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THE BIGGER PICTURE Polymers display extraordinary diversity in their chemistry, structure, and applica-
tions. However, finding the ideal polymer possessing the right combination of properties for a given appli-
cation is non-trivial as the chemical space of polymers is practically infinite. This daunting search problem
can be mitigated by surrogate models, trained using machine learning algorithms on available property
data, that can make instantaneous predictions of polymer properties. In this work, we present a versatile,
interpretable, and scalable scheme to build such predictive models. Our ‘‘multi-task learning’’ approach is
used for the first time within materials informatics and efficiently, effectively, and simultaneously learns and
predicts multiple polymer properties. This development is expected to have a significant impact on data-
driven materials discovery.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Modern data-driven tools are transforming application-specific polymer development cycles. Surrogate
models that can be trained to predict properties of polymers are becoming commonplace. Nevertheless,
these models do not utilize the full breadth of the knowledge available in datasets, which are oftentimes
sparse; inherent correlations between different property datasets are disregarded. Here, we demonstrate
the potency of multi-task learning approaches that exploit such inherent correlations effectively. Data per-
taining to 36 different properties of over 13,000 polymers are supplied to deep-learning multi-task architec-
tures. Compared to conventional single-task learning models, the multi-task approach is accurate, efficient,
scalable, and amenable to transfer learning as more data on the same or different properties become avail-
able. Moreover, these models are interpretable. Chemical rules, that explain how certain features control
trends in property values, emerge from the present work, paving the way for the rational design of application
specific polymers meeting desired property or performance objectives.
INTRODUCTION

Polymers display extraordinary diversity in their chemistry, struc-

ture, and applications. This is reflected in the ubiquity of polymers

in everyday life and technology. The vigor withwhich polymers are

studied using both computational and experimental methods is

leading toaconstantfluxof (mostlyuncuratedandheterogeneous)

data. The field of polymer science and engineering is thus poised

for exciting informatics-based inquiry and discovery.1–5

In general, materials datasets tend to be small. This presents

challenges for the creation of robust and versatile machine

learning (ML) models for materials property prediction. Never-

theless, the apparent data sparsity in the materials domain is

somewhat compensated by the information-richness of each
This is an open access article under the CC BY-N
data point or the availability of prior physics-based knowledge

of the phenomenon under inquiry. For instance, a given target

property A of a material may be correlated with a different prop-

erty B. If data for A is sparse but data for B is copious, effective

prediction models for Amay be developed by exploiting this cor-

relation using algorithms that respect parsimony. Alternatively,

imagine that property A may be measured using an accurate

(but laborious or expensive) experimental procedure a and a

not-so-accurate (but rapid or inexpensive) procedure b. Again,

powerful models for the prediction of property A at the accuracy

level of a may be developed by using sparse a-type data along

with copious b-type data.

With the above in mind, let us suppose that a dataset for a

particular materials sub-class involves a variety of target
Patterns 2, 100238, April 9, 2021 ª 2021 The Author(s). 1
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Figure 1. Data pipeline and machine learning modles.

(a) From left to right: Separatly collected polymer roperty datasets are merged into a joint dataset; machine learning models are trained on the joint datset with

fingerprint components (F) as input and predicted properties (Pp) as output. PT are the property taret values. The loss funcrion is defined as the mean squared

error of PP and PT : Tg, Tm, P and F stand for galss transition temprature, melting temperature, property and fingerprint component matrix, respectively. (b) Four

different machine learing models: single-task (ST). mlti-task (MT). Gaussian process (GP), neural network (NN).
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properties, with each property data point potentially obtained

from multiple sources or measurements. Not all property values

may be available for all material cases. In other words, the data-

set may contain a number of ‘‘missing values’’. Figure 1A shows

a schematic of such a dataset for polymer properties. As

mentioned above, data from subsets of property and source

types may be correlated with each other. Given this scenario,

our objective is to utilize a multi-task (MT) learning method that

can ingest the entire dataset, recognize inherent correlations,

and make predictions of all properties by effectively transferring

knowledge from one property or source type to another. As a

baseline to assess how MT learning performs, one may utilize

learning methods that learn to predict each property individually,

one at a time, implicitly disregarding correlations of the property

with other properties; we call these as single-task (ST) learning

methods. ST and MT learning schemes are illustrated in

Figure 1B.

