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ABSTRACT: Polymers, due to advantages such as low-cost processing, chemical stability, low density, and tunable design, have
emerged as a powerhouse class of materials for a wide range of applications, including dielectrics. However, in certain applications,
the performance of dielectrics is limited by insufficient electric breakdown strength. Using this real-world application as a technology
driver, we describe a novel artificial intelligence (AI)-based approach for the design of polymers. We call this approach polyG2G.
The key concept underlying polyG2G is graph-to-graph translation. Graph-to-graph translation solves the inverse problem. First, the
subtle chemical differences between high- and low-performing polymers are learned. Then, the learned differences are applied to
known polymers, yielding large libraries of novel, high-performing, hypothetical polymers. Our approach, with respect to a host of
presently adopted design methods, exhibits a favorable trade-off between generation of chemically valid materials and available
chemical search space. polyG2G finds thousands of potentially high-value targets (in terms of glass-transition temperature, band gap,
and electron injection barrier) from an otherwise intractable search space. Density functional theory simulations of band gap and
electron injection barrier confirm that a large fraction of the polymers designed by polyG2G are indeed of high value. Finally, we find
that polyG2G is able to learn established structure−property relationships.

1. INTRODUCTION
The maximum electric field that can be applied to a dielectric
polymer without destroying its insulating characteristics is
known as the dielectric breakdown strength. This property sets
an upper limit on the maximum electrostatic energy that can
be stored in a capacitor. Polymer dielectrics are favored in high
power, high energy density, capacitors primarily due to their
elevated dielectric breakdown strength relative to other
materials.1 A world with increasingly demanding high power
electronics necessitates the development of polymers with
breakdown strengths that surpass the limits of commercially
available materials.1−3

Owing to the complex mechanisms that lead to dielectric
breakdown in polymers, direct simulations of dielectric
breakdown under realistic conditions are not practical. A
promising alternative approach is the estimation of dielectric
breakdown strength through accessible proxies. Kamal et al.
show that materials with high values of two proxy properties

band gap and electron injection barrier with respect to an
aluminum interface (simply referred to as “electron injection
barrier” below)are likely to exhibit high dielectric break-
down strength.4 In this approach, finding materials with high
dielectric breakdown strength is reformulated into a multi-
objective optimization involving the proxy properties.
Finding materials that optimize multiple properties is a

nontrivial task. The main challenge is that the material
chemical and configuration space is effectively infinite. Thus, a
comprehensive search using physical experimentation or
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reliable computational methods (such as density functional
theory, DFT) is practically prohibited. During the last decade,
the use of machine learning (ML) models, trained on past
materials data, to rapidly screen candidates and design for
desired performances has become a powerful approach
impacting many domains.5−7 This approach has already led
to the discovery of a few high energy density polymer dielectric
films.8

ML, applied to the search and design of novel materials, can
be categorized into two flavors. The vast majority of previous
work follows the “forward” predict-and-screen template: start
with a list of candidate structures, predict properties of each,
and see if any of the candidate materials meet application
needs. If not, enumerate another list of candidate structures
and start again. This process is constrained to exploration of
designs that fall strictly within the purview of human
imagination.
Materials design in the other direction involves solving the

“inverse” problem by directly generating materials that meet a
desired set of target properties. In recent years, due to
advances in materials data collection and in the field of deep
learningnamely, the advent of generative machine learning
approachessuch design approaches are blossoming. These
“dial-a-property” methods escape the shackles of iterative,
human-directed, structure enumeration and therefore have the
potential to accelerate materials design. Yet, care must be taken
to maximize the fraction of generated candidates that are
chemically feasible.
Perhaps the most popular of the generative algorithms are

