the extraction of structured information from
materials science text through named entity recognition models. Relatively little work has been done to address the “normalization”
of extracted entities, that is, recognizing that two or more seemingly different entities actually refer to the same entity in reality. In
this work, we address the normalization of polymer named entities, polymers being a class of materials that often have a variety of
common names for the same material in addition to the IUPAC name. We have trained supervised clustering models using
Word2Vec and fastText word embeddings reported in previous work so that named entities referring to the same polymer are
categorized within the same cluster in the word embedding space. We report the use of parameterized cosine distance functions to
cluster and normalize textually derived entities, achieving an F1 score of 0.85. Furthermore, a labeled data set of polymer names was
utilized to train our model and to infer the true total number of unique polymers that are actively reported in the literature. For
∼15,500 polymer named entities extracted from our corpus of 0.5 million papers, we detected 6734 unique clusters (i.e., unique
polymers), 632 of which were manually curated to train the normalization model. This work will serve as a critical ingredient in a
natural language processing-based pipeline for the automatic and efficient extraction of knowledge from the polymer literature.

■ INTRODUCTION

Machine learning and data-driven methods have made
significant in-roads into the domain of polymer science. The
field of polymer informatics seeks to develop rapid data-driven
predictive models of polymer properties and to solve the
inverse problem aimed at the design of new polymers with
desirable properties.1−3 This field, just like the parent
discipline of materials informatics, suffers from data scarcity.4

A possible solution to the data-scarcity problem is to use
natural language processing (NLP) methods to extract
information at scale from the polymer literature. NLP methods
have been used in the inorganic materials space for synthesis
planning and the extraction of materials insights.5−7 Addition-
ally, NLP has most recently been used in the polymer space for
predicting novel polymers for existing applications.8

An important component of NLP is named entity
recognition (NER), that is, identifying spans of text belonging
to certain predefined categories. The traditional method of
training supervised NER models requires manual annotation of
large corpora of text. This process can be made much faster by

using weak supervision in the form of labeling functions that
automatically label input text using heuristic rules defined by
domain experts.9−11 In this work, we release a data set of
polymer named entities (PNEs) that can be used as a weak
labeling source for building NER models involving polymeric
materials. Many of the PNEs in this data set refer to the same
chemical entity. We have addressed this problem using named
entity normalization (NEN), another critical component in
NLP workflows.
Normalization here refers to clustering together all polymer

names referring to the same chemical entity and assigning a
unique identity to it, a problem that has attracted some recent
interest.12 NEN, also called entity linking, is a well-studied
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problem in NLP. Graph-based approaches that use existing
knowledge bases to infer the co-relation between entities and
textual approaches that extract features such as word
embeddings from large amounts of text that are then used
for NEN are the two most common approaches used for this
problem.13,14 Past work in Materials Science has also employed
dictionary-based approaches using chemical databases like
PubChem and JoChem.15,16

Despite having a standard scheme of nomenclature defined
by International Union of Pure and Applied Chemistry
(IUPAC) rules, that is, the IUPAC source-based name and
the IUPAC structure-based names,17 the vast majority of
polymer names found in the literature do not conform to these
norms (see Section S1 in the Supporting Information). In
order to solve this issue, we normalize polymer names.
Normalizing PNEs has several benefits. It enables us to get a
clearer overview of the number of polymers that are actively
reported upon in the literature. Such a list can also be used to
build a search functionality over a knowledge base of polymers
that can take arbitrary variations in names as input. Robustly
and reliably normalizing PNEs is also the first step in a pipeline
that can convert arbitrary polymer names to a structure.
Variations in common names used to refer to polymers are

also frequently observed. The “poly(tetrahydrofuran)” polymer
is also referred to in the literature as “polyTHF,” “poly-
(tetramethylene glycol),” “polytetramethylene oxide,” “poly-
(tetramethylene oxide),” “PTMO,” and “PTMG.” Variations in
spelling for the same polymer are also commonplace, for
example, “poly(vinylidene fluoride)” and “poly(vinilydene
fluoride)” and “polytetrafluoroethylene” and “polytetrafloro-
ethylene.”18,19 More examples are shown in Table 1. Many of

