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ABSTRACT

Polymer informatics is being utilized to accelerate polymer discovery. However, the practical realization of the designed polymer is still slow
due to synthesis challenges, e.g., difficulties with the identification of potential polymerization mechanisms and optimal reactants/solvents/
processing conditions. In the past, synthesis pathways adopted for a target polymer have been heavily dependent on chemical intuition and
past experience. To expedite this process, we have developed a data-driven approach to assist in polymer retrosynthesis planning. In this
work, a dataset of polymerization reactions was manually accumulated from various resources to extract hundreds of synthetic templates and
used as the training set. Further, a similarity metric was adopted to select synthetic templates and similar existing reactants for the new target
polymer. Finally, prediction accuracy was measured by comparison with ground truth and/or bench chemists’ estimation. The proposed
data-driven polymer synthesis recommendation model has been deployed at https://www.polymergenome.org.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052962

I. INTRODUCTION

Polymer informatics approaches are beginning to significantly
impact polymer discovery and design.1–9 Machine learning models for
instant property prediction10,11 are becoming widely available, and
advanced design algorithms for generating polymers that meet target
property requirements are being actively developed.12–16 Nevertheless,
the next great challenge is polymer synthesis, i.e., “how to make the
machine-designed polymers in the lab?” Traditionally, chemical intui-
tion and past experience of chemists steer the design of optimal syn-
thesis strategies for target polymers, such as the determination of
optimal reactants, reagents, and processing conditions.17 If such infor-
mation and insights pertaining to polymer synthesis strategies can be
captured and encoded in a digital framework, and extrapolated for
new polymers, the practical realization of new useful polymers may be
significantly accelerated.

In the past several decades, computer-assisted retrosynthesis
planning has matured in the field of molecular and drug discov-
ery.18–27 Template-based22,28 or template-free23,24,27 machine learning
approaches and robotic platforms26 have been developed for the
autonomous synthesis of organic compounds (see more details in
Refs. 29 and 30). However, these approaches are still in a state of
infancy for polymers, because of unique challenges associated with
building data-driven approaches for polymer retrosynthesis planning.
Unlike for molecules, only a few polymerization databases are avail-
able, such as PolyInfo8 and NIST Synthetic Polymer MALDI Recipes

database.31 Nevertheless, extensive efforts are required to preprocess
the source data for data-driven approaches. Furthermore, reaction
templates are non-existent. Additionally, polymers are macromole-
cules, formed by linking small monomer molecules together. This syn-
thesis processes involve various polymerization mechanisms, multiple
steps, and multiple possible linkages between monomers, which is dif-
ferent from the one-step synthesis of small molecules.

In this work, we propose a novel data-driven approach to auto-
mate polymer retrosynthesis planning, motivated by the common first
question “how have similar polymers been synthesized before?” In this
approach, as illustrated in Fig. 1, first, a large dataset of polymerization
reactions was accumulated to extract synthesis templates that interpret
the chemical reactions between reactant monomers. Second, the data-
set and templates were applied to build a polymer retrosynthesis
framework to automatically predict the synthesis pathways for new
target polymers. In this framework, we employed a similarity metric to
select the synthesis templates for target polymers and identify similarly
existing reactants. Finally, this approach was demonstrated by testing
on previously synthesized polymers, and the prediction accuracy was
estimated by comparison with the ground truth (if available with our
dataset) or evaluation by bench chemists. In general, the model perfor-
mance exceeded a precision of 80%. Additionally, we have deployed
the developed model at the online Polymer Genome platform
(www.polymergenome.org), providing a user-friendly, efficient, and
accurate way to predict synthesis paths for new target polymers.
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Moving forward, this approach will be further refined by expanding
the dataset of polymerization reactions and incorporating other related
synthesis information, such as temperature, catalysts, reagents, etc.