the genetic algorithm (GA) and the variational autoencoder
(VAE). Notably, Kim et al.9 have used a GA, while Batra et
al.10 have used a syntax-directed VAE (SD-VAE) to design
polymers with large band gaps and high glass-transition
temperatures. Other algorithms for the design of materials
besides polymers have also been explored.11,12 Yet, gaps and
concerns related to the design of polymers using existing
generative algorithms remain. First, the GA is limited by its
reliance on the Breaking of Retrosynthetically Interesting
Chemical Substructures (BRICS) algorithm13 for generating
chemical fragments. Kim et al. showed that the GA can learn to
successfully join these fragments into high-performing polymer
designs. Based on past data, the BRICS algorithm predefines
the number of connections on a fragment and the locations of
those connections. Consequently, the BRICS algorithm does
not account for all realistic connection points between
fragments. This constrains the space of chemically valid
polymers that the GA can construct. In some cases, this
constraint could be beneficial, as all generated polymers would
only exhibit substructures (i.e., BRICS fragments) that are
known to exist in previously-synthesized polymers. But, in
other applications, relevant polymer designs may be hidden in
regions not accessible to the GA. Second, of all polymers
generated by the SD-VAE, 27% are chemically valid. This
figure, while a notable improvement with respect to previous
generative algorithms, leaves ample room for improvement.
To address these points, we introduce the polymer graph-to-

graph translation algorithm polyG2G. An overarching
challenge (composed of several subproblems) for generative
algorithms is the design of chemically valid materials. One key
subproblem for the SD-VAE is learning that chemical rings
must be closed.10,14 polyG2G alleviates this problem by
representing polymers first as junction trees and then as
graphs.11 In the junction tree phase, each node is assigned

either an element type or a ring type (e.g., benzene, thiophene,
etc.). Since all atoms in a given ring are specified
simultaneously, the need to close any rings is circumvented.
In the graph step, the types of bonds connecting each node are
defined. Additionally, for nodes that represent rings, the
positions of bonds (e.g., ortho, meta, para, etc.) are defined.
Another unique feature of polyG2G, relative to the work of

Kim et al. and Batra et al., is that the problem of polymer
design is cast as a “translation” problem over polymer graphs
(i.e., graph-to-graph translation). In graph-to-graph translation,
rather than generating high-performing polymers from scratch,
we start with a template polymer and learn how to chemically
translate (or convert) it to a better polymer.11

As a tangible application, here, we use polyG2G to search for
new high-performing polymers for capacitive energy storage,
i.e., polymers that possess a large band gap and a large electron
injection barrier (properties that are strongly correlated with
high electric breakdown strength) as well as a high Tg. High Tg
is desirable so that a material can retain its structure, and
therefore its function, stably over a wide range of temperatures.
After training a polyG2G model on a data set of ∼13 000
synthesized polymersonly 8 of which meet our triproperty
objectivewe designed 3556 novel, chemically valid candi-
dates predicted to surpass our property objectives. To test
these candidates, we selected a small subset and used DFT to
compute their band gaps and electron injection barriers. We
found that 50% of the polymers in this subset do indeed match
our objectives. Finally, we mined rules for simultaneous
maximization of Tg, band gap, and electron injection barrier
directly from our polyG2G-designed candidates. Several of
these rules have also been reported in the past, thus validating
the efficacy of our design workflow (data sets, numerical
representation of polymers, polyG2G, and property predic-
tion) in learning practical chemical guidelines and incorporat-
ing them into new polymers.
The novel contributions of this work include guidelines for

designing polymers with high dielectric breakdown strength,
the extension of generic graph-to-graph translation to polymer
design (i.e., polyG2G), the first generative design work on
simultaneous optimization of three or more polymer proper-
ties, quantitative comparisons between polyG2G, the SD-VAE,
and the GA, and a set of 10, DFT-validated, polymers
predicted to exhibit remarkable dielectric breakdown strength
(Table 1). We propose these ten candidates for further study.
Although we optimize three properties in this work,

polyG2G can, in principle, be extended to the simultaneous
optimization of any number of properties. Furthermore, all
properties that can be accurately predicted from the polymer
repeat unit can be optimized by polyG2G. Creating polymers
in this manner allows us to systematically probe the polymer
chemical universe and reveal suitable novel candidates for
myriads of other applications.