these are nontrivial variations and cannot be captured using
simple heuristic rules. Normalizing polymer entities is thus a
challenge and requires machine learning methods in order to
perform this task successfully.
The idea of word vectors from NLP combined with

supervised clustering provides a solution to this problem.
Word vectors (also referred to as word embeddings) are one of
the pillars of modern NLP. One can think of a word vector as
representing the meaning of a token in a vector space where a
token is a piece of text that is used downstream for processing.
Tokens that are similar will have word vectors that are close in
the word vector space, that is, have a high dot product. Thus,
in a polymer science context, PNEs used for similar
applications will have a high dot product, and in particular,
PNEs referring to the same polymer will be close to each other
in the word vector space. Furthermore, this vector space has an

intrinsic structure that allows downstream models such as NER
to be trained. Word2Vec and fastText are some of the earliest
methods for training word embeddings.20,21 They rely on
contextual information inferred by observing a word in several
different contexts over a large corpus of text to train vector
representations of words. In order to normalize PNEs to
partition our list of polymers, we have trained a model that can
learn this pattern of proximity in the word vector space for
polymers through the idea of supervised clustering.
Supervised clustering uses a labeled data set of known

clusters to learn a dissimilarity function that partitions unseen
points into their respective clusters.22 The first step in
supervised clustering is to learn a dissimilarity function using
labeled data that is trained to minimize a loss or penalty
function over known clusters. The dissimilarity function
transforms the original vector space into a space where the
known clusters occur close together, and hence, clustering in
this space is easier. The next step is to perform clustering to
partition the data points in the transformed space.
This is the first effort to systematically and comprehensively

address the normalization of chemical named entities (CNEs)
in the polymer space. Also reported is the use of parameterized
cosine distance functions for supervised clustering, which
significantly improves normalization performance. We release
our labeled data set of polymer names and clusters with their
corresponding word embeddings, our training code, and the
list of clusters predicted by the model for unlabeled data. In
addition to serving as a weak supervision source for NER, we
hope that this data set will serve as a useful benchmark for
NEN.

■ METHODS
Data Set. We collected a corpus of ∼0.5 million polymer

papers from various materials science publishers, including
Elsevier, Wiley, Royal Society of Chemistry, and Springer
Nature. Further details on our corpus of papers can be found
elsewhere.8 We used the ChemDataExtractor23 tool to extract
all CNEs, that is, mentions of all chemical names. Out of these
names, we picked a subset that contained the term “poly.” This
yielded a data set of ∼25,500 PNEs. Due to the diversity in
polymer names, this is necessarily a rough heuristic and misses
out certain biologically derived polymers such as “dextran” or
“cellulose” and includes certain nonpolymer chemical entities
such as “polysulfide.” This heuristic was, however, observed to
work well in practice. Out of 100 randomly sampled PNEs, we
found that only one, that is, “polyfunctionalized” was not
actually a polymer. From this set, we removed all polymers
corresponding to copolymers and blends by using keywords
such as “copoly,” “-ran-,” “-ipn-,” and so forth. This processing
step was done as the determination of two PNEs referring to
the same homopolymer is well defined as opposed to making
that determination for different blends or copolymers, which
vary on a continuous scale. We also removed all PNEs
corresponding to polymer classes such as polyacetals,
polyoxides, polyimides, polyolefins, and so forth using a list
of polymer classes that we manually constructed and other
keywords that are erroneously classified as PNEs such as
“polycrystalline,” “polyelectrolyte,” and so forth. The afore-
mentioned data processing steps left us with 15,500 PNEs.
Many of these PNEs refer to the same real-world entity, and
hence, the goal of this work is to develop a method to
normalize this data set. We manually annotated 2380 PNEs
into distinct clusters, which corresponded to 632 unique