II. APPROACH
A. Dataset

Our dataset of polymerization reactions contains 11,448 previ-
ously reported polymerization paths, for 9748 homopolymers starting
from 8921 reactant molecules (also called monomers). This dataset
was manually collected from various resources, including online repos-
itories8 and published journal articles.32–34 Three polymerization clas-
ses were considered, including condensation (7096 polymers),
addition (2267 polymers), and ring-opening (551 polymers). Since
many known polymerization paths (1–10) for each polymer are
included, the total number of polymerization paths are higher than
that of polymers. Furthermore, the polymers and reactant molecules
are made up of 12 elements (i.e., C, H, B, O, N, S, P, Si, F, Cl, Br, and I)
and a variety of polymer classes. In the present work, the role of other
factors, such as solvents, catalysts, and experimental conditions, are
neglected.

Additionally, 3582 previously synthesized polymers with
unknown polymerization information were considered to validate the
developed approach. Based on principal component analysis in Fig. S1
of the supplementary material, we note that this test set has similar
chemical compositions with respect to our training dataset. It is worth
pointing out that both the training and test datasets are composed of
homopolymers and exclude copolymers, polymer blends, ladder,
cross-linked, and metal-containing polymers.

B. Template extraction procedure

1. Representations

The synthesis pathways of polymers were encoded into a
machine-readable format via reaction SMILES (Simplified Molecular-
Input Line-Entry System),35,36 in the generic form of product� reac-
tants as shown in Fig. 2. product is the final polymer and represented
using a modified SMILES notation with [�] denoting the connection
point of repeat units.11 For example, polyethylene terephthalate (PET)
is represented as [�]CCOC(¼O)c1ccc(C(¼O)O[�])cc1. Depending on
the polymerization mechanisms, product may contain one or two
monomer repeat units. reactants are molecular monomers, which are
described with regular SMILES and separated with “.” in the reaction
SMILES when the number of reactants is more than one.

In the synthesis templates, SMILES arbitrary target specification
(SMARTS) patterns were utilized to represent the reacting atoms in
the reaction SMILES, expressed as “[expr:n].” “expr” is any legal
atomic expression as described below and n is the mapping index to

track the reacting atoms in product and reactants. Generally, the sim-
pler “expr” was used to represent a more general pattern. For instance,
[C:2] represents any aliphatic carbon and 2 is the arbitrary index of C.
However, to retain more chemical knowledge and/or accelerate the
simulation time, two special rules were applied. First, adjacent atoms
(less than 10) of reacting atoms are included in SMARTS to be distinct
from other non-reacting parts in the product. Second, since polymers
are formed by the reactions between functional groups of reactants,
the whole functional group unit for most cases is captured using
SMARTS, such as OH ([OH:1]) and C(¼O)OH ([OH:3][C:2]¼[O:5])
in Fig. 2(a).

2. Template extraction

The three common polymerization mechanisms are condensa-
tion, addition, and ring-opening, leading to a unique set of template
extraction rules. As illustrated in Fig. 2, in condensation polymeriza-
tion, used to create polymers such as PET, functional groups involved
in molecular monomers react to form chemical linkages accompanied
by the formation of byproducts like water. While for addition poly-
mers [e.g., polyethylene (PE)], monomers are joined together without
the formation of byproducts. Typically, condensation and addition
polymerization require two symmetric/asymmetric type reactants to
link together, resulting in two symmetric/asymmetric reacting parts
(such as A and B in Fig. 2), thus leading a two-step synthesis process.
Consequently, two same/different templates are obtained, which
differ from the one-step synthesis of molecules. For instance, PET in
Fig. 2(a) has the symmetric A and B reacting parts and the same tem-
plates, while PE in Fig. 2(b) needs two different templates to form the
symmetric A and B parts (CC single bonds) by linking C¼C mono-
mers. More examples are shown in Fig. S2 of the supplementary
material. In the case of ring-opening polymerization, the polymer
chain is grown by the breakage of a bond in cyclic monomers, for
instance, polyethylene oxide (PEO) formed from cyclic ether. As
shown in Fig. 2(c), the reacting part A is the ring breakage position.
Thus, only one type of reactant is required, and this polymerization
may be viewed as a one-step synthesis process.

