
Polymer Genome
www.polymergenome.org

AGNI: ML-Assisted
QM Simulations  

Polymer Informatics Ecosystem

Materials Discovery  

Semi-Automatic
Data Capture  

Autonomous
Computations   

RAMPRASAD
RESEARCH GROUP
School of Materials Science and Engineering
Georgia Institute of Technology
We develop and utilize computational and
data-driven tools to aid materials design

1. Arunkumar Chitteth Rajan, 2. Yifan Liu, 3. Rampi Ramprasad,  4. Jordan P. Lightstone, 5. Rishi P Gurnani,  6. Aubrey Toland,  7. Yujie Zhu,  8. Rohit Batra
9. Julia Laws,  10. Vivian Bond,  11. Pranav Shetty, 12. Christopher Kuenneth, 13. Shivank Shukla,  14. Keara Frawley,  15. Beatriz Gonzalez del Rio

16. Brandon Phan,  17. James Chapman, 18. Shruti Venkatram,  19. Deepak Kamal, 20. Huan Tran, 21. Janhavi Nistane,  22. Harikrishna Sahu
23. Lihua Chen, 24. Joseph Kern,  25. Chiho Kim,  26. Kuan-Hsuan (Kevin) Shen,  27. William Schertzer

National Science Foundation US Department  of EnergyOffice of Naval Research Kolon IndustriesToyota Research InstituteGeorgia Institute of Technology Exxon Mobil

Materials Discovery & Informatics at

PI - Dr. Rampi Ramprasad (Michael E. Tennenbaum Family Chair and GRA Eminent Scholar)
E-mail : rampi.ramprasad@mse.gatech.edu / Website : http://ramprasad.mse.gatech.edu

7

8
12

17

19

20

22

14

18
23

25

3

5

1

2
4

13

15
6

9

10

11 16 21

24

27

26

Data
Repository

Polymer
Genome

AGNI
(DFT Emulator)

ML-Maidan

    hazana  1.0

Khazana - A portal for data and tools from the Ramprasad Research Group

https://khazana.gatech.edu

Example design – using genetic algorithm*
Polymers with Tg

* > 500 K & Eg
* >6 eV 

*Genetic algorithm … A powerful method for solving materials design problems based on natural 
selection, the process that drives biological evolution. 
*Tg … glass transition temperature), Eg … bandgap

Artificial intelligence

Computational data

Experimental data

Synthesis / Computation
AI-guided & automated data generation

(AI for QM / AI for experiments)

Deep learning, regression,
multi-fidelity information-fusion,

multi-task learning …

VAE, genetic algorithm
active learning …

ML-assisted expansion of polymer chemical / property space

Feedforward new information for adaptive data augmentation

Design platform

Instant property prediction

Accelerated polymer design

New polymers

Targeted property

Data integration 
& managementAGNI: ML-Assisted 

QM Simulations

Semi-Automatic 
Data Capture

Autonomous 
Computations

(Metallized BOPP)

BOPP… Energy density ~5 J/cm3

Polymer specific records

Collect papers

Natural language processing (NLP)  enables automated extraction of information & data curation.  Most 
polymer domain knowledge like polymer properties and synthesis recipes are locked up in journal papers in plain text, tables and
figures. The goal is to convert this information into machine readable databases or represent
it in a high dimensional latent space to capture the information in the continuously growing
polymer literature. ML models can then be built on top of this to predict properties and
perform polymer design.

Natural language processing (NLP)

Tokenized text

Train word vectors

New knowledge gained

Poly(ethylene oxide)

powder was studied

using

...

...STM

Neural network

Text parsing & computer vision

Plain
text data

Polymer data

Tabular information

Synthesis containing 
paragraphs

Text containing property 
information

Parsing HTML/XML 
documents and tokenizing

Data CaptureCollect Information

ML-guided design of computations (and experiments) expands and diversifies the polymer data.

ML-assisted expansion of polymer chemical / property space

High-throughput
computation 

Pool of polymers 
to be considered

Polymer
SMILES

Select polymers 
for the next 
calculation

SMILES to 3D structure generatorML surrogate modelPolymer data

Functional polymers are being discovered and, at 
the same time, high-quality computational data is 
being created in a targeted and autonomous manner. 
Starting from the available polymer data, ML models 
are developed to select candidates from a big 
dataset of polymers, balancing 
between exploitation and 
exploration. 3D models of 
the candidates are then 
predicted, from which polymers with 
targeted (computational) properties 
are identified and data are 
progressively curated/updated. 
Requiring minimal
human 
intervention, 
this autonomous 
workflow will be the 
primary source of 
computational data 
for polymers  informatics.