Table 1. Examples of Normalized PNEsa

polymer name or key selected name variants of the same polymer

poly(vinylcyclohexane) poly(cyclohexylethylene),
poly(cyclohexyl ethylene),
polycyclohexylethylene

poly(p-methylstyrene) poly(4-methyl styrene), poly(4MS),
poly(p-methyl styrene), polyparamethylstyrene

polyvinylpyrrolidone poly(N-vinylpyrrolidone), poly(vinyl)pyrrolidone,
poly-vinyl pyrrolidone, poly-N-vinyl
pyrrolidone, polyvidone,
poly(vinyl pyrrolidone)

poly(vinyl chloride) poly-vinyl chloride, poly(vinyl chloride), polyvinyl
chloride, poly vinyl chloride

aThe key used here is the most frequently occurring name for that
polymer.
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polymers. We ensured that the labeled data points were
uniformly distributed over the word vector space of all PNEs.
We did so by picking points to label from the t-SNE plot8,24 of
all unlabeled points, as illustrated in Figure S1. This
constituted our training set for supervised clustering of the
remainder of the ∼13,000 PNEs. Existing chemical databases
containing polymer information such as PoLyInfo,25 Chem-
IDPlus,26 or PubChem27 contain manually curated variations
for many common polymer names but have low coverage over
all variations occurring in the literature and hence were not
used in this work. The PubChem database, for instance,
contains only 251 overlapping entities with our labeled data set
corresponding to 131 unique polymers.
Word Vector Models. We have trained two different word

vector models on our corpus of papers, namely Word2Vec
(Skip-Gram variant of Word2Vec)20 and fastText.21 In
particular, we generated a 128-dimensional vector representa-
tion for all the PNEs in our data set to be normalized (as
described in the Data Set Section). The word vectors so
generated were used as feature vectors for the downstream
machine learning models we trained.
Word2Vec trains a single vector representation for tokens,

while fastText sums up the vector representation associated
with the subwords in a token. For example, “polyethylene”
would have a Word2Vec vector representation trained using
only the contextual information in all contexts that it appears
in. FastText on the other hand represents a word as a bag of
character n-grams, including the word itself, where the size of
the n-gram varies from 3 to 6. The vector representation is
obtained by summing up the vectors for all the n-grams. For
morphologically rich languages like Czech and German,
fastText has been known to perform better than Word2Vec
baselines on tasks like word analogies.21 FastText embeddings
have also been used in materials science such as in ref 28 where
they were used as inputs to a model that predicted precursors
to perovskites. Similarly, a normalization task on polymer
names, which have rich internal structure reflecting chemical
information, is also likely to benefit from using subword
information. Details on tokenization and the parameters used
during word vector training can be found in ref 8.
Baseline. As a baseline against which to compare our

models, we replicated the approach followed in ref 29. This is
one of the few papers to attempt normalization over named
entities in materials science. This paper performed normal-
ization over seven different classes of materials science entities
such as “synthesis methods,” “characterization methods,”
“properties,” and so forth. For example, “CVD” and “chemical
vapor deposition” are normalized to the same cluster. We
adapted the same approach to our problem statement and data
set. For every pair of polymers, the corresponding word
embeddings were concatenated, which gave us the feature
vector X for that pair of polymers. If the pair of polymers
belonged to the same cluster, then the pair is assigned a label
of one, and if they belonged to different clusters, then a label of
zero was assigned. We then trained a binary random forests
classifier using the aforementioned feature vector X and label y.
In a separate trial, we also augmented the feature vector X with
three handcrafted features as described in ref 29. The three
features used were (1) the Levenshtein distance30 between the
pair of polymer tokens, (2) a label of one if the pair of
polymers has the same stem word and zero otherwise, and (3)
the cosine similarity between the two polymer word vectors.
Each of the three features used can be defined only over pairs

of polymers. This method is referred to as pairwise
classification in subsequent discussions.
Observe that the label classes are highly imbalanced with

label zero being far more numerous than label one. In order to
have a balanced training set and closely follow the procedure
outlined in ref 29, we sampled half the points of label one and
an equal number of points of label zero. This yielded 16668
points with balanced classes. The remaining points were all
part of the test set. The test set remained unbalanced, but this,
we must require of our test set as real-world data on which any
such model must be tested will be similarly unbalanced.
The SynSetMine framework31 is used as an additional

baseline. This method splits the labeled clusters into synonym
sets and instances. Instances could be positive instances, that is,
instances that belong to that synonym set but are not included
in it, and negative instances that do not belong to that set. A
neural network classifier learns whether an instance is positive
or negative using the vector representation of the instance and
a permutation-invariant vector representation of the set. We
used 90% of the labeled clusters as the training set and 10% as
the test set in order to be consistent with our later experiments.