MT learning is an advanced data-driven learning method,

which, within materials science, requires coalesced datasets of

multiple properties to be effective. While materials scientists

have not yet adopted MT learning, it has been effectively utilized

in drugdesign for the classification of synthesis-relatedproperties

and has demonstrated clear advantages over other learning ap-

proaches.6–8 Transfer learning, a related approach that has been

applied in the polymer domain, likewise demonstrates advan-

tages over traditional learning approaches.9 Another somewhat
2 Patterns 2, 100238, April 9, 2021
related approach, which goes under the names of multi-fidelity

learningorco-kriging, hasbeenutilized toaddresssomematerials

science problems;10–12 nevertheless, the MT learning approach

described here surpasses conventional multi-fidelity learning in

terms of efficiency, scalability, dataset sizes that can be handled,

and the types and number of outputs.

In the present contribution, we focus on polymers and build

the first comprehensive MT model to date for the instantaneous

prediction of 36 polymer properties. Data for 36 different proper-

ties of over 13,000 polymers (corresponding to over 23,000 data

points) were obtained from a variety of sources.4,12–18 Table 1

shows a synopsis of the data. All polymers are ‘‘fingerprinted’’,

i.e., converted to a machine-readable numerical form, using

methods described elsewhere4,19,20 (and briefly in the experi-

mental procedures section). These fingerprints (and available

property values) are the inputs to ourMLmodels.We have devel-

oped four types of learning models: two flavors of MT models

and two flavors of ST models (the latter two models serve as

baselines). The two MT models utilize neural network (NN) archi-

tectures and are referred to as NN-MT1 and NN-MT2 models.

Once trained on the coalesced datasets corresponding to 36

polymer properties, the NN-MT1 model takes in polymer finger-

prints for a new polymer and outputs all 36 properties via its last

multi-head output layer. The NN-MT2 model, on the other hand,

uses an architecture that receives the concatenation of the poly-

mer fingerprint and a selector vector as input. The selector



Table 1. Synopsis of polymer properties

Property Symbol Unit Sourcea Points Data range Ref.

Thermal

Melting temperature Tm K Exp. 2079 [226,860]

Glass transition temperature Tg K Exp. 5072 [80,873] 15,16,4

Decomposition temperature Td K Exp. 3520 [219,11667]

Thermal conductivity l WmK�1 Exp. 78 [0.1,0.49]

Thermodynamic & physical

Heat capacity cp J gK�1 Exp. 79 [0.8,2.1]

Atomization energy Eat eV atom�1 DFT 390 [–6.8,5.2] 4

Limiting oxygen index Oi % Exp. 101 [13.2,70]

Crystallization tendency (DFT) Xc % DFT 432 [0.1,98.8]

Crystallization tendency (exp.) Xe % Exp. 111 [1,98.5]

Density r g cm�3 Exp. 910 [0.84,2.18] 4

Fractional free volume Vff 1 Exp. 128 [0.1,0.47]

Electronic

Bandgap (chain) Egc eV DFT 3380 [0.02,9.86]

Bandgap (bulk) Egb eV DFT 561 [0.4,10.1] 12

Electron affinity Eea eV DFT 368 [–0.39,5.17]

Ionization energy Ei eV DFT 370 [3.56,9.84]

Optical & dielectric

Refractive index (DFT) nc 1 DFT 382 [1.48,2.95] 4

Refractive index (exp.) ne 1 Exp. 516 [1.29,2] 4

Dielectric constant ε0 1 DFT 382 [2.6,9.1] 4

Frequency dependent electric constantb εf 1 Exp. 1187 [1.95, 10.4] 18

Mechanical

Tensile strength sts MPa Exp. 672 [2.86,289]

Young’s modulus Y MPa Exp. 629 [0.02,9.8]

