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ABSTRACT: The current pandemic demands a search for therapeutic agents against
the novel coronavirus SARS-CoV-2. Here, we present an efficient computational
strategy that combines machine learning (ML)-based models and high-fidelity ensemble
docking studies to enable rapid screening of possible therapeutic ligands. Targeting the
binding affinity of molecules for either the isolated SARS-CoV-2 S-protein at its host
receptor region or the S-protein:human ACE2 interface complex, we screen ligands
from drug and biomolecule data sets that can potentially limit and/or disrupt the host−
virus interactions. Top scoring one hundred eighty-seven ligands (with 75 approved by
the Food and Drug Administration) are further validated by all atom docking studies.
Important molecular descriptors (2χn, topological surface area, and ring count) and
promising chemical fragments (oxolane, hydroxy, and imidazole) are identified to guide
future experiments. Overall, this work expands our knowledge of small-molecule
treatment against COVID-19 and provides a general screening pathway (combining
quick ML models with expensive high-fidelity simulations) for targeting several chemical/biochemical problems.

On March 11, 2020, the World Health Organization
(WHO) declared the novel coronavirus disease,

COVID-19, as a pandemic. More than 15 million people
across 203 countries have already been affected by this disease,
with more than half a million lives lost globally. In addition,
daily lives of millions of people have been impacted because of
the mandatory lock-downs observed across the world, let alone
the economic cost of this adversity. The COVID-19 disease is
caused by a new coronavirus SARS-CoV-2, belonging to the
SARS family (SARS-CoV). SARS-CoV-2 has already been
sequenced, and several ongoing studies are focusing on
understanding its interaction with human cells (or recep-
tors).1−7 Small molecules or biomolecules with potential
therapeutic ability against COVID-19 are also being screened
using theoretical and machine learning (ML) methods.8−12

Initial reports on SARS-CoV-2, and previous works on the
general SARS coronavirus, have suggested close interactions
between the viral spike protein (S-protein) of coronavirus and
specific human host receptors, such as the angiotensin-
converting enzyme 2 (ACE2) receptor. It has been
hypothesized that compounds that can weaken interactions
between S-protein and ACE2 receptors could limit viral
recognition of the host (human) cells and/or disrupt the host−
virus interactions. To this end, Smith et al.8 recently conducted
virtual high-throughput screening of nearly 9000 small
molecules that bind strongly to either (1) the isolated S-
protein of SARS-CoV-2 at its host receptor region (thus,
hindering the viral recognition of the host cells) or (2) the S-
protein:human ACE2 receptor interface (thus, weakening the

host−virus interactions). They successfully identified 77
ligands [24 of which have regulatory approval from the Food
and Drug Administration (FDA) or similar agencies] that
satisfied one of these two criteria. Despite the vast chemical
space (millions to billions of biomolecules) that can be
potentially explored, they were severely limited by the number
of candidate compounds (nearly 9000) that were considered in
their work owing to the high computational cost of the
ensemble docking studies employed in their methodology.
Here, we present a general workflow that can be used for