Supervised Clustering. In supervised clustering,32,33 we
start with a list of data points, each represented by a D-
dimensional feature vector. It is further assumed that all points
can be partitioned into clusters with the number of clusters
typically not known a priori. Given the labels for a subset of the
data with each point assigned to its true cluster, we aim to train
a model that can partition the remaining points into their true
clusters which are different from the clusters of the training
data. This is done by fitting a parameterized distance function
with the parameters being tuned based on the training data set.
The parameterized distance function acts as a dissimilarity
function once a distance threshold is applied to discern points
as belonging to the same or different cluster. The para-
meterized distance function achieves a mapping of the original
feature vectors to a different vector space where the data points
are “easier” to separate into clusters. We tested two different
parameterized distance functions, that is, the Mahalanobis
distance34 and a parameterized version of the cosine distance.
If xi and xj are two points, then the Mahalanobis distance
function is a generalized version of the Euclidean distance and
is given by

f x x x x S x x( , ) ( ) ( )i j i j i j
T 1= − −−

(1)

where S is the covariance matrix that is learned. The
parameterized cosine distance function35 we used has the form

f x x
Wx Wx

Wx Wx
( , ) 1

( )
i j

i j

i j

T

2 2
= −

|| || || || (2)

where W is the symmetric matrix that maps the points xi and xj
from the original space to a space where clustering is easily
performed and is learned during the training procedure and
||·||2 is the L2 norm. We used the EXPα training procedure
described in ref 22 to learn this dissimilarity function. This
training procedure was adopted because as reported in this
paper, other commonly used loss functions such as all-pairs
loss and minimum-spanning trees favor some linkage functions
over others and can lead to poor clustering quality.
Once the dissimilarity function was learned, we used

hierarchical agglomerative clustering (HAC) to perform
clustering.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00554
J. Chem. Inf. Model. 2021, 61, 5377−5385

5379

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00554/suppl_file/ci1c00554_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00554?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Hierarchical Agglomerative Clustering. HAC36,37 is a
clustering technique in which, starting with every node in its
own cluster, the closest clusters are successively merged till
only a single node is left. This yields a tree structure of nodes,
and the final flat clusters are determined by using a threshold,
which itself is learned from the data. We split our labeled data
set into 75% training, 15% validation, and 10% test with all
points in the same cluster being partitioned into the same set.
Word2Vec or fastText embeddings were used, and no
handcrafted features were used in this case as the latter are
only defined over pairs of polymers. The parameters of the
distance function are learned during the training phase, and the
threshold for partitioning the points into clusters is found by
maximizing the F1 score (explained in the Evaluation Metrics
section) obtained over the validation set. The threshold here is
a distance such that all siblings in a sub-tree at a node having a
distance lower than the threshold are partitioned into the same
cluster, while all sibling nodes having a distance greater than
the threshold are in different clusters (illustrated in Figure 1).

The advantage of hierarchical clustering as opposed to most
other clustering algorithms is that the number of clusters does
not have to be specified a priori. This is useful in our case
where the total number of unique polymers is not known to
begin with.
Measuring the distance between clusters during the merging

process is an important part of HAC. Let Cu and Cv be the two
clusters under consideration. The distance between clusters
can be measured in many ways as described below.

1. Single linkage: shortest distance between any pair of
points in Cu and Cv

2. Complete linkage: longest distance between any pair of
points in Cu and Cv

3. Average linkage: average distance between every pair of
points in Cu and Cv

4. ExpLinkage: this is a linkage method first introduced in
ref 22 and interpolates smoothly between the above
mentioned three linkage methods, which has the below
functional form

D C C
f x x

( , )
e ( , )

e
u v

x C x C
f x x

i j

x C x C
f x x

( , )

( , )
i u j v

i j

i u j v

i j
=

∑ ∑

∑ ∑

α

α

∈ ∈

∈ ∈ (3)

where xi and xj are arbitrary points, f(xi,xj) is the distance
between them, and α is a learnable parameter. As α → −∞
and α → ∞, D(Cu,Cv) approaches single linkage and complete
linkage, respectively, and reduces to average linkage at α = 0.