According to the polymerization mechanisms above and domain
knowledge, the templates for 11,488 synthesis paths were extracted
using the following rules:

(a) Preprocessing was performed to ensure uniform formats for
products and reactants, such as canonicalization to generate
clean reaction SMILES.

(b) Starting from reaction SMILES, the reacting atoms in the
product and reactants are identified and represented using
SMARTS patterns.

Synthesis path 

prediction for target polymers

(1) Polymerization 

data collection
(3) Validation

(2) Retrosynthesis

framework

Template 

extraction

FIG. 1. Polymer retrosynthesis planning via data-driven approach: (1) collecting polymerization data to extract synthesis templates that interpret the chemical reactions
between reactant monomers; (2) development of a polymer retrosynthesis framework using the polymerization dataset and templates to automatically predict synthesis path-
ways for target polymers; (3) validation of the developed approach.
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(c) Assigning and matching mapping numbers to corresponding
reacting SMARTS in product and reactants was performed
next. Taking PET as an example, it is well known that the
[O:1] within the ester group ([O:1][C:2]¼[O:5]) is from the
hydroxy group ([OH:1]) while [C:2]¼[O:5] is from carboxylic
acid ([OH:3][C:2]¼[O:5]). In the templates, the mapping
number is unique, but balanced reactions are not required,
such as excluding byproducts.

(d) A synthetic template was then formulated next for each polymeri-
zation type, as shown in Fig. 2. As mentioned before, two-step syn-
thesis is required for condensation and addition polymerization,
resulting in two same or different templates. For instance, the
same template [O:1][C:2]¼[O:5]� [OH:1].[OH:3][C:2]¼[O:5] is
obtained for PET in Fig. 2(a), representing that the ester group is
formed by hydroxyl and carboxylic acid functional groups, while
for PE in Fig. 2(b), we applied two different templates to describe

the disconnection process from the product (PE with two repeat
units) into two unsaturated ethenyl groups. Template A
[C:1][C:2][C:3][C:4] � [C:1][C:2].[C:3][C:4] is applied to break
the first single bond (reacting part A) of PE, leading to the forma-
tion of [C:2] and [C:3] radicals. It is important to mention that the
[C:1] and [C:4] atoms are actually connected by the connection
point � of repeat units (reacting part B). Thus, the template B is
used to disconnect the [C:1][C:4] single bond to form two ethenyl
groups ([C:2][C:1][C:4][C:3] � [C:1]¼[C:2].[C:3]¼[C:4]). In the
ring-opening polymerization templates [Fig. 2(c)], the connection
points � are included in the template, because the reacting part A
is the breakage of connecting points of repeat units, e.g,
�[C:2][C:1][O:3]� � [C:2]1[C:1][O:3]1 in Fig. 2(c).

(e) To remove duplications, the synthesis templates were
screened using the reaction similarity checker implemented
in RDKit.
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A:  [C:1][C:2][C:3][C:4]>>[C:1][C:2].[C:3][C:4]

B:  [C:2][C:1][C:4][C:3]>>[C:1]=[C:2].[C:3]=[C:4]
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FIG. 2. Template extraction for condensa-
tion, addition, and ring-opening polymeri-
zation. The synthesis pathways of
polymers were represented using reaction
SMILES, in the generic form of product�
reactants. SMARTS patterns were utilized
to represent reacting atoms in the synthe-
sis templates. Condensation and addition
polymers have two symmetric/asymmetric
(A and B) reacting parts, resulting in two
same (e.g., PET) or different (e.g., PE) A
and B templates. Ring-opening polymeri-
zation has one reacting part (A) and one
template, such as PEO.
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C. Similarity calculation and model prediction ranking