efficient screening of molecules with a target binding energy.
We deploy this workflow to screen therapeutic molecules using
their binding affinity for the S-protein and the S-protein:hu-
man ACE2 receptor interface. Specifically, we build on the
work of Smith et al.8 and use their data set generated from
autodocking/molecular modeling for training and validating
ML models. This allows us to significantly expand the search
space and screen millions of potential therapeutic agents
against COVID-19. Figure 1a presents the adopted screening
workflow, while an illustration of the interface between
coronavirus SARS-CoV-2 and the ACE2 receptor in presented
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in Figure 1b. Two independent random forest (RF) regression
models were trained to quickly estimate the Vina scores of a
given candidate drug molecule (or ligand) for the isolated S-
protein and the S-protein:human ACE2 receptor interface
using the data sets provided by Smith et al.8 The Vina score is
an important physicochemical measure of the therapeutic
process of a molecule and is used here as a hybrid (empirical
and knowledge-based) scoring function that ranks molecular
conformations and predicts the free energy of binding based on
intermolecular contributions (e.g., steric, hydrophobic, hydro-
gen bonding, etc.).13 A set of hierarchical descriptors (or
features/fingerprints) that capture different geometric and
chemical information at multiple length scales (atomic and
morphological) were used to represent the molecules for
successful application of the ML models. The models were
validated by monitoring their performance on the validation
set and against ensemble docking studies for 187 promising
candidate ligands identified from the CureFFI and DrugCen-
tral drug data sets, 75 of which are approved by the FDA. A list
of ∼19000 biomolecules (from the BindingDB data set)
satisfying the same screening criteria is also provided using the
developed ML models. On the basis of the feature importance
revealed by the ML models and a retrosynthesis analysis of the
identified top candidates, we also provide key chemical trends
and molecular fragments that are common across the top
candidates. We note that this work not only expands our
knowledge of potential small-molecule treatment against
COVID-19 but also provides a powerful and efficient pathway,
i.e., training ML on results of computationally expensive
simulations, using ML to cast a wider net, down-selection
followed by targeted computational studies, and finally
chemical guidelines, for accelerating rational design of
molecules/materials for other applications, including catalysis,
energy storage, etc.
As depicted in Figure 1a, two training data sets were

obtained from Smith et al.,8 one corresponding to the Vina
score of a molecule with the S-protein and other for the S-
protein:ACE2 interface complex; among the six receptor
conformations, the ones with the best Vina scores were used
for training. Each of the data sets contains 9127 molecules
from the SWEETLEAD database14 along with their SMILES
representations, which were used as input for our finger-
printing algorithm. For many molecules, the reported Vina
scores were extremely high (reaching 1000000 kcal/mol),
while those with favorable binding energetics ranged from −7
to 0 kcal/mol. To remove such skewness in the data and train

models geared toward identifying favorable molecules, data
points with only negative Vina scores were considered in this
study. In addition, a few cases whose SMILES representation
could not be resolved were filtered out. Overall, this resulted in
5478 and 8120 data points (from the original number of 9127)
for the S-protein:ACE2 interface and the isolated S-protein
system, respectively. Henceforth, we refer to this cleaned data
set as the Smith data set. Its important to note that the Vina
score is only an approximation of the experimental binding
energies,15 thereby limiting the accuracy of the results
presented here. However, if and when more reliable data
become available, perhaps using quantum mechanical treat-
ment,16 the general scheme presented here could be applied
using improved ML models to achieve better accuracy.
To build accurate and reliable ML models, it is important to

include relevant features that collectively capture the trends in
the Vina scores of different molecules toward S-protein and the
S-protein:ACE2 interface complex. The structural as well as
physicochemical features should uniquely represent a mole-
cule, be readily available for new cases, and, more importantly,
capture the chemistry between the drug molecule and the
virus. On the basis of our experience, a three-level hierarchical
set of features capturing different geometric and chemical
information about ligands at multiple length scales (atomic and
morphological) were considered. Fingerprint details are
provided in the Supporting Information. We note that the
fingerprinting as well as the screening approach presented here
can be used in other applications such as catalysis and energy
storage. For instance, a key descriptor of the oxygen evolution
reaction (OER) is the energy for binding of oxygen to the
catalyst surface.17 A similar ML procedure can be adopted to
screen efficient OER catalysts by replacing Vina scores with
oxygen binding energies.
The random forest (RF) regression algorithm, as imple-

mented in scikit-learn,18 was used to train the two Vina score
models (S-protein and S-protein:ACE2 interface). RF is an
ensemble of decision trees, which averages predictions from a
large group of “weak models” to overall result in a better
prediction. The RF hyperparameters, i.e., the number of weak
estimators, were estimated by maximizing the validation error
during 5-fold cross-validation (CV). The model performance
was evaluated using the root-mean-square error (RMSE),
mean absolute error (MAE), and correlation coefficient (R2).
To estimate prediction errors on unseen data, learning curves
were generated by varying the sizes of the training and test sets,
with results included in the Supporting Information. Statisti-