Evaluation Metrics. We evaluated the performance of our
models based on the pairwise F1 score22 computed over the
true and predicted clusters for every pair of points. Let W* be
the pairs of points in the evaluation data belonging to the same
ground truth cluster and Ŵ be all pairs of points belonging to
the same predicted clusters. From the definitions, it is clear
that W* ∩ and Ŵ correspond to the true positives and Ŵ −
W* corresponds to false positives, while W* − Ŵ corresponds
to false negatives. These three quantities can be used to
compute the precision, recall, and their harmonic mean to yield
the F1 score as shown in the below equations.

W W
W W W W

W W
W W W W

F

Precision

Recall

1
2 precision recall

precision recall

= | * ∩ ̂ |
| * ∩ ̂ | + | ̂ − *|

= | * ∩ ̂ |
| * ∩ ̂ | + | * − ̂ |

=
× ×

+ (4)

■ RESULTS AND DISCUSSION
Distribution of Polymer Names. Figure 2a shows the

most frequently occurring polymers in our corpus of papers.
Figure 2b shows the frequency and the rank of polymers
plotted on a log−log scale. Rank 1 polymer here is the most
frequently occurring polymer. Observe that the best fit line is
nearly a perfect straight line fit, which strongly suggests that

Figure 1. Illustration of HAC. (a) A−E are points to be clustered.
The color indicates its true cluster. HAC works by combining closest
points successively into larger clusters. (b) Resulting tree diagram. A
decision threshold must then be learned to pick out the true clusters
(shown by a dashed line). The distance between points is
parameterized and learned during the training procedure.

Figure 2. Polymer name statistics: (a) Ten most commonly occurring polymers in our corpus of papers ordered by the relative frequency with
which they appear in the literature, relative with respect to the most frequently occurring polymer, i.e., “polystyrene” and (b) plot of frequency of
polymers against their rank when ordered by frequency on a log−log scale.
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polymer name frequencies follow a power-law distribution.
Thus, the most frequent polymers occur far more frequently
than the less frequent ones. This resembles other power-law
distributions observed in a written language such as Zipf’s
law,38 which is an empirical law that points out that the rank-
frequency distribution is an inverse power law for data in many
different domains. The power law exponent in Zipf’s law
applied to the rank-frequency distribution of words in any
language is close to one, which is also what we observe over
polymer names, as shown in Figure 2.
We can extend the idea that polymer names follow a power-

law distribution by taking a closer look at the PNEs. The PNEs
shown in Figure 2b are not normalized, that is, multiple PNEs
could refer to the same real-world entity. Figure 3a shows the
cluster size distribution of polymer names where the cluster
size refers to the number of PNEs referring to a unique
polymer.
Fitting the cluster size to the number of clusters with a given

cluster size on a log scale, as shown in Figure 3b, gave us a
straight line with R2 = −0.91 with a power law coefficient of
1.47. This suggests that cluster sizes also follow a power-law
distribution. The noise observed at the tail shown in Figure 3b
is because large clusters are sparse. If we assume that the
cluster sizes are indeed distributed as a power law, we can
estimate the number of unique polymers in our data set. To
see this, let {xi} be the set of cluster sizes and let g(.) be a
function that maps a cluster size to the number of distinct
clusters of that size. It is clear that the number of unique
polymers is given by ∑g(xi), and the total number of
unnormalized PNEs is given by ∑xig(xi). We know these
quantities for our training data set. For the complete data set,
we know the total number of polymers. The problem reduces
to computing the number of unique polymers given the
aforementioned equations. We can show that the ratio of the
total polymers to the number of unique polymers, the average
cluster size is constant (shown in Section S2 of the Supporting
Information), that is, does not depend on the total number of
PNEs under consideration. The number of unique polymers in
our dataset can thus be estimated to be ∼4100.
Model Performance. The performance of the baseline