2. METHODS
A high-level overview of the protocol followed in this study is
presented in Figure 1. We start with a sparse (in terms of the number
of property entries per polymer) data set (see Section 2.1) of material
properties for 13 014 synthesized polymers. The composition and
chemical structure of each polymer was parsed and converted to a
machine-readable numerical vector, known as a fingerprint (see
Section 2.2). These fingerprints were used to train property predictors
(as detailed in Section 2.5). These predictors, which instantaneously
estimate polymer properties with good accuracy, were used to
produce property entries for each polymer in the data set. This new,
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dense, data set, along with our desired property objectives, was fed
into our implementation of graph-to-graph translation for polymers,

polyG2G, which then designed new polymers meeting the target
property objectives. The performance of these new polymer designs
was estimated by our trained property predictors. The 20 highest-
performing (according to eq 2) polymers were down-selected and
tested via direct computation of their target properties with DFT.

2.1. Data Sets. A major prerequisite for training an ML predictor
is data. Data was collected for the properties of interest in this work:
Tg, band gap (Eg), and charge injection barrier (ϕe). The
experimentally measured Tg data set was accumulated from printed
handbooks, including “Polymer Handbook”,15 “Handbook of
Polymers”,16 “Properties of Polymers”,17 and “Polymer Data Hand-
book”.18 The other two data sets, i.e., those involving Eg and ϕe, were
created using DFT19,20 (see Section 2.6 for more details).

2.2. Fingerprinting. The maps learned by ML algorithms require
an input space that is machine readable. Thus, fingerprinting of
polymers was required. Two fingerprint schemesthe Morgan
Fingerprint21 and the Polymer Genome (PG) fingerprint22,23were
used in this work. The 2048-bit Morgan Fingerprint was used to
compute similarity, from a chemical structure point of view, between
polymers. We opted for this fingerprint, for this task, because the
Tanimoto similarity metricwhich we found to be most capable of
discriminating between similar and dissimilar polymers (see the SI,
Section S2, for comparison)requires bit-wise features.

For all other tasks, the PG fingerprint was used. This fingerprint has
shown success in the representation of materials over a wide chemical
and property space.23−25 The PG fingerprint operates on the
simplified molecular-input line-entry system (SMILES) string26 of a
true polymer with infinite repeat units. In contrast, the Morgan
fingerprint operates on the SMILES string of a polymer’s
corresponding “pseudopolymer”. A pseudopolymer is a molecular
representation of a polymer where the repeat unit is doubled and the
dangling bonds are passivated by hydrogen atoms (see step A of
Figure 2).

2.3. Graph-to-Graph Translation. The underlying hypothesis of
graph-to-graph (G2G) translation is that the distribution of subtle
chemical differences (which we call translations) between materials
that lead to drastic property differences can be learned and then
sampled to design new materials with desired properties from
“source” (i.e., template) materials. Further, by choosing synthesized
materials as our source, the newly designed (or translated) materials
should be biased toward laboratory synthesis via already-published
techniques.

Table 1. Selected Novel, High-Value, Targets Discovered by
polyG2Ga

aBand gaps (Eg) and electron injection barriers (ϕe) are DFT
estimates. Glass-transition temperatures (Tg) are ML estimates.

Figure 1. Flowchart describing our computational workflow: start with a set of synthesized polymers, fingerprint them, and predict their properties
with ML property predictors. Then, the SMILES strings of synthesized polymers are input into polyG2G where they are translated to new
polymers. The new polymers are fingerprinted to enable estimation of properties. Finally, a handful of new polymers are selected based on their
estimated properties (i.e., fitness) and tested using DFT.