Figure 1. (a) Overview of the workflow adopted to screen drug active ingredients with potential therapeutic capability for COVID-19. The
numbers in parentheses indicate the numbers of ligands in various data sets or stages of the workflow. (b) Representation of the interface between
the coronavirus n-CoV or SARS-CoV-2 (blue) and the human ACE2 receptor (red). The mutations at a particular virus site are shown in CPK.
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cally meaningful results were obtained by averaging over 10
different random test-train split. The final ML models used for
prediction on the CureFFI, DrugCentral, and BindingDB data
sets were trained on the entire Smith data set using 5-fold CV
and consisted of 400 and 700 estimators for the S-protein and
the interface data sets, respectively.
To validate our ML models, we performed docking

calculations of the top candidates identified by the models
based on their low Vina scores. The setups of the docking
studies were kept consistent with the work of Smith et al.,8

including the structure of the docking receptors (i.e., six
conformations each for the S-protein:ACE2 interface complex
and the isolated S-protein), and the binding search space of 1.2
nm × 1.2 nm × 1.2 nm. More computational details are
provided in the Supporting Information. We note that the S-

protein has the necessary mutations from its predecessor SARS
variety SARS-CoV, namely, at L(455), F(486), Q(493),
S(494), and N(501), which is illustrated in Figure 1b. Docking
studies are focused on this binding pocket region for evaluation
of the binding affinities of different molecules. For each
candidate, the docking procedure finds the top 10 optimized
docking configurations and selects the one with the best Vina
score.
While the Smith data set8 was used to train and validate the

ML models, three additional drug data sets were used to make
predictions and identify ligand candidates that show high
binding affinity for the viral S-protein or the S-protein:ACE2
interface. These include (1) an all FDA-approved CureFFI
data set,19 (2) a data set of common active ingredients from
DrugCentral,20 and (3) a BindingDB data set21 of small

Figure 2. (a) Parity plot of the S-protein and interface ML models for the training and the test set, demonstrating the good prediction accuracy
achieved by both ML models. Different error metrics for the test and training (within parentheses) set are also included. (b) ML predictions of
Vina scores (in kcal/mol) for the isolated S-protein and S-protein:ACE2 receptor interface for FDA-approved (left) and other drug (right)
candidates obtained from CureFFI and DrugCentral databases. Candidates with predictions below the dashed line were selected for further
validation using docking studies. (c) Vina scores for the 187 selected candidates (blue) using the docking calculations. For comparison, previously
considered candidates from an exhaustive past work are also included (red).
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molecules. SMILES representations of molecules were
obtained from each of these data sets and, with some
unprocessed candidates removed, resulted in 1495, 3967, and
985756 entries, respectively. The CureFFI data set consists of
ligands approved by the FDA and specifically contains central
nervous system drugs. DrugCentral is an open-access online
drug compendium. It integrates the structure, bioactivity,
regulatory, and pharmacologic actions and indications for
active pharmaceutical ingredients approved by the FDA and
other regulatory agencies. The BindingDB is a publicly
accessible database based on measured binding affinities of
drug-like molecules interacting with various protein targets and
consists of >1 million entries of binding data and molecule
data sets. The first two data sets were exclusively used to
validate the ML models against docking studies, while the
BindingDB data set was used for only ML predictions.
Figure 2a presents the performance results of the S-protein

and S-protein:ACE2 interface RF models for the case in which
75% of Smith’s data set was used for training (with 5-fold CV)
and the remaining 25% as the test set. The overall model
performance of the test set is a good indicator of the expected
errors on new candidate drugs with unknown Vina scores.
Both models can be seen to have good performance on the test
set; a MAE of 0.21 kcal/mol was achieved for the S-protein
model, while the S-protein:ACE2 model was only marginally
worse with a MAE of 0.57 kcal/mol. Both of these errors are
well within typical chemical accuracy of 1 kcal/mol, and we
believe the ML models are acceptable for screening purposes.
Even for the S-protein:ACE2 model, relatively smaller errors
are observed for cases with low Vina scores, which are
particularly more relevant to this study. See the Supporting
Information for more detailed validation of the ML models
using learning curves, including error convergence studies on
the training and test sets.
These results clearly indicate that the developed surrogate