models for normalizing named entities is shown in Table 2. All
the models are observed to have low recall. Reference 29
reported a precision and recall of 0.95 and 0.94, respectively,
for a random forest model trained using concatenated
Word2Vec vectors plus handcrafted features on 10000 labeled
entity pairs. However, as reported in the paper, the test data set
is synthetically generated such that the train and test set have

balanced classes. Our test set on the other hand is highly
imbalanced, with the ratio of the zero-label points to one-label
points being nearly 300:1, more closely reflective of real data.
The low recall is indicative of a large number of false negatives,
that is, polymers that belong to the same cluster but are labeled
otherwise. This along with the high precision indicates that
points far from the decision boundary are being classified
correctly, and for points close to the decision boundary, the
model prediction errs on the side of false negatives.
We performed an ablation study on the presence and

absence of the handcrafted features described in the “Baseline”
subsection. The precision and recall both show a jump in the
presence of handcrafted features. Considering that only three
additional features are concatenated with a 256-dimensional
vector, the handcrafted features indeed capture a lot of
information about the underlying data set that helps
normalization performance. The performance using Word2Vec
features is reported in Table S1.
Modeling normalization as a classification problem poses a

significant challenge due to classes being unbalanced in real
data. On reformulating as a supervised clustering problem,
binary class labels are no longer a part of the problem
formulation, and hence, the unbalanced nature of the classes is
consequently addressed. Modeling entity normalization as a
supervised clustering task is thus observed to give much better
performance, as discussed next.
The performance of our supervised clustering model is

shown in Figure 4. We report precision, recall, and F1 score of
the clustering performance on the test set. The error is the
standard deviation computed over five iterations, each with a
different split of train, test, and validation set.
As shown in Figure 4, fastText clearly outperforms

Word2Vec. This indicates that sub-word similarity matching
is a good proxy for matching similar polymers. From the same
figure, it is clear that the parameterized cosine distance metric
outperforms the Mahalanobis distance. The latter is an

Figure 3. Polymer cluster statistics: (a) plot of the distribution of cluster sizes for the polymers in our data set of 2380 polymer names and 632
clusters and (b) same data as (a) but plotted on a log scale. The data are shown using a continuous line to better illustrate power law behavior.

Table 2. Performance Over the Test Set of the Pairwise
Classification Model and SynSetMinea

model precision recall F1

concatenated word vectors 0.92 0.09 0.16
concatenated word vectors + handcrafted
features

0.95 0.11 0.19

SynSetMine 0.95 0.30 0.46
aAll models used fastText features, with word vectors concatenated
for pairs of polymers in the case of the pairwise classification
approach.
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extension of the Euclidean distance. The cosine distance is a
natural metric space for word embeddings as it is known that
word embeddings similar in meaning have high dot products.20

Observe that using the parameterized cosine distance increases
the recall of the model, clearly visible in the case of fastText, as
shown in Figure 4a,b. This indicates that the number of false
negatives has gone down, and hence, a better cluster boundary
is being learned. This implies that the parameterized cosine
distance is a better dissimilarity function for points in the word
vector space.
Comparing the linkage functions, we note that there is no

clear winner across precision, recall, and F1 score. In terms of
the F1 score, the average linkage appears to be on average
better than the other linkages considered across the four
models shown in Figure 4. Interestingly, the exponential
linkage does not outperform the other linkages, which is in
contrast to the result reported in ref 22 for the EXPα training
procedure and the fact that the exponential linkage is designed
to interpolate between the other three linkages. As the average
linkage tends to discover spherical clusters and the exponential
linkage can recover clusters of complex shapes, this indicates
that the clusters in our data set in the parameterized space are
spherical to begin with and the simpler model performs better.
Note that the best models shown in Figure 4 have F1 scores
around ∼0.8. The model’s ability to generalize to unseen test
data indicates that it does not overfit to the training data.
The pairwise classification approach does not take into