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.1c02061
Chem. Mater. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.1c02061/suppl_file/cm1c02061_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c02061?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c02061?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c02061?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c02061?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c02061?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c02061?fig=fig1&ref=pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.1c02061?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


A successful implementation of graph-to-graph translation, aimed
at the goal of designing materials with desirable properties, relies on
four principles:
Principle 1: A way to quantify and apply translations to materials.
Principle 2: A definition of “desirable” (and “undesirable”) based

upon target properties.
Principle 3: A binary similarity function, S(·), which evaluates an

input pair of materials as either similar or dissimilar based upon
chemical structure and/or composition.
Principle 4: A training set {(Xi

train, Yi
train)} of material pairs where

each Xi
train is an undesirable (as defined in Principle 2) material and

each Yi
train is a desirable material. Each pair in the set contains

materials that are chemically similar (as defined in Principle 3) to one
another. These pairs contain the set of successful graph-to-graph
translationsone translation per pairthat machines (or humans)
can learn from.
The purpose of Principle 1 is self-explanatory. polyG2G is our

implementation of this principle for linear polymers (henceforth
simply referred to as “polymers” unless otherwise stated). The details
of our implementation are discussed in Section 2.4. Principle 2 is
necessary to produce {(Xi

train, Yi
train)}. In this work, we define a

desirable polymer as one that satisfies each of the following
thresholds: Tg >450 K, band gap >6 eV, and electron injection
barrier >3 eV. On the other hand, an undesirable polymer is one that
satisfies at least one of the following property thresholds: Tg <400 K,
band gap <5.5 eV, or electron injection barrier <2.75 eV. Principle 3 is
also necessary to produce {(Xi

train, Yi
train)}. Depending on how S(·) is

defined, different pairs of polymers may be classified as chemically
similar or dissimilar. An example of a similar pair of polymers might
be polyethylene and polyacetylene, since both polymers are
hydrocarbons and contain no side chains. In this work, we use a
S(·)formally defined in eq 1that leverages the Tanimoto
similarity

l
m
ooo
n
ooo

=
≥

<
S m m

T f m f m t

T f m f m t
( , )

True, ( ( ), ( ))

False, ( ( ), ( ))
i j

i j

i j (1)

where T is the Tanimoto Similarity, f(m) returns the Morgan
Fingerprint21 of the pseudopolymer m, and t is a user-defined
similarity threshold value. In this study, we set t = 0.1.

Our training set {(Xi
train, Yj

train)}, as prescribed by Principle 4, is
constructed from a parent data set (see Section 2.1) of 13 014
synthesized polymers and corresponding property predictions of Tg,
band gap, and electron injection barrier.27 All undesirable parent
polymers Xi are assigned to the source class X. All desirable parent
polymers Yj are assigned to the target class Y. The training set is the
subset of all possible pairs (Xi, Yj) for which S(Xi, Yj) evaluates to
True. In other words, the training set contains pairs of polymers f rom
the parent data set that are suf f iciently “similar” to one another f rom a
chemical structure point of view but drastically dif ferent than one another
f rom a “desirability” point of view. It is important to note that polymer
translation is a many-to-many learning problem. That is, for any Xi
there may be multiple similar Yj (and vice-versa). In other words, for
any Xi there may be multiple successful translations. Therefore, the

Figure 2. Diagram of the polyG2G workflow for the case of polystyrene with npair equal to two and ntranslate equal to one. The result of the latent
translation is circled by the dashed red line. Pink circles are carbon atoms, yellow circles are benzene rings, and blue circles are NH2 groups. All
hydrogen atoms are implicit. (A) Create pseudopolymer from repeat unit. (B) Map pseudopolymer to a JT and a graph. (C) JT and graph are
converted to a short numerical vector, the embedding, using ML. (D) Concatenate embeddings. (E) Embedding is input to VJTNN. (F) Candidate
translation distribution, in latent space, is generated. (G) Embedding of a translation is sampled and added to the pseudopolystyrene embedding.
This sum yields the embedding of a new pseudopolymer. (H) New pseudopolymer embedding is mapped to JT. (I) JT is mapped to graph. (J)
Graph is mapped to pseudopolymer. (K) Pseudopolymer is mapped to npair polymers.
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map learned by a polyG2G model must output a distribution of
translations for any input Xi.
The set of source polymers not present in the training set