ML models could be used to quickly screen new ligand
candidates with low S-protein or S-protein:ACE2 interface
Vina scores without exclusively performing computationally
demanding docking studies. To this end, we use the ML
models to make predictions for the FDA-approved active
ingredients in the CureFFI data set and other ligands from the

DrugCentral data set, presented in Figure 2b. Because the true
Vina scores of these ligands are not known, here we show only
their ML predictions. It has been hypothesized that a ligand
could be effective against coronavirus if it either forms S-
protein:ACE2 interface−ligand binding complexes (low S-
protein:ACE2 Vina score) to disrupt the host−virus
interaction or binds to the receptor recognition region of the
S-protein (low S-protein Vina score) to reduce the extent of
viral recognition of the host. Thus, we define a simple
screening criterion for selecting top candidates having low Vina
scores on both accounts. The dashed line in Figure 2b depicts
the chosen screening criteria (given by the equation

< − −y 7.5x
2

, where x and y represent Vina scores for the

S-protein:ACE2 interface−ligand complex and the S-protein−
ligand system, respectively). We note that 187 ligands were
selected, from which 80 are approved by the FDA (CureFFI
data set), 107 are other drugs (DrugCentral data set), and 29
are common to the Smith data set. A list of all 187 drugs
(including their generic name and SMILES representation)
and their Vina score predictions are provided in the Supporting
Information. In contrast to the screening criteria used here,
Smith et al. used relatively higher threshold values: S-protein
score < −6.2 or interface score < −7 kcal/mol. Because no
molecule was found to satisfy the two criteria together, we
adopted the selection definition as discussed above. In
addition, we caution that molecules with a high level of
binding to the interface may unintentionally stabilize it rather
than disrupting the underlying interactions. Unfortunately, this
cannot be known a priori and can only be resolved using
experiments or exceptionally long time scale molecular
dynamics simulations.
Results for the ensemble docking studies on the selected 187

drug candidates are presented in Figure 2c. For comparison,
results from the Smith data set are also included. The purpose
of these computations was threefold. First, a more accurate
estimate of the Vina scores was obtained from these high-
fidelity computations for the identified promising candidates;
second, they provided new data points for further validation of
the ML models, and third, for the 29 common candidate
ligands (common to our top list and that of Smith), they help
us to validate our docking studies against those performed in

Figure 3. Top candidates identified from this work along with their Vina scores for the S-protein:ACE2 interface (labeled, interface) and the S-
protein systems using the ensemble docking studies.
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the Smith paper8 (see Figure S3 for a detailed comparison).
From Figure 2c, it is evident that the ML models indeed
helped us to screen candidates with favorable Vina scores;
almost all screened candidates can be seen to be below the ML
screening criterion line (dashed line), while only 12 of the
identified 187 candidates were found to have Vina scores of >0
and did not show any binding affinity for the S-protein:ACE2
interface complex; such cases have relatively much higher Vina
scores (>10) and are excluded from the plots for better
readability. Thus, 175 of 187 (94%) of the screened candidates
were indeed favorable. In comparison, Smith et al. needed to
perform expensive docking studies for a large set of candidates,
with many falling outside the screening boundary. This not
only captures the efficiency of the procedure adopted here, i.e.,
the use of cheap surrogate models for quick screening followed
by expensive high-fidelity docking studies for validation, but
also provides further validation of the prediction accuracy of
the developed ML models. Parity plots directly comparing the
Vina score predictions from the ML models against their
respective docking simulation results and example illustrations
of the S-protein:ACE2 interface−ligand complex for the top
candidates are included in the Supporting Information.
More importantly, our trained ML model predicts several