In our approach, a similarity metric was adopted to select synthe-
sis templates for a new target polymer and screen similar existing reac-
tants. Spolymer is the similarity between target and previously
synthesized polymers, specified by the polymerization type and the
synthesis template, while Sreactant is the similarity between machine-
predicted and known reactants. These two parameters are estimated
using the Tanimoto metric, defined as

Tanimotoðx; yÞ ¼
X

xiyiX
x2i þ

X
y2i �

X
xiyi

; (1)

where xi and yi are the ith fingerprint of polymer (or monomer reac-
tant) x and y, respectively. In this work, polymers were fingerprinted
using our hierarchical polymer fingerprinting algorithm, including
atomic, block, and chain-level features, the details as described in Ref.
11. Morgan circular fingerprints were applied to fingerprint reactants,
as implemented in RDKit.37

The retrosynthesis paths for the target polymer are ranked using
the synthesizability score (Sscore), determined by the geometric mean
of the similarity scores of polymers and reactants, defined as

Sscore ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SpolymerSmean

reactant

p
; (2)

Smean
reactant ¼

n
Xn

i¼1

1
Sireactant

: (3)

Here, the harmonic mean (Smean
reactant) is selected to further average the

reactant contributions. n refers to the number of reactants: 1 for the
ring-opening polymerization and 2 for the condensation and addition
polymerization. Spolymer; Sreactant and Smean

reactant range from 0 to 1, where 1
(0) indicates identical (completely different) polymers/reactants. As a
result, Sscore is in a range of 0–1, where 1 and 0 indicate a perfect match
and mismatch with an existing reaction, respectively.

To evaluate the model performance, two metrics, i.e., prediction
ratio (PR) and accuracy ratio (AR), were computed as follows:

PR ¼ Nprediction=Ntotal; (4)

AR ¼ Naccurate=Nprediction: (5)

Here, Nprediction and Ntotal are the number of polymers with predictable
retrosynthesis paths and the total number of test polymers, respec-
tively. In interpolation experiments, 1145 polymers with known poly-
merization paths were randomly selected from the training dataset to
serve as the test set and provide ground truth. Naccurate is the number
of polymers whose ground truth was within the top 10 predictions
from the model. For statistical purposes, this experiment was repeated
five times with random train-test splits. In the extrapolation experi-
ments, Naccurate is the number of polymers whose predicted retrosyn-
thesis path was in agreement with the judgment of polymer chemists.

III. RESULTS AND DISCUSSION
A. Synthesis templates

Following the template extraction rules described in Sec. II B, 129
(94 pairs), 314 (309 pairs), and 139 unique templates for addition, con-
densation, and ring-opening polymerization were obtained, respec-
tively, and listed in Table I. Here, pairs are derived from two

same/different templates required in condensation and addition poly-
merization [see A and B in Figs. 2(a) and 2(b)]. Figure 3 captures the
normalized occurrence frequency distribution of these templates,
together with the top five templates for each polymerization type.

In the case of condensation, the occurrence frequency of the top
five templates reaches around 51%, representing the most common
paths to form polyamide, polyester, and polyimide polymers. As
shown in Fig. 3, the occurrence of the amide functional group
([N:1][C:3]¼[O:6]) is up to 22%, formed by the linkage of the amine
function with either acyl chloride or carboxylic acid functional groups.
In the former case, [N:1] represents the amine group attached to any
elements, while the latter only refers to NH2. We also note that the
ester functional group (the occurrence rate of 29%) is generated by the
reaction between the hydroxyl group and acyl chloride (or carboxylic
acid). The fifth condensation template is the formation of the imide
functional group (occurrence of 6.7%) by the reaction between the
acid anhydride and amine groups.