constitutes a new subset Xinfer of source polymers. Xinfer represents all
undesirable parent polymers for which no valid translations are yet
known to us. Using polymers from Xinfer as input to a polyG2G model
(trained on {(Xi

train, Yj
train)}), new and (we hope) desirable polymers

are inferred via graph-to-graph translation.
2.4. polyG2G. In this work, we quantified translations between

source and target polymers by assigning each translation a numerical
vector in a learned latent space. This latent space was learned by
training a Variational Junction Tree Encoder-Decoder (VJTNN)
model28 on {(Xi

train, Yj
train)}. To extend VJTNN to the polymer

domain, we represent each polymer as a “pseudopolymer” (Figure 2,
step A). A schematic of the polyG2G training process is shown in
Figure 2, steps A−J. In step A, an undesirable polymer (from Xtrain) is
converted to a corresponding pseudopolymer. In step B, the
pseudopolymer is mapped to both a junction tree (JT) and a
graph. The JT and graph are mapped to latent space vectors in step C
using ML. The vectors are concatenated in step D. In steps E and F,
the concatenated latent space vector is mapped to a latent space
distribution using VJTNN. In step G, this distribution is sampled
ntranslation times. In step H, the samples are converted to JTs and then
to graphs using ML. The former step specifies the atoms and rings
that constitute the translated pseudopolymer, while the latter step
specifies how the atoms and rings are chemically bonded to one
another. In step J, the graph is converted to a pseudopolymer.
During training, the objective is to translate some Xi

train into a
sufficiently similar pseudopolymer (Figure 2, step J) that belongs to
Ytrain. The loss is computed by how frequently this objective is met.
During inference (i.e., when using a trained polyG2G model to
translate some polymers not in the training set), steps A−J in Figure 2
are repeated. However, this time, a polymer from Xinfer (as opposed to
Xtrain) is the input. Further, during inference, we do not compute loss.
Instead, we use the new (i.e., translated) pseudopolymer to generate
new polymers (step K, Figure 2). In Step K, randomly selected pairs
of hydrogen atoms within the pseudopolymer are replaced by a
periodic boundary to indicate ends of a polymer repeat unit. For most
pseudopolymers, the number of hydrogen pairs that could be replaced
is quite large, so we introduce a hyperparameter npair. npair is set to 20
in our experiments and denotes the maximum number of candidate
polymers that are generated from a particular translated pseudopol-
ymer. A candidate polymer is defined as valuable if it meets the
following three criteria:

1. Validitythe candidate polymer has all atoms with a correct
valence

2. High Performancethe property values, as predicted by
machine-learned Gaussian Process Regression (see Section
2.5) property predictors, of the candidate meet the objective

3. Unrepeatedthe candidate is distinct, in PG fingerprint23

space (see Section 2.2), from all polymers in the parent data
set and from all other candidates that have been translated and
decoded up until that point

2.5. Machine Learning for Property Prediction. The principal
goal of polyG2G is the generation of valuable candidate polymers. To
determine value, as defined in Section 2.4, an ability to evaluate the
performance of the generated candidates is required. We evaluate the
performance via three property predictors used to model three
properties (Tg, Eg, and ϕe).

23 We learn the property predictors on the
aforementioned training data (see Section 2.1) using Gaussian
Process Regression (GPR) with the radial basis function kernel, as
discussed elsewhere.29

A fourth property predictor, a neural network, was trained to
predict the probability that an input polymer would be desirable (as
defined in Section 2.3). We used, as training data, the polymers
generated for this study by polyG2G.
2.6. Density Functional Theory. Density functional theory

(DFT)19,20 is a first-principles-based computational method, offering
a good balance between accuracy and computational cost. In the area

of polymer science, DFT has been used to develop some relatively
large polymer data sets30two of which were used to train the
polymer band gap and electron injection barrier property predictors.
Therefore, we used exactly the DFT scheme used to generate that
data to test the polymers designed in this work. In particular, our
calculations were performed using Vienna Ab initio Simulation
Package (VASP) code,31 with a plane wave cutoff of 400 eV and the
PAW data sets of version 5.2. The van der Waals dispersion
interactions, known to be important in stabilizing soft materials
dominated by nonbonding interactions like polymers, were estimated
with the nonlocal density functional vdW-DF2. The generalized
gradient approximation (GGA) functional associated with vdW-DF2,
i.e., refitted Perdew-Wang 86 (rPW86), was used for the exchange−
correlation (XC) energies.