ligands (including several FDA-approved active ingredients)
with favorable Vina scores. The top six among the 187
candidates are presented in Figure 3 (see the Supporting
Information for a complete list). The top FDA-approved ligand
candidates include pemirolast (INN), which is a mast cell
stabilizer used as an antiallergic drug therapy. It is marketed
under the trade names Alegysal and Alamast. Sulfamethoxazole
(SMZ or SMX), another FDA-approved ligand, is an antibiotic
used for bacterial infections such as urinary tract infections,
bronchitis, and prostatitis. Valaciclovir is another top candidate
identified from our screening and is an antiviral drug used to
treat herpes virus infections, including shingles, cold sores,
genital herpes, and chickenpox. Sulfanilamide is used typically
as an antibacterial agent to treat bronchitis, prostatitis, and
urinary tract infections. Tzaobactum is another FDA-approved
antibiotic and is typically combined with piperacillin to treat
antibacterial infections such as cellulitis, diabetic foot
infections, appendicitis, and postpartum endometritis infection.
Nitrofurantoin is also an antibiotic and used to treat urinary
tract infections.

Among the non-FDA-approved ligands, we find that the top
candidate is Protirelin, which is a synthetic analogue of the
endogenous peptide thyrotropin-releasing hormone (TRH).
Benserazide (also called serazide) is another top ligand and is a
peripherally acting aromatic L-amino acid decarboxylase or
DOPA decarboxylase inhibitor that is used for Parkinson’s
disease. Other top candidates include sulfaperin (or
sulfaperine), which is a sulfonamide antibacterial agent, and
succinylsulfathiazole, which is a sulfonamide used as an
intestinal bacteriostatic agent. Interestingly, one of the top
candidates to emerge from our screening is uridine
triphosphate (UTP), which is a nucleotide triphosphate and
source of energy or an activator of substrates in metabolic
reactions.
Once the top candidates are identified using our search

procedure, we analyzed them using thermodynamic criteria
other than binding energies to further screen the ligand
candidates. For instance, other metrics developed by Lipinski
and co-workers22,23 could be used to understand the efficacy of
a therapeutic molecule. Figure 4 shows the log P of the top 50
candidates identified (based on the lowest value of the Vina
scores) from the CureFFI and DrugCentral databases. A ligand
is most likely to have poor absorption when its n-octanol/
water partition coefficient (log P) is >5, its molecular weight
(MW) is >500, the number of H bond donors is >5, and the
number of H bond acceptors is >10. Most of the top 50 ligands
can be seen to have log P values of <5, which is consistent with
Lipinski rules of five. In addition, the molecular weights of the
compounds are <500 Da, as provided in the Supporting
Information along with other properties, such as Henry’s
constant and the number of hydrogen bond acceptors and
donors.
Henry’s constant (or log H) measures the solubility of the

compound in water. For a drug to be taken up by the cellular
membrane, it is desirable for the drug to be soluble in water.
The more negative Henry’s constant, the more soluble the
drug in the aqueous phase. However, a balance between
desirable partitioning between the membrane and aqueous
phase is generally sought. Thus, as presented in Table 1, the
identified top candidates continue to satisfy all of the
additional criteria mentioned above. Importantly, we note
that more such constraints can be introduced in future work to
further screen desirable candidate ligands. For instance,
molecules with log P values of <0 are known to have high