In the case of addition polymerization, the top four templates
describe the formation of vinyl, urethane, urea, and diene polymers.
The topone vinyl functional group (56% occurrence) is formed by
connections between ethenyl groups that contain various compounds
in the form of C¼CR (R¼H, CH3, Cl, etc.) It is important to point
out that a pair of templates was found for the vinyl group (see Fig. 2),
but only the second template is shown in Fig. 3 to represent the reac-
tion. The second and third most frequent templates are the formation
of urethane and urea, produced by the reaction between isocyanate
and hydroxyl (or amine groups), respectively. The fourth addition
template is the formation of dienes with two acetylene groups. Unlike
the first four templates, the special CCN functional group is infrequent
(occurrence ratio of 1.7%), generated by linking the ethenyl and amine
groups.

Additionally, there are 139 synthesis templates extracted from
586 ring-opening polymerization paths. Figure 3 shows the top five
examples, namely, imines, oxides, dienes, and phosphazenes func-
tional groups. It is noted that ring-opening polymerization is one com-
mon way to form the imine functional group (occurrence of 11%) by
breaking the cyclic imino ether. The oxide functional group is the
product of the breakage of 3- or 4-element cyclic ethers. We also
noticed that the breaking of cyclic olefin monomers can result in the
diene functional group. The last representative example is phospha-
zene polymers, which are composed of (P¼N) and produced by cyclic
phosphazene family monomers (e.g., hexachlorophosphazene).

B. Retrosynthesis planning pipeline

Next, the aforementioned polymerization dataset and synthesis
templates were utilized to develop the polymer retrosynthesis

TABLE I. Summary of synthesis templates. Data in brackets are the number of pairs
templates, because two same/different templates are required in condensation and
addition polymerization.

Polymerization types Synthesis steps Templates

Addition Two-step 129 (94 pairs)
Condensation Two-step 314 (309 pairs)
Ring-opening One-step 139
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framework. As depicted in Fig. 4, the central tenet of the pipeline is
derived from the question of “how similar polymers have been syn-
thesized?” If the polymerization paths of similar polymers have been
reported in the literature, it is feasible to apply their synthesis tem-
plates to make the target polymer.

Figure 4 illustrates the proposed framework of polymer retrosyn-
thesis planning, along with the outcome of each stage for an example
of condensation polymers. Starting from the user-defined target poly-
mer, several similar polymers (say, 10) are selected from the polymeri-
zation dataset using the similarity score (Spolymer) computed with the
Tanimoto metric. This polymerization dataset consists of 11 488 poly-
merization paths and their corresponding templates. Figure 4 presents
the top one similar polymer of the instanced polymer and its polymer-
ization type/template. In the next step [(2) of Fig. 4], the specific poly-
merization type and templates of each similar polymer are applied to
predict reactants of the target polymer (see the example), using
“RunReactants” implemented in RDKit. It is followed by another

screening procedure [(3) of Fig. 4] to search several (say, five) most
similar known reactants from the reactant dataset for machine pre-
dicted reactants. These selected reactant candidates are required to
contain the reacting parts (e.g., hydroxyl and carboxylic acid func-
tional groups) from the template and ranked using the harmonic
mean of the similarity of each reactant [Smean

reactant, computed using
Eq. (3)]. In the case of the exampled polymer, there are existing known
reactants that are the same as the predicted reactants, resulting in a
Smean
reactant of 1.0. Finally, the retrosynthesis paths of the target polymer
are ranked using Sscore, computed by the geometric mean of Spolymer

and Smean
reactant [Eq. (2)], such as the rank 1 Sscore of 0.97 for the instanced

polymer.
There are several points to highlight in terms of the developed

pipeline: (1) the reactant dataset includes 8921 reactants and was
extracted from 11 488 polymerization paths, which can be significantly
increased in size; (2) the preferential number of top similar polymers
(Ntop) positively affects the prediction time and accuracy, but the

FIG. 3. Normalized occurrence frequency distribution of synthesis templates for condensation, addition and ring-opening polymerization (see Table I), along with the top five
templates for each polymerization type. For the formation of the vinyl group, a pair of templates was extracted, but only template B is shown to represent the reaction; see
Fig. 2 for the details.
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prediction accuracy reaches convergence after Ntop � 10. The details
are discussed in Sec. IIIC; (3) the accuracy depends on the available
synthesis templates and known polymers/reactants, meaning that for
some new polymers, the code may predict relatively low Sscore or may
even fail to produce retrosynthesis paths. Nonetheless, this issue can
be addressed by increasing the number of polymerization templates,
polymers, and reactants in our dataset.