account the structure of the cluster and instead looks at only
instance level information. SynSetMine, in contrast, utilizes the
signal from the cluster structure but still does so using a binary
classifier. The supervised clustering approach does not rely on
classification but performs clustering utilizing the set structure.
The performance trend of the models suggests that utilizing
the structure of the sets and using clustering instead of
classification is the best approach to follow for entity
normalization. The fact that supervised clustering “works” in
this case indicates that word embeddings corresponding to
material entities can be mapped to a vector space where
entities referring to the same material occur “close” to each
other. This has been reported previously for noun phrase co-
referencing,22 but this is the first time this idea has been
validated for material entities.
We would expect fastText to identify similarities in cases

such as “polyethylene” and “poly(ethylene).” However,
fastText would have a hard time distinguishing polymers

such as “poly(o-toluidine),” “poly(m-toluidine),” and “poly(p-
toluidine),” which are spelled similarly and are likely to occur
in similar contexts but are chemically different. As Word2Vec
generates a vector representation using only contextual cues,
we expect that combining the predictions from Word2Vec and
fastText would perform better in such cases. To verify this, we
ensemble the Word2Vec and fastText models. For a given pair
of polymers in the test set, we take a majority vote of all the
models being ensembled and using that, we predict whether
the two polymers belong to the same cluster or different
clusters. We show the results of ensembling averaged over the
same train-val-test splits as used before in Figure 5. Only the

model trained using the parameterized cosine distance is
considered. The Word2Vec ensemble and the fastText
ensemble correspond to an ensemble over all the linkage
functions used for each of these models. The “overall
ensemble” corresponds to an ensemble over the fastText and
Word2Vec models. The precision increases as we go from
Word2Vec to fastText, as shown in Figures 4 and 5. The lower
precision of Word2Vec indicates that the generated clusters are
larger than expected ground truth clusters as several true

Figure 4. Model performance metrics for the different experiments we considered. (a) FastText word embeddings with the parameterized cosine
distance, (b) fastText word embeddings with the Mahalanobis distance, (c) Word2Vec word embeddings with the parameterized cosine distance,
and (d) Word2Vec word embeddings with the Mahalanobis distance. The X-axis refers to different linkage functions used for hierarchical
clustering.

Figure 5. Performance obtained on ensembling the model. The
Word2Vec ensemble and the fastText ensemble correspond to an
ensemble over the linkage functions used for each of these models.
The overall ensemble is computed over Word2Vec and fastText.
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clusters are being merged. As Word2Vec only has access to
coarser contextual information, chemically similar polymers
such as polyalkenes, that is, polyhexene, polydecene, and
polybutene are found grouped together. As we move to
fastText, which has access to sub-word level information as
well as contextual information, the increase in precision
indicates that such “superclusters” are being broken up.
Observe that the recall of the ensembled Word2Vec model
is better than the recall for predictions from the various linkage
functions in Figure 4c, which shows that ensembling helps in
learning better cluster boundaries. The overall ensemble
performed better than the Word2Vec ensemble and the
fastText ensemble in terms of recall and F1 score.
Extrapolating to Unlabeled Data. The final model

described in the preceding sections was applied to the rest of
our data set, that is, the unlabeled points, to obtain the
predicted clusters. The supervised clustering workflow
followed is illustrated in Figure 6. In practice, the threshold
for clustering granularity learned from the validation set in the
labeled data set is much larger than the true clustering
threshold. This is because the labeled data consist of only
∼15% of the total data set of PNEs, and hence, the density of
points observed by the model is much lower than the true
density of points given that the labeled data were uniformly
distributed in the embedding space. In order to correct this, we
scaled down the clustering granularity by trial and error till the
number of predicted clusters is closer to the number we arrived
at through the analysis in the Distribution of Polymer Names
subsection. We found empirically that increasing the clustering
threshold to adjust the number of predicted clusters close to
4100 as estimated earlier resulted in many polymers that are
chemically similar but otherwise distinct getting clustered
together, thus resulting in much larger cluster sizes. In order to
avoid this, we used a smaller threshold. The threshold is picked
such that the maximum size of predicted clusters is the same as
the maximum size of curated clusters in the labeled data set.
The final number of predicted clusters was 6002 for ∼13,000
PNEs in the unlabeled set. The disparity between the
estimated number of clusters and the number of predicted
clusters arises as the trained model is unable to learn perfect
cluster boundaries for the unlabeled set on account of only a
fraction of the data set being labeled. Consequently, we pick a
threshold that errs on the side of polymers belonging to the
same cluster being separated as opposed to dissimilar polymers
being clustered together. Despite the predicted clusters not
being perfect, they serve as a starting point for human