Figure 4. Use of physicochemical properties to assess the therapeutic prowess of ligands. 1-Octanol/water partition coefficients (log P) of the top
candidates. These values were obtained from www.chemspider.com. The green dashed line indicates a log P value of 5. Most of the screened top
candidates have log P values of <5.
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affinity for aqueous media and are poorly absorbed by the lipid
bilayer of the cellular membranes. Many of the top candidates
can be seen to fall under this category.
Beyond serving as a more computationally efficient

alternative to drug docking studies, learned RF models can
also be utilized to mine important chemical trends and extract
simple chemical rules from the data. In RF, the relative
importance of a feature can be defined using the relative rank
(or depth) of that feature when used as a decision node in a
tree, because features used at the top of a tree contribute to the
final prediction for a larger fraction of the input samples. On
the basis of this philosophy, we provide a list of the top 20
features that were found to be most relevant for the S-protein
and the S-protein:ACE2 interface models in the Supporting
Information. Importantly, we found that the 2χn score of a
molecule correlates very well (with Pearson correlation
coefficient R2 = −0.67) with its S-protein Vina score; the

higher the 2χn score, the lower the Vina score of the
molecule:S-protein complex. As discussed here,24,25 2χn
encodes the atomic identity and connectivity in a molecule
by representing it as a graph. A variety of molecular quantum
numbers (MQNs) were also found to be highly relevant: those
that captured the number of five- or six-member rings, the
topological surface area, cyclic trivalent and tetravalent nodes,
and nodes and edges shared by more than two rings. The
number of aliphatic rings was also among the important
descriptors.
With the idea of identifying common molecular motifs that

bind well to the S-protein and the interface systems, we
performed a retrosynthesis analysis of the identified top
candidates. The concept of breaking of retrosynthetically
interesting chemical substructures (BRICS),26 as implemented
in RDKit,25 was used to obtain common molecular fragments
for both the CureFFI and DrugCentral data sets, as well as the
screened 175 candidates with low Vina scores. Figure 5
compares the frequency (normalized with respect to the
maximum value) of occurrence of a few representative
fragments in the identified top ligands against that in the
two drug data sets (see the Supporting Information for a
complete list). A fragment displaying a higher (lower)
occurrence frequency among top candidate ligands suggests
it plausibly promotes (reduces) binding to the two systems. In
particular, fragments involving oxolane-, hydroxy-, imidazole-,
piperidine-, and benzenesulfonate-derived groups (also shown
pictorially) are expected to promote binding of the ligand to
the S-protein and the interface systems. In fact, an analysis of
the docking poses shows that, in general, the N-ring-containing
ligands interact with the side chain and backbone of Q493 and
S494 sites (two of the five mutating sites from the SARS-CoV
2002 virus). For instance, the azole nitrogen in pemirolast
interacts via a medium hydrogen bond with the side chain of
Q493. The pyrimidine moiety in sulfamerazine interacts
strongly with the side chain Q493 and the backbone oxygen
of S494. These trends (also see the Supporting Information)
suggest that the interactions with Q493 and S494 of the SARS-
CoV-2 may be partly responsible for the efficacy of a ligand.
The identified chemical fragments are also consistent with the
important molecular descriptors mentioned above, which also

Table 1. n-Octanol/Water Partition Coefficients (log P),
Henry’s Constants (log H), Average Molecular Weights, and
Numbers of Hydrogen Bond Donors and Acceptors for the
Top Ligands Identified in This Worka

log P log H
MW
(Da)

no. of H
bond
donors

no. of H
bond

acceptors

FDA-Approved Ligands
pemirolast −1.12 −12.313 228.21 1 7
sulfamethoxazole 0.89 −10.408 253.278 3 6
valaciclovir −3.41 −17.578 324.336 5 10
sulfamerazine 0.14 −8.145 264.304 3 3
tazobactam −1.72 −14.714 300.291 1 9

Other Ligands
proterelin −2.46 −22.799 362.384 5 10
acitazanolast −1.95 −16.014 233.184 3 8
sulfaperin 0.34 −8.145 264.304 3 6
benserazide −1.49 −28.420 257.243 8 8
succinyl
sulfathiozole

1.18 −19.117 355.389 3 8

uridine
triphosphate

−4.09 −38.070 484.141 7 17

aThese values were obtained from www.chemspider.com.