C. Validation

To demonstrate the accuracy and generality of the developed
framework shown in Fig. 4, both interpolation and extrapolation
experiments have been performed on previously synthesized polymers.
The model performance was evaluated using two metrics—prediction
(PR) and accuracy (AR) ratios, respectively, computed by Eqs. (4) and
(5). Here, the accuracy was estimated by comparison with available
ground truth (interpolation experiment) or domain experts’ evaluation
(extrapolation experiment).

In the interpolation experiment, a group of known polymers
with known polymerization information was applied to provide
ground truth. We randomly selected 1145 polymers (10%) from the
polymerization dataset (11 448 polymerization paths) as the test set.
The remaining data served as the training set. Table II summarizes the
average prediction ratio (PR), the accuracy ratio (AR), and the simula-
tion time (t), together with the standard deviation from five simula-
tions with the random test set split. Here, AR was determined by
comparing the predicted retrosynthesis paths with ground truth.

Given that the selected number of top similar known polymers
[Ntop, step (2) of Fig. 4] determines the applied synthesis templates, we
investigated the impact of Ntop on the prediction accuracy and time.
Table II reveals that the average PR and AR increase with larger Ntop

and converges to 98% and 91%, respectively. On the other hand, the
average t for each polymer rises in proportion to Ntop, because the syn-
thesis templates for each top similar polymer are used in step (2) of

Fig. 4. The remaining 2% failures are mainly due to the unavailable
synthesis templates in the training set. This issue can be tackled by
increasing the template set size, while polymers with multiple possible
synthesis pathways make contributions to the accuracy discrepancy, in
addition to the template limitation. For example, the amide function
group can be generated using the amine group and the acyl chloride
(or carboxylic acid) group; see Fig. 3.

Figure 5 displays representative examples of predicted retrosyn-
thesis paths for target polymers, together with the expected reactants/
template and polymerization type. In the case of the target polymer a
(condensation), the top two ranked retrosynthesis paths are derived
from the same top one similar polymer with a Spolymer of 0.95. Using
the template of this similar polymer, reactants with acid anhydride
and amine functional groups are predicted and retrieved from the
known reactant dataset, resulting in the rank 1 Sscore of 0.97. This pro-
posed synthesis pathway is consistent with the expected path.
Moreover, other similar known reactants with acid anhydride
functional group ([O:2]¼[C:1][N:6][C:4]¼[O:5]) are obtained
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TABLE II. Performance of the developed retrosynthesis framework in Fig. 4. Ntotal is
the total number of test polymers and Ntop is the selected number of top similar poly-
mers in step (2) of Fig. 4. The prediction (PR) and accuracy (AR) ratios are esti-
mated using Eqs. (4) and (5), respectively. t is the average running time for each
polymer. The standard deviation is from five simulations with a random test set split.

Experiment Ntotal Ntop PR (%) AR (%) t (s)

Interpolate 1145 1 936 0.7 606 2 6
5 976 0.4 866 1 27
10 986 0.2 896 1 54
20 986 0.3 916 1 100

