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The Polymer Informatics ecosystem is
being shaped by several independent
developments. Machine Learning (ML)
algorithms and extant polymer data are
utilized, with intensity, to create surrogate
models of polymer property and
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Polymer design using genetic algorithm and machine learning (Comput. Mater. Sci., 186, 110067, 2021)
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Rational co-design of polymer dielectrics for energy storage (Advanced Materials, 28, 6277, 2016)

ML-guided design of computations (and experiments) expands and diversifies the polymer data.

Autonomous
Computations

Functional polymers are being discovered and, at
the same time, high-quality computational data is
being created in a targeted and autonomous manner.
Starting from the available polymer data, ML models
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Natural language processing ( NLP) enables automated extraction of information & data curation. Most

polymer domain knowledge like polymer properties and synthesis recipes are locked up in journal papers in plain text, tables and
figures. The goal is to convert this information into machine readable databases or represent

itin a high dimensional latent space to capture the information in the continuously growing
polymer literature. ML models can then be built on top of this to predict properties and
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Feedforward new information for adaptive data augmentation

Inverse Problem

Polymers for extreme conditions designed using syntax-directed variational autoencoders (Chem. Mater. 32, 10489, 2020)
Active-learning and materials design: the example of high glass transition temperature polymers (MRS Comm 9, 860, 2019)

Polymer Genome

WWw.polymergenome.org

A Machine Learning Platform for New Polymer Discovery

« Electronic properties - Bandgap, ionization energy, electron affinity
 Dielectric & optical properties - Dielectric constant, refractive index
« Thermal properties - Glass transition Temp., melting temp., thermal decomposition Temp.
 Solubility properties - Solvent & non-solvent, solubility parameter
« Permeability properties - Gas permeability, selectivity
» Mechanical properties - Tensile strength, Young's modulus
 Physical & thermodynamic properties - Density, atomization energy, specific heat
Other properties - Tendency to crystalize, limiting oxygen index
e Structure - 2D & 3D structure of monomer
* Polymer Genome: a data-powered polymer informatics platform for
property predictions (J. Phys. Chem. C 122, 31, 17575-17585, 2018) i i
» Machine-learning predictions of polymer properties with Polymer 3D structure of monomer, ‘mol’ file

Predicted properties Polymer properties predicted by ML models ==

L AGNI- ML-Assisted
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Deep learning based-QM simulations can be performed at three
stages, each with a different objective in mind: 1) as a property
predictor; 2) as a force-field generator; and 3) to obtain the primary outputs in a

Khazana - A portal for data and tools from the Ramprasad Research Group
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https://khazana.gatech.edu
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Example discovery
High energy density polymer

Example design — using genetic algorithm*
Polymers with T,"> 500 K & E;" >6 eV
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Reference polymer Generation

BOPP ... Energy density ~5 J/cm3

8,453 polymers projected on 2D principal component (PC) space (PC generated using the
polymer fingerprints). All polymers created during 100 generations are represented by gray points.
Area of polymers created at the generation #1, 10, 50, and 100 are selected to visualize the
convergence in chemical diversity with evolution.

*Genetic algorithm ... A powerful method for solving materials design problems based on natural
selection, the process that drives biological evolution.
*Ty ... glass transition temperature), E; ... bandgap
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Structure

Atomic coordination

Structure visualizer

perform polymer design.
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Available
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XN Poly(ethylene oxide)
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Tokenized text

Natural language processing (NLP)

Text parsing & computer vision

DFT calculation, namely the charge density and DOS. This last stage, the one from which all others
can be reached (or derived) is several orders of magnitude faster than QM simulations while preserving accuracy.

 An efficient deep learning scheme to predict the electronic structure of materials and molecules: the example of graphene-derived
allotropes (J. Phys. Chem. A, 124, 9496, 2020)

 Solving the electronic structure problem with machine learning (npj Comput. Mat. 5, 22, 2019)

 General atomic neighborhood fingerprint for machine learning based methods (J. Phys. Chem. C 123, 15859, 2019)

» Auniversal strategy for the creation of machine learning-based atomistic force fields (npj Comput. Mat. 3, 27, 2017)

 Learning scheme to predict atomic forces and accelerate materials simulations (Phys. Rev. B 92, 094306, 2015) 10° g
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