Solubility & permeability

Hildebrand solubility parameter ds
ffiffiffiffiffiffiffiffiffiffi

MPa
p

Exp. 112 [12.3,29.2] 4,14

Gas permeabilityc mg Barrer Exp. 2168 [0, 4.7]d 13

The total number of single data points is 23,616, and the total number of merged data points in the joint database is 13,766.
aExperiments (Exp.); density functional theory (DFT)
bf˛f1:78; 2;3; 4;5; 6;7; 9;15g is the log 10 (frequency in Hz); e.g., ε3 is the dielectric constant at a frequency of 1kHz
cg˛fHe;H2;CO2;O2;N2;CH4g
dThe data range is transformed by f : mg1log 10ðmg + 1Þ
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vector indicates the property and instructs the NN to output just

that selected property. The baseline ST models utilize either

Gaussian processes (GP-ST) or a conventional NN architecture

(NN-ST). The GP-ST and NN-ST models are trained indepen-

dently on individual polymer datasets; there are thus 36 predic-

tion models, one for each property, of each ST flavor. All four ML

approaches developed here are shown in Figure 1B; details on

the architecture of the models and training process are provided

in the experimental procedures section.

RESULTS

Correlations in data
Unlike ST models, MT models learn from inherent correlations in

datasets. Our polymer dataset shows such interesting (some ex-

pected, but some new) correlations between pairs of properties

as illustrated in Figure 2 using Pearson correlation coefficients
(PCCs). For example, the dielectric constants at different fre-

quencies (ranging from ε1:78 to ε9, where the subscript indicates

the frequency on log10 scale in Hz) are highly positively corre-

lated with each other. Understandably, the dielectric constant

at optical frequency, ε15, which is controlled purely by electronic

polarization, is weakly correlated with the dielectric constants at

low frequencies, which are related to ionic, orientational, and

electronic factors. The permeabilities of gases, mg (where g rep-

resents one of 6 gas molecules), are highly positively correlated

with each other. By contrast, gas permeabilities and dielectric

constants are negatively correlated with each other, indicating

that polymers with high εf tend to display low mg, and vice versa.

Of note, high positive correlations can be seen between the glass

transition (Tg) and melting temperatures (Tm), and large negative

correlation between the electronic band gap (Egb, for bulk poly-

mers, and Egc, for chains) and Tg. The important observation that

should be made by the inspection of Figure 2 is that there are
Patterns 2, 100238, April 9, 2021 3



Figure 2. Polymer property heatmap of the Pearson correlation coefficients

Red patches indicate positively correlated, blue patches negatively correlated, andwhite patches uncorrelated Pearson correlation coefficients (PCCs). Numbers

on themain diagonal indicate the total data points of a particular property in the dataset, whereas off-diagonal numbers denote the number of polymers for which

both properties are available. The PCCs for less than two congruences were set to 0. Property symbols are defined in Table 1.
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several examples of weak to strong positive and negative corre-

lations between properties that can potentially be exploited in

MT learning schemes.

Single- and multi-task models
To investigate whether these correlations improve the prediction

performance when used in MTmodels, we train four different ML

models. The first twomodels use the ST architecture, which pre-

dicts single polymer properties, and the next twomodels use the

MT architecture, which predicts all properties (see Figure 1B).

For the last architecture (NN-MT2), we present two variants: (1)

trained on all properties (NN-MT2-all) and (2) trained on just the

properties within a given category of Table 1 (NN-MT2-sub).

There are thus a total of six NN-MT2-sub models, one for each

category. Figure 3 compiles the training results of all models.
4 Patterns 2, 100238, April 9, 2021
The average of the five-fold cross-validation root mean squared

errors (RMSEs) of the unseen validation dataset are shown, with

the error bars indicating 68% confidence intervals of the RMSE

averages. Amore condensed overview of the training results, us-

ing the categories defined in Figure 2, is shown in Table 2. The

RMSE and R2 values of all models are documented in Table S2

of the supplemental information.