Extrapolate 3582 10 92 80a –

aEstimated using 100 sampling polymers.
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with a slightly lower S2reactant score (0.78) and thus a rank two Sscore
of 0.91. For the target polymer b (addition), the top two similar
polymers with different polymerization types and templates were
screened from the training set. As can be seen from Fig. 5(b), the
top one similar polymer has a Spolymer of 0.90 and addition poly-
merization type/templates, leading to the agreement between the
predicted and expected reactants. The second most similar poly-
mer has a Spolymer of 0.82 with the condensation polymerization
type. In this scenario, the ester functional group was used as the

linkage of the polymer, leading to the generation of reactants with
hydroxyl and carboxylic functional groups. This is probably an
alternative way to synthesize the target polymer b with the
approval of a synthetic chemist. The third example is a typical
ring-opening polymer c. Figure 5(c) reveals that an existing poly-
mer of Spolymer leads to accurately predicted reactants that agree
with ground truth and high rank one Sscore of 0.96. There are other
similarly known reactants with a S1reactant of 0.65, resulting in a
rank two Sscore of 0.79.
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Next, we move on to discuss the extrapolation experiment using
3582 previously synthesized polymers with meager polymerization
information (resulting in unknown synthesis templates). These poly-
mers were collected from various literature sources8,38 and described
in Sec. IIA. In this experiment, the whole polymerization dataset
(11 488 paths) was utilized as the training set. As listed in Table II, the
retrosynthesis paths of 92% polymers were predicted. The remaining
8% failed cases are mainly induced by unavailable synthesis templates
in the dataset and uncommon reported polymers.

To further measure the prediction accuracy, the rank one retro-
synthesis path for 100 randomly selected test polymers has been evalu-
ated by polymer chemists. By considering the reliability of the
predicted polymerization mechanism and reactant functional groups,
three accuracy levels were defined—good, neutral, and bad. Good (bad)
prediction indicates accepted (unrealistic) retrosynthesis paths, and the
neutral prediction is intermediate to good and bad. To avoid bias, simi-
lar reactants and Sscore information were not provided to chemists. The
evaluation of results for 100 polymers are provided in the Appendix A,
containing the target polymer, machine predicted polymerization type,
and reactants, together with the evaluation of polymer chemists.

Figure 6 shows the confusion matrix for the 100 sampling poly-
mers. To compare with chemists’ evaluation, we further classified
Sscore into three levels: high (0.7< Sscore � 1), medium (0.5
� Sscore � 0.7), and low (Sscore < 0.5). We note that 96 polymers have
high or medium Sscore, being consistent with the fact that they are pre-
viously synthesized polymers. Further, the prediction of 80 polymers
was estimated as “good” by chemists, leading to an AR of 80% in
Table II. Among them, 72, 7, and 1 polymers are predicted to have
high, medium, and low Sscore, respectively, by our model. This finding
indicates that the Sscore is a promising way to estimate polymer synthe-
sizability. Additionally, Table II reveals that 12 polymers with high
Sscore have the neutral (8) and bad (4) evaluation from chemists. This
discrepancy may be caused by limited model accuracy, intrinsic noise
of the polymerization dataset, or limited experience of chemists for the
polymerizations considered. Even so, the dominance of the diagonal
terms in Fig. 6 indicates acceptable model performance.

IV. CONCLUSION AND OUTLOOK

In summary, a novel and powerful data-driven approach was
developed for polymer retrosynthesis planning. This work involves

polymerization dataset accumulation, synthesis template extraction
and automated polymer retrosynthesis planning paradigm develop-
ment. It is worth pointing out that the hand-crafted synthesis tem-
plates encode the chemical reactions between reactant molecules,
rather than the formation of reactant molecules themselves. With this
approach, synthesis paths of new target polymers can be predicted and
ranked using the synthesizability score, providing synthesis guidance
for chemists. The accuracy of the model was measured by comparison
of the model predictions with the ground truth and/or polymer chem-
ists’ evaluation. Further, the developed framework solely depends on
the polymerization dataset devoid of any model parameters. These
unique advantages also lead to some concerns. For example, polymers
outside the dataset may have high prediction uncertainty or relatively
low synthesizability score. These issues can be further addressed either
by expanding polymerization and template dataset sizes or by applying
advanced algorithms to learn new templates. Given the problem of
data sparsity, it is recommended that the community report successful
and/or failed polymerization paths of designed polymers in papers/
online repository to facilitate the development of data-driven
approaches. Additionally, the present work focuses on the reactant
monomer prediction and disregards the reagents, experimental condi-
tions, and other factors affecting the polymerization (such as the reac-
tivity of functional groups). These aspects will be considered in future
studies.