Figure 5. Normalized frequency of occurrence of a few representative molecular fragments in the CureFFI and DrugCentral drug data sets (blue)
and the screened top 175 ligands (orange). Exemplary fragments with large frequency deviations in the two scenarios are displayed pictorially, along
with their identifiers. Open bonds in the fragments are denoted by asterisks.
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involve the number of five- or six-member rings, cyclic trivalent
and tetravalent nodes, etc. The identified top fragments in
Figure 5 can drive more rigorous quantum mechanical studies
of the interaction of these limited (and practically viable) cases,
besides helping with the rational design of new drugs for
COVID-19.
Next, we significantly expanded the search space of

candidate molecules and made predictions for roughly 1
million molecules in the BindingDB data set, with the Vina
score predictions presented in Figure 6. Nearly 19000
molecules were found to satisfy the previously chosen
screening criteria (see the Supporting Information for the
complete list), and a few exemplary cases are illustrated in the
right panel of Figure 6. These results clearly demonstrate the
power and efficiency of using surrogate models for preliminary
screening. For instance, the docking studies for the identified
187 candidate active ingredients were completed in a period of
around 2 days. In contrast, Vina score predictions from the ML
model for the entire BindingDB data set were obtained within
a day using similar computational resources, including the time
required for fingerprinting and making the model predictions.
Evidently, our ML strategy is efficiently able to screen millions
of candidate biomolecules and make useful suggestions to aid
the decision making process for expert biologists and medical
professionals, who can focus on a much narrower subset of
screened candidates and make more informed decisions by
incorporating additional medical insights. More robust high-
fidelity computations followed by synthesis and trial experi-
ments should be performed to confirm the validity of these
selected molecules.
Among the screened non-FDA-approved biomolecules, the

top candidates include fidarestat (SNK-860), which is an
aldose reductase inhibitor and is under investigation for the
treatment of diabetic neuropathy. Quercetin is a plant flavonol
from the flavonoid group of polyphenols, which also displayed
high Vina scores among the screened candidates. Other top
candidates include myricetin, which is a member of the
flavonoid class of polyphenolic compounds, with antioxidant
properties; S-columbianetin, which is used as an anti-
inflammatory; indirubin, which has anti-inflammatory and
anti-angiogenesis properties in vitro; and cupressuflavone,
which has anti-inflammatory and analgesic properties.
In conclusion, we present an efficient virtual screening

strategy for identifying ligands that can potentially limit and/or
disrupt the host−virus interactions of SARS-CoV-2. Our
hypothesis is that ligands that bind strongly to the isolated S-

protein at its host (human) receptor region and to the S-
protein:human ACE2 interface complex are likely to be the
most effective. Our high-throughput screening strategy is based
on using a combination of ML and high-fidelity docking
studies to identify candidates that display such high binding
affinities. We first train random forest models on results of
computationally expensive studies and subsequently use the
validated ML model to search a much larger chemical space
(approximately thousands of FDA-approved ligands and
approximately a million of biomolecules). Vina scores for the
identified top ligands (based on ML predictions) are further
confirmed using expensive docking studies, resulting in the
identification of 75 FDA-approved and 100 other ligands from
drug data sets. In addition, important chemical trends in terms
of molecular fragments (e.g., oxolane-, imidazole-, and
benzenesulfonate-derived groups) promoting binding affinities
for the S-protein and the interface systems and determination
of important molecular descriptors (e.g., 2χn and topological
surface area) having strong correlations with binding affinities
were also revealed. Finally, we note that the general scheme of
ML-assisted discovery presented here, involving the use of
surrogate models to search large chemical spaces or mine
chemical guidelines through molecular descriptors and frag-
ments, is equally useful in other areas of catalysis, energy
storage, or corrosion, beyond accelerating the therapeutic cure
of diseases.
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