Using the training results in Figure 3 and Table 2, we first eval-

uate the performance of both ST models (GP-ST and NN-ST). In

general, we find the NN-based STmodels to perform better than

their Gaussian process (GP) counterparts. This is an interesting

result as both models only differ in their underlying learning algo-

rithm but otherwise follow the same ST doctrine that learns poly-

mer properties independently. Nevertheless, it is also known that

NN models can approximate more general function classes
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Figure 3. Five-fold cross validation root mean squared errors of four machine learning models for 36 polymer properties

The properties are arranged in sub-figures according to their magnitudes. The colored bars indicate the average of five-fold cross validation root mean squared

errors (RMSEs), and the error bars are the 68% confidence intervals of the RMSE averages. Units can be found in Table 1.
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better than GP models,21 which ultimately leads to the better

overall performance of the NN models.

Next, we compare the ST and MT models using the average

of the normalized RMSE values in Table 2. The RMSE values

were normalized so that the maximal value is 1. Overall, Table

2 shows that the MT models perform generally better than the

ST models. The six NN-MT2-sub models provide the best ac-

curacy over all the 36 properties and are followed by NN-MT2-

all, which is superior to NN-MT1 and NN-ST (with GP-ST fin-

ishing up last). Comparing the first two categories (thermal

and thermodynamic & physical) of Table 2, the ST models

perform slightly better than the MT models. Similar observa-

tions can be made in Figures 3A–3C, which comprise the

properties of these first two categories. The reason for the

good performance of the ST models on these two categories

is the copious amount of data that is available. This allows the

optimizer to fully focus on a large single-property space dur-

ing the optimization. MT models on the other hand tend to

compromise their performance on these cases to also be

able to provide high predictive performance for the cases

where the dataset is sparse (where ST models suffer). More-

over, given that the property values are scaled to similar

data ranges in the pre-processing step (see experimental pro-

cedures section), the MT models are effectively trained on

data ranges with different sparsities, which present numerical

challenges for the optimizer. The last four categories in Table

2 paint a different picture compared to the first two cate-
gories; the MT models clearly outperform the ST models.

The last four categories comprise the highly correlated prop-

erties mg and εf (c.f., Figure 2) and also those with small data-

sets, which the MT models use to improve their prediction

performance. We note that although Table 1 indicates that

there are 1,187 points for the frequency-dependent dielectric

constant, this dataset is spread across 10 frequencies.

Among the MT models, the concatenation-based condi-

tioned NN-MT2-all and six NN-MT2-sub models display a

significantly lower averaged RMSE of 0.79 and 0.65. The

degraded performance of the multi-head NN-MT1 model

(0.89) in comparison to NN-MT2 may be ascribed to the

sparse population of our dataset (sparsity of 95%) due to

missing properties for many polymers. When the optimizer

computes the gradients to back-propagate over the network,

it has to exclude these missing properties, effectively leaving

related network parts unchanged. The architecture of the

NN-MT2 eliminates this problem by using a one-hot represen-

tation of the dataset. As this representation has no missing

values, the optimizer can always back-propagate over the

entire network.

By holistically evaluating the performance of all properties

and models in Figure 3 and Table 2, it can be stated that

NNs should be preferred over GPs. NNs predict not only with

higher accuracy than GPs but they also scale efficiently in

terms of growing dataset, training, and prediction time. MT

models comprise similar accuracy as ST models and should
Patterns 2, 100238, April 9, 2021 5



Table 2. Averages of the normalized root mean squared errors values

Model All Categories

Thermal Thermod. & physical Electronic Optical & dielectric Mech. Solubility & permeability

GP-ST 0.93 0.92 0.86 0.88 0.98 1.00 0.93

NN-ST 0.89 0.95 0.76 0.91 0.91 0.95 0.94

NN-MT1 0.89 0.98 0.83 0.97 0.83 0.94 0.92

NN-MT2-all 0.79 0.97 0.82 0.96 0.69 0.89 0.70

NN-MT2-sub 0.65 0.94 0.87 0.79 0.47 0.82 0.46

The root mean squared error averages were normalized for each property so that the maximal value is 1.
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particularly be utilized whenever the considered data exhibit

high correlations. Moreover, the NN-MT2-sub models show

that MT models trained on property categories with high ex-

pected correlations outperform a MT model trained on all

(possibly uncorrelated) properties. The six NN-MT2-sub models

display the overall best performance among all properties for

our dataset.