annotators to further curate this data set, without which this
problem would be intractable.
We now analyze some of the predictions of the model shown

in Figure 6. “Cis-1,4-polybutadiene,” “1,4-cis-polybutadiene,”
and “cis-1,4-polyisoprene” are clustered together of which the
first two are true positives and the third is a false positive. “Cis-
1,4-polyisoprene” and “cis-1,4-polybutadiene” are structurally
similar as they are both dienes and both are used in the rubber
industry39,40 and are hence likely to occur in similar contexts.
As another example, “poly(4-styrene sulfonate),” “poly(4-
styrenesulfonate),” and “poly(styrene sulfonic acid)” occur in
the same cluster. Although the sulfonate here is structurally the
anionic form of the acid, it can be regarded as a true positive.
However, “poly(4-styrene sulfonic acid),” which belongs to
this cluster, is misclassified into a separate singleton cluster.
This indicates that the partition threshold is not being learned
perfectly. Other examples of successfully normalized entities
include “sodium poly(acrylate)” and “sodium poly(acrylic
acid),” “polyethoxysiloxane” and “polyethoxysiloxanes,” and
“polyethylene-octene” and “poly(ethylene-octene).” An inter-
esting example of two very dissimilar PNEs that were
normalized successfully was “poly(Asp)” and “poly-L-aspartic
acid,” although “sodium salt of poly(acrylic acid)” is also
erroneously predicted to be in this cluster. These examples
show that the model learns nontrivial “transformations” that go
beyond word stem similarity. Selected examples of predicted
clusters are shown in Table 3.
This data set of labeled clusters plus predicted clusters will

be used as one component of our polymer informatics
ecosystem that will enable the normalization of PNEs when
detected in the literature through an NER model. This will
allow us to reference multiple mentions of the same polymer in
different ways to a unique record. We release this data set
along with our code.

■ SUMMARY AND OUTLOOK
Normalizing polymer names is an essential ingredient to
indexing polymers and utilizing literature extracted data for
polymer informatics. This is the first work to comprehensively
study the normalization of PNEs. We report the use of
supervised clustering models trained on Word2Vec and
fastText word embeddings for a data set of PNEs. We
compare two distance functions, namely the Mahalanobis
distance and the parameterized cosine distance. We find that
the parameterized cosine distance outperforms the Mahalano-
bis distance metric. We also find that fastText embeddings

Figure 6. Supervised clustering workflow. On the left, the PNEs in the solid circles are known clusters that are used to learn a parameterized
distance function and a decision threshold. The resulting model is used to cluster unseen points (shown as dashed circles on the right). The
predicted clusters shown on the right are the outputs of using our trained model for inference on unlabeled points.
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outperform Word2Vec, which indicates that sub-word
information is useful for normalization. Ensembling Word2Vec
and fastText produces better results than either model alone
and results in the best performing normalization model with an
F1 score of 0.85. We outperform the recall (and F1) of our
baselines for this task by a considerable margin. We have
created a data set of 15,500 PNEs from a corpus of ∼0.5
million papers and have detected a total of 6634 polymer
clusters (632 of which are manually curated).
Our models enable normalization given a predefined list of

PNEs. An area for future work would be on-the-fly normal-
ization, that is, given a new piece of text, identify whether a
new PNE is identified in the text, not existing in the dictionary,
is a new polymer, or is a different way to refer to a polymer
already in the dictionary. This would be a key component for
enabling semiautonomous data gathering for materials
property information. This data would serve to accelerate
our past attempts at rational design of application-specific
polymers.41−47
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