Although the work can still be refined, we believe that vital initial
steps have been taken to accelerate polymer synthesis and discovery
due to two aspects. First, the developed model is implemented in the
online Polymer Genome platform (https://www.polymergenome.org),
leading to accessible ranked retrosynthesis paths and predicted proper-
ties for user-defined polymers. Second, it is now possible to utilize
extracted synthesis templates coupled with various polymer design
algorithms12,13 to generate synthesis-friendly polymers with desired
properties for specific applications.

SUPPLEMENTARY MATERIAL

See the supplementary material for the principal component
analysis of the chemical space of polymerization and test datasets (Fig.
S1), and more examples of extracted synthesis templates (Fig. S2).
Appendix includes the evaluation of results for 100 sampling poly-
mers, containing the target polymer, machine predicted polymeriza-
tion type/reactants, and the evaluation of polymer chemists.
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FIG. 6. Confusion matrix of computed Sscore and chemists’ evaluation for 100 sam-
pling polymers in the extrapolation experiment. Sscore was classified into high,
medium, and low levels. The chemists’ evaluation also includes three accuracy lev-
els: good, neutral, and bad. Good (bad) prediction means accepted (unrealistic) ret-
rosynthesis paths, and neutral prediction is intermediate to good and bad.
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Sampling set1: 100 polymers, evaluated by polymer chemist.

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

0 Addition Good

1 Condensation Neutral

2 Addition Good

3 Condensation Good

4 Condensation Good

5 Condensation Good

6 Condensation Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

7 Condensation Neutral

8 Addition Bad

9 Condensation Good

10 Condensation Good

11 Condensation Good

12 Condensation Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

13 Condensation Good

14 Condensation Good

15 Condensation Good

16 Condensation Good

17 Condensation Good

18 Condensation Good

19 Addition Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

20 Condensation Good

21 Condensation Good

22 Condensation Good

23 Condensation Good

24 Condensation Good

25 Condensation Good

26 Condensation Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

27 Addition Good

28 Condensation Good

29 Condensation Good

30 Addition Good

31 Addition Good

32 Condensation Good

33 Condensation Good

34 Condensation Good

35 Condensation Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

36 Condensation Good

37 Condensation Neutral

38 Condensation Good

39 Addition Good

40 Condensation Good

41 Addition Good

42 Addition Good

43 Condensation Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

44 Condensation Good

45 Addition Good

46 Condensation Good

47 Condensation Good

48 Condensation Good

49 Condensation Good

50 Condensation Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

51 Addition Good

52 Ring-opening - Good

53 Ring-opening - Good

54 Condensation Good

55 Addition Good

56 Condensation Good

57 Condensation Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

58 Condensation Good

59 Condensation Good

60 Condensation Good

61 Condensation Bad

62 Condensation Neutral

63 Addition Neutral

64 Addition Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

65 Condensation Good

66 Condensation Good

67 Addition Good

68 Addition Neutral

69 Addition Good

70 Condensation Bad

71 Addition Bad

72 Addition Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

73 Addition Good

74 Addition Good

75 Addition Good

76 Condensation Good

77 Condensation Good

78 Condensation Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

79 Condensation Neutral

80 Condensation Good

81 Condensation Neutral

82 Condensation Good

83 Condensation Good

84 Addition Good

85 Condensation Good
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(Continued.)

Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

86 Condensation Good

87 Condensation Good

88 Condensation Good

89 Ring-opening - Good

90 Condensation Good
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Target_polymer Polymerization_type Predicted_reactant1 Predicted_reactant2 Evaluation

91 Condensation Bad

92 Condensation Bad

93 Condensation Neutral

94 Addition Neutral

95 Condensation Neutral
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