Deriving chemical guidelines
While our ML models learn the mapping between fingerprints of

polymers and properties, they do not provide insights on how

single fingerprint components relate to properties, nor howmod-

ifications of fingerprint components affect properties. To

address such problems, we calculate Shapley additive explana-

tion (SHAP) values22,23 that measure the impact of structural

polymer features, which are indicated through our fingerprint

components, to polymer properties. As these SHAP values do

only quantify the magnitude of the fingerprint-structure relation

and not the direction, we compute special fingerprint impact

values as the product of SHAP and PCC values. Using these

fingerprint impact values, we derive chemical guidelines that

can be compared with well-known empirical guidelines from

the literature to validate our model irrespective of the used

training dataset.

The most influential fingerprint component in Figure 4 is

Fe;main;chain;ring, which is defined as the ratio of the number of

non-hydrogen atoms in rings (cycles of atoms) to the total num-

ber of atoms, is large for polymers containing many rings.

Fe;main;chain;ring has a strong positive impact on Tm, Tg, Td, sts, Y,

Oi, ne, nc, ε0, and ε15 and strong negative impact on Egc, Egb,

Eat, Ei, and cp. This means the presence of atomic rings in-

creases the former-mentioned properties but decreases the

latter. As such, using the fingerprint impacts, we can provide

chemical guidelines helpful to design future polymers. The

derived chemical guidelines as impacts of the fingerprint compo-

nent Fe;main;chain;ring may be mapped to empirical guidelines that

scientists have learned over the years. For instance, it is known

that the presence of atomic rings stiffens polymers, which ex-

plains the increase of the mechanical properties, sts and Y.

Moreover, the atomic rings restrict chain motion, which is the

reason for increased Tm, Tg, and Td values in ring-rich polymers.

The conjugated double bonds in atomic rings introduce agitated

p-electrons, which increase ne, nc, and εf , especially at high fre-

quencies (ε15) where electronic displacements contribute signif-

icantly to optical properties. Also, the agitated p-electrons of

atomic rings can participate in electrical conduction, which is
6 Patterns 2, 100238, April 9, 2021
why rings increase the conductivity of polymers. In contrast,

properties such as Egc, Egb, Eat, and Ei,
24 which correlate with

insulating behavior or stability, are decreased as Fe;main;chain;ring

has negative impact.

The second-most impactful fingerprint component is

Fe;fam;acrylate, which is defined to be one if the acrylate group is

present in the polymer and zero otherwise. Polyacrylates are

known to have Tg values below room temperature. Consistent

with this expectation, the presence of Fe;fam;acrylate negatively im-

pacts Tm, Td, and Tg. Another interesting finding is that

Fe;fam;polyamides, the fourth-most impactful fingerprint component,

positively impacts ds because the amide bonds in polyamides

strengthen inter-molecular forces that make polymers resist

dissolution. One can likewise derive useful insights from the

other features identified in Figure 4.

DISCUSSION

In this work, we demonstrate how MT learning improves the

property prediction of ML models in materials sciences by using

inherent property correlations of coalesced datasets. Our poly-

mer dataset includes 36 properties from over 23,000 data points

of more than 13,000 polymers. The dataset is learned using four

different ML models: the first two models are based on GPs and

NNs and use the ST architecture. Models three and four are

solely based on NNs and use two different types of MT architec-

tures. Our analysis shows that the fourth model (NN-MT2) out-

performs the other three models overall. Upon closer inspection

of performance within individual property sub-classes, it is

evident that MT models outperform ST models especially when

correlations between properties within the subclass are high

and/or when the dataset sizes within those sub-classes are

small. In closing, we conclude that MT learning successfully

improved the property prediction by utilizing the inherent corre-

lations in our coalesced polymer dataset. Furthermore, we

compute fingerprint impact values, which are based on SHAP

and PCC values, that allow us to derive chemical guidelines for

polymer design from the trainedMTmodel and add an additional

validation (and value-added) step pertaining to knowledge

extraction.

