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A B S T R A C T   

Data driven or machine learning (ML) based methods have been recently used in materials science to provide 
quick material property predictions. Although powerful and robust, these predictive models are still limited in 
terms of their applicability towards the design of materials with target property or performance objectives. Here, 
we employ a nature-mimicking optimization method, the genetic algorithm, in tandem with ML-based predictive 
models to design polymers that meet practically useful, but extreme, property criteria (i.e., glass transition 
temperature, Tg > 500 K and bandgap, Eg > 6 eV). Analogous to nature, the characteristic properties of a 
polymer are assumed to be determined by the constituting types and sequence of chemical building blocks (or 
fragments) in the monomer unit. Evolution of polymers by natural operations of crossover, mutation, and se-
lection over 100 generations leads to creation of 132 new (as compared to 4 already known cases) and chemically 
unique polymers with high Tg and Eg. Chemical guidelines on what fragments make up polymers with extreme 
thermal and electrical performance metrics have been selected and revealed by the algorithm. The approach 
presented here is general and can be extended to design polymers with different property objectives.   

1. Introduction 

Polymers have found enormous use in numerous applications, due to 
their versatility and the richness of their chemical diversity [1]. The 
latter aspect also poses a challenge. The near-infinite chemical space 
spanned by polymers leads to a daunting search problem. Edisonian trial- 
and-error and intuition-based strategies may not be efficient, and run 
the risk of missing good solutions. Moreover, if such strategies use 
traditional experimental or computational routes, they may be time- and 
resource-intensive. Machine learning (ML) based surrogate models, 
trained on available polymer-property datasets, can make instantaneous 
property predictions for a new polymer, and may alleviate the burden on 
time and resources [2–13]. But such accelerated prediction options still 
leave open the challenge of accumulating a large and diverse candidate 
set of polymers for which predictions need to be made. It is completely 
unclear how one would make such a candidate set “complete” enough so 
as to not miss suitable and important candidates. 

A more general and appropriate approach would be to solve the 
“inverse problem”, i.e., given the desired property objectives, directly 
generate polymers that satisfy those objectives, as opposed to screening 
from a pre-defined candidate set. There have been attempts to perform 
such designs in the past [14,15], but they have been limited in terms of 
the explored chemical space, as they are constrained by the available 

choices of the building units. Recently, machine learning based gener-
ative models, such as variational autoencoders (VAE) and generative 
adversarial networks (GAN), have also been utilized to solve the inverse 
problem [16–23]. They learn a mapping from a continuous latent space 
to the materials space, using which new materials with desired prop-
erties are generated after solving the optimization problem in the latent 
space. While this approach remains attractive for drug discovery, its 
application to periodic systems such as polymers is in a state of infancy. 

In this contribution, we set our goal as the design of polymers with 
two extreme properties: high glass transition temperature (Tg) and high 
bandgap (Eg). The former is desirable to find polymers that have high 
thermal stability at high temperatures. The latter is useful for polymers 
that can withstand high electric fields, and display high dielectric 
strength. Collectively, these two properties are essential for several ap-
plications, including high-temperature high-energy density dielectrics 
[24]. The difficulty in achieving these desired property objectives be-
comes apparent when we check the literature of known polymers: only 
four out of ∼12,000 reference polymers collected from literature 
[25–28] meet the target properties (Tg > 500 K and Eg > 6 eV) as 
illustrated in Fig. 1. In this figure, the Tg and Eg estimates for the 
∼12,000 known polymers were made using our past ML models.[3] As 
can be seen from Fig. 1, the inverse relation between the Eg and the Tg 

makes it difficult to find polymers that meet both property criteria 
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simultaneously. Indeed, the criteria are met only for 4 known polymers. 

2. Methods 

The genetic algorithm (GA), a simulated evolution-based search al-
gorithm, is a powerful method to tackle this inverse problem of polymer 
design using the principle of natural selection that drives biological 
evolution [29]. In analogy with how nature uses the basic steps of 
crossover, mutation and selection for evolution of species, in this work we 
use GA to evolve a generation of polymer candidates to ‘survive’ user- 
defined property objectives. The inherent structure of a polymer 
makes its treatment using GA straightforward—a polymer can be 
thought of as a sequence of chemical building blocks connected to each 
other by covalent bonds (analogous to DNA base pairs), and the prop-
erties of a polymer are functions of the constituent chemical building 
blocks and their relative ordering (analogous to DNA). Thus, starting 
from a generation of candidate polymers, crossover and mutations op-
erations may be performed to alter their sequence of chemical building 
blocks, and obtain new polymer offsprings. A user-defined fitness 
function (here, based on desired Tg and Eg property objectives) has to be 
then evaluated to aid in the retention of only the top performing off-
springs, which then become the parent generation for the next iteration. 
This GA cycle may be repeated until sufficient number of candidates 
with desired properties are obtained. 