The initial structures for these calculations were created in a two-
step procedure from the SMILES strings of polymers.23 First, RDKit
software was used to convert each polymer SMILES into a three-
dimensional molecular configuration. Then, a polymer repeat unit
containing several molecules was placed in a simulation box so that
the periodicity along the z-axis yields an infinite chain, while a vacuum
layer of at least 12 Å along the x and y axes effectively separates the
chain from its periodic images.

During the optimization process, atomic and the z-lattice degrees of
freedom are relaxed, while the x and y lattice parameters are fixed.
The optimization is stopped when atomic forces are smaller than 10−2

eV/Å. We include a post-processing step, after structure optimization,
to ensure that the atomic connectivity of polymer chains is not
changed. Further details of the workflows for computing Eg and ϕe
can be found in refs4, 30.

2.7. Design Rules. In this work, we use Shapley Additive
Explanations (SHAP),32 a game-theoretic approach to model
interpretation, to compare and interpret the predictions of our
property predictors. SHAP treats the features input to an ML model
as players, and the model itself as a game in which reward is
maximized by maximizing the target property. The raw outputs of
SHAP are importance values to a given model, known as “Shapley
values”, of each feature of each data point. The absolute Shapley
values of a single feature, averaged over all data points, yield the mean
importance of the feature. SHAP is useful because it can approximate
Shapley values for any property predictor, GPR, deep learning, or
otherwise. Thus, the importance of features of all models, which
precede or succeed ours, can be directly compared with the results
presented in this contribution.

3. RESULTS AND DISCUSSION

3.1. Design of Polymeric Dielectric Materials with
polyG2G. In this study, we designed 3556 unique, novel
polymers that meet our target property objectives. These
candidates were generated from 21 trained polyG2G models.
Polymers in Xinfer were translated three times by each model.
This process, over all models, resulted in the design of 58 023
pseudopolymers. Of these pseudopolymers, 93% (53,775 in
total) were chemically valid. This figure surpasses that of the
SD-VAE proposed by Batra et al. by 66%.
Each of the 53 775 valid pseudopolymers was converted to

repeat units, yielding 784 631 valid polymers. Each polymer
was fingerprinted to enable estimation of band gap, Tg, and
electron injection barrier by our property predictors. Using
these predictions, we found 3556 (0.45% of total) unique
polymers meeting our objectives. In contrast, just 8 out of
13 014 (0.061% of total) polymers in the parent data set met
our objective. This proves that polyG2G is not only able to
generate a large raw number of high-performing designs but
also that these designs “hit” an order of magnitude more
frequently than do the space of synthesized polymers. In other
words, polyG2G is able to learn targeted design rules
specifically aimed at high dielectric breakdown strength
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polymers. Notably, these figures are competitive with, and in
some cases surpass, the GA proposed by Kim et al. (see the SI,
Section S1).
3.2. DFT Validation. To down-select from our massive set

of candidate materials, we subjected 20 of the 3556 polymers
to DFT computations of band gap and electron injection
barrier. These 20 cases were specifically chosen from the larger
list as they exhibited the highest fitness, , defined in eq 2