Besides better performance, our MT learning approachmakes

fast predictions of all properties in a short time and eliminates the

laborious training of many singleMLmodels for each property. In

addition, the NNs enable scalability and fast retraining of the MT

models when new properties or data become available. MT

models can also be developed further to include uncertainty



Figure 4. Fingerprint impact values of the 15 most important fingerprint components

Positive fingerprint impact values (red) indicate that a positive value of a fingerprint will potentially increase a property value, and vice versa. Small impact values,

however, suggest little or no change of the property value. The fingerprint component names are defined in Table S1 of the supplemental information.
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quantifications, which is often helpful for end-users. Also, it is

important to note that our MT learning approach and fingerprint

impact analysis are not limited to polymeric materials; in fact,

they can easily be modified to handle any material. Given all

these factors and the good performance, we believe that MT

models should be the preferred method for property predictive

ML in materials informatics. All ML models developed in this

work will be made available on the Polymer Genome platform

at https://www.polymergenome.org/.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the Lead Contact, Rampi Ramprasad (rampi.ramprasad@mse.

gatech.edu).

Materials availability

There are no physical materials associated with this study.

Data and code availability

All data points of DFT computed properties of Table 1 that support the findings

of this study are openly available at https://khazana.gatech.edu/. The code for
training the ML models is available at https://github.com/Ramprasad-Group/

multi-task-learning.

Data and preparation

The polymer database used in this work comprises 36 individual polymer prop-

erties, which are meticulously collected and curated from twomain sources: (i)

in-house high-accuracy and high-throughput density functional theory (DFT)

based computations,12,20,25,26 (ii) experimental measurements reported in

the literature (as referenced in Table 1), printed handbooks27–29 and online da-

tabases.30,31 Both sources come with distinct uncertainties and should not be

mixed together under the same property; while DFT contains systematic un-

certainties introduced through the approximations of the density functional

or chosen convergence parameters, experimental uncertainties arise from

sample andmeasurement conditions. However, along the lines of multi-fidelity

learning approaches, the concurrent use of properties of different sources in

separate columns of the dataset may help to lower the total generalization er-

ror. An overview of the used 36 polymer properties, their symbols, units, sour-

ces, and data ranges can be found in Table 1. It should be noted that some of

the individual property datasets have already been used in other publications

(see references in Table 1). However, this work marks the first time that these

single property datasets have been fused for the holistic training of the MT

models.

MT architectures take in the fingerprint of a polymer and use the same NN to

predict onall properties.Theproperty predictionhappenseither simultaneously,
Patterns 2, 100238, April 9, 2021 7
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as in ourmulti-headMTmodel (NN-MT1), or iteratively, as in our concatenation-

basedMTmodel (NN-MT2).MTmodels thus need a coalesceddataset that lists

all properties for one polymer per row, see Figure 1A. To construct such a coa-

lesceddataset,wemerge the 36 single-property datasets usingour polymer fin-

gerprints (see next Section). Moreover, to ease the work of the optimizer and

accelerate the training, we scale all 36 property values to a comparable data

range using Scikit-learn’s Robust Scaler.32 Additionally, the gas permeabilities

(mg) are logartihmically pre-processed by f : mg1log10ðmg + 1Þ to narrow

down their large data range. Ultimately, for computing error measurements

and production, the original metrics are restored by inversely transforming the

predictions. Apart from scaling the polymer properties, fingerprint components

are normalized to the range of ½0; 1�.

Fingerprinting

Fingerprinting convertsgeometric andchemical information of polymers toma-

chine-readable numerical representations. Polymer chemical structures are

represented using SMILES33 strings that follow the SMILES syntax but use

two stars to indicate the two endpoints of the repetitive unit of the polymers.

Our polymer fingerprints capture key features of polymers at three hierarchi-

cal length scales.19 At the atomic-scale, our fingerprints track the occurrence

of a fixed set of atomic fragments (or motifs).20,34 For example, the fragment

‘‘O1-C3-C4’’ is made up of three contiguous atoms, namely, a one-fold coor-

dinated oxygen, a 3-fold coordinated carbon, and a 4-fold coordinated car-

bon, in this order. A vector of such triplets form the fingerprint components

at the lowest hierarchy. The next level uses the quantitative structure-property

relationship (QSPR) fingerprints4,35 to capture features on larger length-scales.