The evaluation of polymer candidates to see if they meet the desired 
property objectives, i.e., computation of the fitness function, is a crucial 
component of GA for polymer design. This step has been a major 
bottleneck since polymer property estimation through experiments or 
computations is very expensive and time-consuming. However, with the 
recent development of cheap and reliable ML models for polymer 
property estimation, the fitness function can now be computed in a 
fraction of a second. For this work, we developed ML-based predictive Tg 

and Eg models using the framework described in our previous works 
[3,30]. The ML models were based on a hierarchical polymer finger-
printing scheme and Gaussian process regression [3,31]. While the Tg 

model was trained on an experimental dataset of 5,072 polymers, the Eg 

model was learned using density functional theory (DFT) computed Eg 

values of 562 polymers. These ML models were found to be accurate 
with a root mean square error (RMSE) of 19 K and 0.26 eV for Tg and Eg 

predictions, respectively (Fig. S1). Stitching all the different pieces 
together, the GA can be used to search the polymer space as follows:  

1. Starting from a randomly selected generation of polymer candidates, 
crossover and mutation operations are performed to produce new 
polymer candidates by altering the chemical building blocks and 
their sequence.  

2. ML models are then be used to make quick property estimates for the 
newly generated polymer candidates and evaluate their fitness.  

3. Only the top candidates with best fitness evaluation are retained as 
parent polymers, and the above steps are iterated until sufficient 
number of polymer candidates with desired properties are found. 
Here, we defined the fitness function as (normalized Tg) ×

(normalized Eg), where the normalization was performed to negate 
the effect of Tg being usually two orders of magnitude higher than Eg. 

Overall workflow of the GA process is illustrated in Fig. 2a. A 
monomer repeat unit of polymers is represented using its constituent 
chemical building blocks, e.g., polyvinyl chloride CC[Cl] can be written 
using chemical blocks *C* and *C[Cl]*, with “*” representing an open 
end of a building block. A total of 3,045 building blocks were extracted 
from ̃12,000 reference polymers using the “breaking of retrosyntheti-
cally interesting chemical substructures” (BRICS) algorithm as imple-
mented in the RDKit Python package [32,33]. We note that each of the 
chemical building blocks has 1–4 end points (represented by the symbol 
“*”) that can act as a connection point with other chemical building 
blocks. To initiate the GA process, 100 polymers consisting of 8 building 
blocks in their monomer unit were created in the first generation. The 
building blocks were chosen randomly while respecting their frequency 
of occurrence in the reference polymer dataset. In each GA iteration, the 
top 10 polymer with highest fitness evaluation, i.e., (normalized Tg) ×
(normalized Eg), were retained as parents to create the next generation 
offsprings through crossover and mutation operations. 

During crossover, two parent polymers generate an offspring by 
combining one random segment of a parent polymer with another 
random segment of the other parent. The segmentation point of a parent 
polymer was chosen using a Gaussian function with a mean pointing to 
the center of the monomer unit. For example, for polymers with 8 
building blocks in the monomer unit, the segmentation mostly occurs at 
their middle, with each resulting polymer segment containing 4 blocks. 
We allowed a small variation of choosing the segmentation position so 
that the monomer unit can be separated into the fragments with more or 
less number of blocks. Further, for each parent polymers the segmen-
tation process was performed 4 times, resulting in a total of 10C2 times 4 
= 180 offspring polymers from 10 parent polymers in each iteration. 
Like in Nature, mutation operations were also incorporated to diversify 

Fig. 1. Property map of glass transition temperature vs bandgap predicted by ML models. Among 12,721 known polymers, only four polymers meet the desired 
property objectives (Tg > 500 K and Eg > 6 eV). The Tg and Eg values are based on ML predictions. The fitness function used for color code was defined as 
(normalized Tg) × (normalized Eg). 
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the “gene pool”. A randomly selected polymer building block in the 
monomer unit was replaced with a new building block randomly chosen 
from the list of 3,045 blocks. We assigned a significant chance (40%) of 
mutation for each offspring polymer in order to promote the chemical 
diversification. During the evolution, offspring polymers that disobey 
some known chemical rules, e.g., having unstable motifs such as 
*OOOO*, or polymer assembling rules, e.g., having repeat unit with 
more than 3 end points such as *CC(*)CC*, were discarded from the 
candidates list. Crossover and mutation steps are schematically 
demonstrated in Fig. 2b using two exemplary polymers of 4 fragments 
each. The fitness function evaluations were made using Tg and Eg pre-
dictions from a pair of pretrained ML models. The evaluated fitness 
function for a few example polymers are depicted in Fig. 2c. 