ϕ= × × × ×U T E Rg g e mt (2)

where Tg, Eg, and ϕe are the ML property predictions of a
given polymer, Rmt is the ratio between the number of atoms in
the main chain per repeat unit and the total number of atoms
per repeat unit, and U is the uniqueness of the polymer (see
the SI, Section S3 for details pertaining to the calculation of
U). Polymers with large U are favored for wider coverage of
the chemical space. Polymers with large Rmt are also favored. In
large Rmt polymers, the initial 3D atomic configurations
required for DFT simulations are relatively straightforward to
construct. To build the configuration, single bonds of a
monomer are rotated to get a suitable conformer that can be
subjected to periodic boundary conditions. As polymers with
fewer and smaller side chains have a lower probability of
intrachain conflict, we can autonomously construct config-
urations using an in-house script without any human
intervention.
A comparison of the DFT-computed properties with the

ML-predicted values is shown in Figure 3. We find that the
agreement between DFT and ML for these new cases is
comparable with the test set errors of the property predictors.
These results show that, in general, ML predictions of Eg and
ϕe are comparable with their DFT-computed counterparts.
These results also give confidence that our Tg property
predictortrained using the same methods as our Eg and ϕe
predictorsproduces reasonable property estimates for the
polymers designed in this work. However, explicit tests of our
Tg predictions will require synthesis and testing of our polymer
designs.
3.3. High-Value Polymer Designs. Two key observations

can be made from Figure 3. First, polyG2G-designed new
polymers (red stars in Figure 3) exhibit properties near the

upper reaches of our parent data set (gray circles in Figure 3).
In fact, 10 of the 20 candidate polymers exhibit DFT-
computed properties, which surpass our objectives and are
therefore resistant to large electric fields. These candidates are
shown in Table 1. We emphasize that the ten polymers shown
in Table 1 are not hand-picked but rather are systematically
derived from the multistep protocol illustrated in Figure 1.
Second, through visual inspection, it is clear that the

suggested polymers are structurally similar to poly(2-
norbornene) and poly(5-butylnorborn-2-ene) and therefore
potentially synthesizable. Interestingly, each suggested polymer
repeat unit contains at least one nonaromatic ring. This finding
is corroborated by the work of Wu et al. who found similar
polymers (derived from norbonenes using fluoridation) that
exhibit high breakdown resistance even at high temperatures.33

These findings, though drawn from a limited set of data,
suggest that polyG2G is able to efficiently generate feasible,
high-performing polymers, meeting complex objectives.

3.4. Mining Design Rules. Now we attempt to elucidate
design principles from our models. A neural network classifier
was trained on the PG fingerprint of 80% of the polymers
generated by polyG2G to predict whether or not a polymer
will meet our triproperty objective. The optimized classifier
had an accuracy of 98.0% on the remaining 20% of the data not
seen during training (model architecture and hyperparameter
optimization discussed in the SI). We utilized SHAP to deduce
which features the classifier weighs most heavily when making
predictions.32 Figure 4 shows the 11 most important features
proposed by SHAP. Several rules stand out from this analysis.
First, it can be seen that "len. largest side chain"

(the length of the largest, by the number of atoms, side chain)
is a highly important feature to the model in classifying a
polymer as desirable or undesirable. Indeed, it is already
known that long, rotatable, side chains lead to (1) a decrease in
the energy barrier between conformations and (2) an increase
in steric repulsion between adjacent chain segmentsproper-
ties that lead to a low Tg. Likewise both "3-vertex
carbon: side" (the number of three-vertex nonring
carbon atoms in the largest side chain) and "Ratio:
main/side" (the number of atoms in the main chain
divided by the number of atoms in the side chain) were also