QSPR fingerprints are often used in chemical and biological sciences, and im-

plemented in the cheminformatics toolkit RDKit.36 Examples of such finger-

prints are the van der Waals surface area,37 the topological polar surface

area (TPSA),38,39 the fraction of atoms that are part of rings (i.e., the number

of atoms associated with rings divided by the total number of atoms in the for-

mula unit), and the fraction of rotatable bonds. The highest length-scale finger-

print components in our polymer fingerprints deal with ‘‘morphological

descriptors.’’ They include features such as the shortest topological distance

between rings, fraction of atoms that are part of side-chains, and the length of

the largest side-chain. Eventually, the used polymer fingerprint vector (F) of a

polymer in this study has 953 components of which 371 are from the first, 522

from the second and 60 from the third level.

Machine learning models

To allow for comparison our four ML models, we consistently chose the loss

function being the mean squared error (MSE) of predicted and true values

for five different training datasets, generated by five-fold cross-validation.

The five-fold cross validation means along with the 68% confidence intervals

are reported in Figure 3.

Single-task learning with Gaussian process regression (GP-ST)

Scikit-learn’s32 implementation of GP regression was used as the baseline

model, denoted by GP-ST. The kernel function was chosen as the parameter-

ized radial basis functions plus awhite kernel contribution to capture noise. GP

predicts probability distributions from which prediction values are derived as

the means of the distributions, and confidence intervals of the distributions

define the uncertainties. GP’s limiting factor is the inversion of the kernel ma-

trix, which grows squared (F2) with the number of used features (F), rendering

GP unsuitable for big-data learning problems. NNs eliminate this problem.

Learning with neural networks (NN-ST, NN-MT1, NN-MT2)

All three NN models were implemented using the Python API of Tensorflow.40

We used the Adam optimizer with a learning rate of 10�3 to minimize the MSE

of the prediction and target polymer property. Early stopping combined with a

learning rate scheduler was deployed. All hyper-parameters such as the initial

learning rate, number of layers and neurons were optimized with respect to the

generalization error using the Hyperband method41 of the Python package

Keras-Tuner.

The NN-ST model takes in the fingerprint vector and outputs one polymer

property. Just as the GP-ST model, we train an ensemble of 36 independent

NN-ST models to predict all 36 properties. The NN-MT1 model has a multi-

headMTarchitecture that takes in thefingerprint vector (F) andoutputs36prop-

erties (P) at the same time. On the other hand, the NN-MT2 model uses a

concatenation-based MT architecture that takes in the fingerprint vector and
8 Patterns 2, 100238, April 9, 2021
a selector vectorS, outputting only the selected polymer property. The selector

vector has36componentswhereonecomponent is 1 and the rest 0. Eachof the

threeNNmodels has two dense layers, followed by a parameterizedReLUacti-

vation function and a dropout layer with rate 0.5. The Hyperband method opti-

mized the two dense layers to 480 and 224 neurons for the NN-ST model, 480

and 416 neurons for the NN-MT1model, and 224 and 160 neurons for NN-MT2

model. An additional dense layer was added with 1 neuron for the NN-ST and

NN-MT2 model and 36 for the NN-MT2 model to resize the output layer.

SHAP

TheShapley’s cooperative game theory-basedSHAP (SHapley Additive exPla-

nations)22,23 analysis is a unified framework for interpreting predictions of ML

models by assigning impact values to input features. To establish the interpret-

ability of fingerprint components and polymer properties in our work, we intially

compute SHAP values for the prediction on the validation dataset using the

best NN-MT1 model. Since these raw SHAP values (qS) indicate a fingerprint’s

ability to amend certain polymer properties, mean sums of absolute SHAP

values jqSj may be used to measure the total fingerprint component impact

on each property. However, jqSj does notmeasure the proportionality of finger-

print and property, that is to say, the positive or negative change of the property

owing to the fingerprint. This is why we compute the PCCs of SHAP and finger-

print components, rqS ;F, and multiply these PCC with the mean sum of the ab-

solute SHAP values, finally leading to our definition of the fingerprint impact

values as jqSj, rqS ;F

jrqS ;Fj. SHAP values were computed using the GradientExplainer

class of the SHAP Python package (https://github.com/slundberg/shap).
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