Available
data sources

Example discovery
High energy density polymer

Computational time & scaling ►

Deep learning based-QM simulations can be performed at three 
stages, each with a different objective in mind: 1) as a property
predictor; 2) as a force-field generator; and 3) to obtain the primary outputs in a
DFT calculation, namely the charge density and DOS. This last stage, the one from which all others 
can be reached (or derived) is several orders of magnitude faster than QM simulations while preserving accuracy.

AGNI framework for ML-QM

Ultrafast DFT emulation

Reference atomic
configurations   

& electronic structures

Step 1 … Data generation

Neural network

Step 3 … Machine learning

Unseen atomic configuration 
& electronic structures

Step 4 … Validation

Grid point based 
& atom position based

numerical features

Step 2 … Fingerprinting

General information
Polymer class, IUPAC name, similar polymers

Predicted properties Polymer properties predicted by ML models

• Electronic properties - Bandgap, ionization energy, electron affinity
• Dielectric & optical properties - Dielectric constant, refractive index
• Thermal properties - Glass transition Temp., melting temp., thermal decomposition Temp.
• Solubility properties - Solvent & non-solvent, solubility parameter
• Permeability properties - Gas permeability, selectivity
• Mechanical properties - Tensile strength, Young’s modulus
• Physical & thermodynamic properties - Density, atomization energy, specific heat
• Other properties - Tendency to crystalize, limiting oxygen index
• Structure - 2D & 3D structure of monomer

Inverse Problem

Genetic
algorithm

V EA

Variational
autoencoder

Active
learning

Target property

Polymer designs

Forward Problem

Polymer

ML prediction model

Instant property prediction

Hierarchical fingerprinting

• Polymer design using genetic algorithm and machine learning (Comput. Mater. Sci., 186, 110067, 2021)
• Polymers for extreme conditions designed using syntax-directed variational autoencoders (Chem. Mater. 32, 10489, 2020)  
• Active-learning and materials design: the example of high glass transition temperature polymers (MRS Comm 9, 860, 2019)
• Rational co-design of polymer dielectrics for energy storage (Advanced Materials, 28, 6277, 2016)     

• A multi-fidelity information-fusion approach to machine learn and predict polymer bandgap
(Comput. Mater. Sci., 172, 109286, 2019)

• Polymer Genome: a data-powered polymer informatics platform for 
property predictions (J. Phys. Chem. C 122, 31, 17575-17585, 2018)

• Machine-learning predictions of polymer properties with Polymer 
Genome (J. Appl. Phys., 128, 171104, 2020)

Structure visualizer
3D structure of monomer, ‘mol’ file

User input
SMILES, name, abbreviation, sketch

• An efficient deep learning scheme to predict the electronic structure of materials and molecules: the example of graphene-derived 
allotropes (J. Phys. Chem. A, 124, 9496, 2020)

• Solving the electronic structure problem with machine learning (npj Comput. Mat. 5, 22, 2019)
• General atomic neighborhood fingerprint for machine learning based methods (J. Phys. Chem. C 123, 15859, 2019)  
• A universal strategy for the creation of machine learning-based atomistic force fields (npj Comput. Mat. 3, 27, 2017)
• Learning scheme to predict atomic forces and accelerate materials simulations (Phys. Rev. B 92, 094306, 2015)
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The Polymer Informatics ecosystem is  
being shaped by several independent

developments. Machine Learning (ML)
algorithms and extant polymer data are 

utilized, with intensity, to create surrogate 
models of polymer property and 

performance predictions. The design of 
polymers that meet target property 

requirements and the design
of (retro)synthesis steps to

create a target polymer
appear to be within reach,

either by closed-loop active
learning strategies, or by

inverting the prediction pipeline
using advanced generative

algorithms. 

A Machine Learning Platform for New Polymer Discovery“ ”

New PDTC-HK511
Energy density ~16 J/cm3

Reference polymer

1st generation

PC1

PC2

10th generation

100th generation 

50th generation 

Eg = 9.3 eV / Tg = 546 K

Eg = 8.9 eV / Tg = 568 K
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New

New

8,453 polymers projected on 2D principal component (PC) space (PC generated using the 
polymer fingerprints). All polymers created during 100 generations are represented by gray points. 
Area of polymers created at the generation #1, 10, 50, and 100 are selected to visualize the 
convergence in chemical diversity with evolution.

Battery
electrolytes Membranes Conducting

polymers 
Recyclable
polymers 