3. Results and discussion 

Using the GA process we were able to design 132 new polymers that 
meet the target property objectives. This was achieved in 100 

generations of evolution and from a cumulative of 12,675 offspring 
polymers. Fig. 3 displays the change in the chemical diversity of all 
polymers generated, and the corresponding evolution in the Tg and Eg 

property predictions, throughout the 100 generations. During the early 
generations (e.g., 1–10), the fragments search space is still very diverse 
and arbitrary, with a low probability to generate target offspring poly-
mers with both high Tg and Eg. Thus, average fitness function values can 
been seen to be relatively low in the earlier generations in Fig. 3a. 
However, with the progression of the evolutionary process, within each 
generation of polymer candidates, 10 offspring polymers with high 
fitness function are retained as parents and suitable building blocks that 
may contribute towards the desired properties are transferred to the next 
generation. This results in an overall increase in the fitness function 
value with every iteration. The later in the evolutionary process, higher 
the chance to incorporate “better” fragments, and thereby, higher the 
likelihood of discovering offspring polymers with desired properties. 

The explored polymer chemical space is illustrated in Fig. 3b using 
the first two principal components (PC1 and PC2) obtained through 

Fig. 2. Process to design polymers using genetic algorithm framework. (a) Overall workflow of iterative evolution of polymer generations. (b) Crossover and 
mutation to create offspring polymers from a pair of parent polymers. Polymers with four chemical building blocks (fragments) are shown for demonstration. (c) 
Offspring polymers mapped on to the property space of Tg vs bandgap Eg. 10 offspring polymers with highest fitness function are selected as parents in each iteration. 
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principal component analysis (PCA) on the fingerprint of all polymers 
generated during the 100 GA iterations. In the earlier generations, 
parent polymers are sparse and occupy a wide region of the chemical 
space, demonstrating their chemical diversity and distinctiveness. 
However, with the progression of the evolutionary process, the area 
occupied by each generation of parent polymers becomes narrower. 
Nonetheless, the mutation operation allow introduction of fragments 
that were originally not part of the parent polymers, and prevents a 
generation of polymer candidates to converge to a chemically equivalent 
point. Fig. 3c and d respectively capture the overall change in the Tg and 
Eg predictions for all the offspring and the parent polymers with every 
iteration. The Eg and Tg predictions for the parent polymers can be seen 
to increase with number of iterations, finally, converging at ̃9 eV and 
̃520 K, respectively, which are higher than the desired property 
objectives. 

Next, we perform analysis on the polymers discovered using the GA 
process. After the 100th generation, 132 new polymers pass the desired 
property objectives. In terms of chemical fragments, we found every 
discovered polymer candidate to contain at least one ring in the main- 
chain and/or in the pendant group. Further, more than 50% of the 
polymers had terminal group of difluorocarbon, *C(*)(F)F, and/or 
trifluoromethyl, *C(F)(F)F. Other dominant fragments that appear 
consistently throughout the evolutionary process and, therefore, could 
be responsible for high Tg and Eg property values in polymers, are shown 
in Fig. 4a. The color in the gene strip represents the cumulative number 

of occurrences of a fragment over 100 generations, with the frequently 
occurring fragments depicted by the darker bars on the strip. The 
ordering of the fragments is based on their chemical similarity (deter-
mined using the first PC of PCA performed on fingerprint vectors of 
3,045 fragments). Thus, similar fragments like *C(*)(*)CC (Fragment 
225) and *C(*)C* (Fragment 276) are positioned close to each other on 
the strip. Based on the spread of dominant fragments in Fig. 4a, it can be 
concluded that a diverse set of fragments can lead to high Tg and Eg 

property values. 
Six example polymers designed in this work are presented in Fig. 4b 