Figure 3. ML predictions of the unseen test set polymers (gray circles) and 20 polyG2G-generated polymers (red stars) for the following
properties: (a) band gap and (b) electron injection barrier. Prediction uncertainties are plotted as shaded bars.
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found to be highly important to the classifier. This is not
surprising given that these two features are naturally correlated
to "len. largest side chain".
Second, the frequency of carbon−carbon single bonds per

total number of atoms (denoted by the feature "single
bond frequency") is an important quantity to our
classifier. Indeed, the absence of π electrons in C−C bonds
is known to drive up band gap. Therefore, from a theoretical
perspective, having a high value of "single bond
frequency" is likely to increase the probability of being a
desirable polymer so long as the number of such bonds in alkyl
chains is simultaneously minimized (i.e., "% ring atoms",
see Figure 4, is large). These two attributes are simultaneously
met by several desirable polymers in Table 1 and by
"block_1" in Figure 4. If, on the other hand, "single
bond frequency" was high, while "% ring atoms" were
low, the band gap would tend to increase but at the expense of
lower Tg.
Third, the binary feature, "Is polyacrylate?", which

denotes whether or not a polymer is a polyacrylate, is also
heavily weighted by our classifier. Likewise, to our knowledge,
no synthesized polyacrylates exhibit a Tg above 400 K, let alone
our objective of 450 K.34−43 Fourth, "C4_C4_O2" (i.e., the
frequency of the three-atom fragment containing two four-fold
coordinated carbon atoms and a two-fold coordinated oxygen
atom22) is an important feature. Indeed, a negative impact of
such groups can be attributed to the lower electron injection
barrier values at the polymer electrode (assumed to be
aluminum) interface. This is due to the generation of large
dipoles by interacting oxygen and aluminum species. The
above are all examples of scientifically corroborated design
rules learned by our property predictors and transferred to
polyG2G. These results give confidence that the workflow
proposed here can be reliably used to generate real-world
materials that meet or surpass the current state of the art.

4. SUMMARY
In this contribution, we introduced polyG2G, a novel,
translation-based, pipeline for the generative design of

polymers. We illustrated the potential of polyG2G by applying
it to the design of promising dielectric polymers with superior
resistance to high electric fields at high temperatures. polyG2G
found thousands of promising designs, an exciting feat
considering that only eight such polymers were previously
known to us. For validation purposes, a small subset of the
designed polymers was studied using DFT computations.
Ultimately, we recommend ten validated polymer designs that
meet our target property objectives and are worthy of further
investigation and synthetic validation. We showed that
polyG2G surpasses past generative design efforts in terms of
chemical validity and the rate of high-value candidate
generation.
The chemical and structural space available to polyG2G

covers a meaningful portion of the polymer chemical universe.
However, since chemical rings are not generated atom by
atom, polyG2G is not able to produce rings apart from those
present in the training data. Previous methods, such as the SD-
VAE, do not have this constraint and can thus, in principle,
access any conceivable ring structure. Further, like past
generative algorithms, polyG2G is limited to the design of
linear homopolymers and alternating co-polymers. The linear
constraint, by definition, excludes branched and network
polymers as well as other macromolecules such as dendrimers.
Meanwhile, the homopolymer constraint excludes all non-
alternating co-polymers, polymer blends, and polymeric
systems with additives. The technological importance of
these systems is reflected by their frequent use in industrial
applications. As such, future work enabling design beyond
linear homopolymers is critical.44

Here, as a step toward addressing the development of novel
polymer dielectrics that are resistant to dielectric breakdown,
we have reformulated the design objective, focusing on
creating new polymers with superior band gaps, charge
injection barriers, and glass-transition temperatures. While
these three properties are desirable for potential high
breakdown polymer candidates, it is important to consider
other properties that are known to be correlated to the
breakdown strength. These properties include the cohesive
energy density, electron mobility (due to hopping and band
transport), yield strength, fractional free volume, polarization,
and loss factor of a given polymer.45 Given suitable data sets
for these additional properties, the polyG2G generative
approach described in this work can easily be extended to
search for better, breakdown-resistant, polymers as well as
polymers for other applications. Nonetheless, the ten selected
materials identified in this work serve as starting points for
closer examination. We present these candidates to the
community and leave a detailed study of their synthetic
feasibility to future works.
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Figure 4. Importance values assigned to chemical features based on
SHAP. The names of the features are shown on the y-axis, while the
importance is shown on the x-axis. An explanation of each feature is
given in the SI, Section S5.
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