and c, along with their ML predicted Tg and Eg values, and their con-
stituent fragments depicted on the gene strips. The GPR based uncer-
tainty in the Tg and Eg predictions are also included, which can be seen 
to be not very high; the discovered polymers had an overall GPR un-
certainty in Tg and Eg predictions of 50 K and 0.7 eV, respectively. Not 
only the discovered polymers appears reasonable, a few common 
chemical blocks found during the GA process agree well with known 
chemical intuition. For example, fluorine atoms in *C(*)(CF3)(CF3) 
(Fragment 965) are known to contribute towards higher Eg by intro-
ducing lower (higher) C–F σ bonding (anti-bonding) orbitals. The pres-
ence of saturated rings not only induce high Tg because of their rigidity, 
but also provide high Eg owing to their low C–C and C–H σ bonding 
energy levels. Additionally, the polar groups present in the example 
polymers, including the *N(H)*, *OH and *C(F)* groups, can further 
enhance the dipole–dipole and H-bonding interactions, leading to high 

Fig. 3. Evolution of the fitness function, chemical diversity, and Tg and Eg predictions of polymers across the 100 GA iterations. (a) Fitness function evaluations for 
all the polymers generated in every GA iteration. From each generation, 10 offspring polymers with highest fitness function values are selected as parent polymers. 
‘Good’ fragments from these parent polymers are transferred to the next generation, resulting in discovery of polymers with desired properties in the later gener-
ations. (b) 12,675 polymers projected on 2D PC space (PC generated using their polymer fingerprints). All polymers created during 100 generations are represented 
by gray points. Selected parents are color-coded by their generation number. Area of polymers created at the generation # 1, 10, 50, and 100 are selected to visualize 
the convergence in chemical diversity with evolution. Change in (c) Tg and (d) Eg predictions of polymers with every generation. 
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Tg. 

4. Conclusions 

In general, we believe that the GA algorithm can rapidly and reliably 
assist polymer design for specific applications, especially high- 
temperature energy capacitors. Over a hundred new polymer candi-
dates, six of them are shown in Fig. 4, are proposed for further experi-
mental validation. This approach has several clear advantages. First, the 
GA process developed here was demonstrated with a randomly gener-
ated initial population, assuming no prior knowledge on the desirable 
polymers. Such information, if available, could be particularly useful. In 
particular, by biasing the initial population and/or the mutation oper-
ation towards favorable building blocks (or fragments), the GA search 
for target polymers may be significantly accelerated. Alternatively, we 
can further narrow down the searching in GA with desired chemical 
subspaces and specific structural arrangements, e.g., the novel poly-
oxafluoronorbornene polymer dielectric for high temperature, high 
energy capacitors [24]. 

Second, because this GA scheme involves less number of tuning pa-
rameters than other generative models, e.g., VAE and GAN, it provides a 

more viable, cheaper, and efficient option for the scenario in which 
training data are small. However, the different GA parameter choices, e. 
g., the quality and the size of the initial generation, chance of mutation, 
and possible building blocks, which significantly impact the results 
obtained, must be optimized using a laborious trial-and-error approach. 

Finally, we note that this polymer design approach is generalizable 
to other property objectives, provided corresponding reliable property 
prediction models (ML or otherwise) can be developed. The efficiency of 
this approach is dependent on the accuracy and the computational cost 
of the underlying property prediction models. With more efforts being 
devoted towards polymer database development and construction of 
associated ML property prediction models, we expect this approach to 
become more general, accurate and efficient. 

Moving forward, we expect to generalize this scheme in order to 
handle more complex polymer systems, including ladder and cross- 
linked polymers. Furthermore, the scoring function can also be 
improved to incorporate other important design aspects, such as poly-
mer thermodynamic and chemical stability, and/or its ease of 
synthesizability. 

Fig. 4. Virtual gene strip of polymers and example of new polymer designs. (a) Gene strip shows cumulative occurrence of all fragments (chemical building blocks) 
over 100 generations of evolution. Nine fragments obtained from six hand-picked example polymer designs are indicated using their SMILES representation. (b) 
Position of 132 polymer designs generated during the 100 GA iterations on the map of Tg vs Eg. Uncertainty estimates for the predicted Tg (UTg) and predicted Eg 

(UEg) are shown together. Six hand-picked example polymers are highlighted with tags ‘G#-#’ representing the generation number G# and parent index #. (c) Gene 
strip and structure of the example polymers. A symbol ‘*’ marks an open position in polymer chain or chemical building block. Polymers that meet the design criteria 
consist of 2–6 building blocks, although the GA process was initiated with polymers containing 8 blocks. This is owing to the available flexibility in the segmentation 
position during crossover. 
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5. Data availability 

The DFT computed bandgap used in this work is available at our 
online repository https://khazana.gatech.edu. 
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