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ABSTRACT: The degree of crystallinity of a polymer is a critical
parameter that controls a variety of polymer properties. A high
degree of crystallinity is associated with excellent mechanical
properties crucial for high-performing applications like composites.
Low crystallinity promotes ion and gas mobility critical for battery
and membrane applications. Experimental determination of the
crystallinity for new polymers is time and cost intensive. A data-
driven machine learning-based method capable of rapidly
predicting the crystallinity could counter these disadvantages and
be used to screen polymers for a myriad of applications in a fast,
inexpensive fashion. In this work, we developed the first-of-its-kind, data-driven machine learning model to predict the most-likely
polymer crystallinity trained on experimental data and theoretical group contribution methods. Since polymer data under consistent
processing conditions are unavailable, we tackled process variability by using the “most-likely” polymer values which we refer to as
the polymer’s tendency to crystallize. Experimental data for polymers’ tendency to crystallize is limited by number and diversity, and
to tackle this, we augmented experimentation-based data with data using group contribution methods. Therefore, this work utilized
two data sets, viz., a high-fidelity, experimental data set for 107 polymers and a more diverse, less accurate low-fidelity data set for
429 polymers which used group contribution methods. We used a multifidelity information fusion strategy to utilize all the
information captured in the low-fidelity data set while still predicting at the high-fidelity accuracy. Although this model inherently
assumed “typical” processing conditions and estimated the “most-likely” percent crystallinity value, it can help in the estimation of a
polymer’s tendency to crystallize in a far more cost-effective and efficient manner.

■ INTRODUCTION

In the 1940s, a seminal development in polymer science
established that polymers are semicrystalline, in that they have
well-ordered crystalline domains and distinctly less ordered
amorphous domains.1 This initiated the concept of the degree
of crystallinity of semicrystalline polymers, which is the percent
fraction of the polymer that exists as an ordered state. The
degree of crystallinity is a critical kinetics-driven parameter
reflective of a polymer’s diverse structure−property relation-
ships. It is strongly correlated to crucial mechanical properties
which are important for high-performance structural applica-
tions.2−4 Lower polymer crystallinity is associated with
increased ion mobility and gas diffusivity; these are useful for
battery and membrane applications.5−9

The percent crystallinity of a polymer has associated
process-dependent variability and measurement-related un-
certainties. The process variability mainly arises from intrinsic
factors like the molecular weight, number of side chains,
polydispersity index, extrinsic processing conditions like the
extrusion technique, form of the polymer (film, fiber, etc.),

temperature, and pressure as well as postprocessing techniques
like annealing and drawing. Since the percent crystallinity
impacts numerous critical polymer properties, several exper-
imental and theoretical techniques with varying fidelity levels
have been developed to arrive at a percent crystallinity value
for a polymer. This, therefore, leads to different percent
crystallinity values for a single polymer sample (whence
process variability is not an issue) leading to uncertainties in
the crystallinity values.
Some experimental methods like X-ray diffraction (XRD)

and nuclear magnetic resonance (NMR) directly capture the
degree of crystallinity in 3-dimensional order. However, most
experimental methods calculate the degree of crystallinity via
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related intensive properties namely specific volume, specific
heat, specific enthalpy, specific enthalpy of fusion and density.
For a given intensive property P, these methods define the
degree of crystallinity = (Pa − P)/(Pa − Pc), where Pa and Pc
are the intensive properties for the purely amorphous and
purely crystalline components of the polymer.10,11

A common complication in methods which use intensive
properties to measure its degree of crystallinity is the
unavailability of the pure-component properties (Pa and
Pc).

12 A common resolution to this complication is using
group contribution methods. Group contribution methods
have been widely used to estimate pure-component properties
for a variety of intensive polymer properties. They assume that
any property is a sum of contributions made by the constituent
functional groups. This assumption makes them necessarily
approximate since the contribution made by one group is
assumed to be independent of another. Despite these
drawbacks, group contribution methods can be used to
estimate pure component properties for a large number of
polymers, albeit with varying accuracy.13

Despite several methods for determining the polymer
crystallinity, estimating the crystallinity values for a new
polymer is not trivial. Direct experimental methods require the
necessary infrastructure and tedious reproducible sample
preparation to estimate the polymer crystallinity making
these methods expensive and time-consuming. Group
contribution methods, although less time-consuming, are

limited by the constituent functional groups for which reliable
component parameters exist.
Recently, data-driven efforts in materials science have been

fairly successful and have paved a path to instantly predicting
pertinent material properties.14−17 However, previous work to
predict polymer crystallinity using data-driven methods have
been limited and no data-driven methods have been used to
predict the percent crystallinity for a broad polymer chemical
space.18,19 As a result of the aforementioned process variability
and uncertainties in the percent crystallinity values, a
consistent and uniform data set which is unavailable for a
number of polymers. Therefore, data-driven predictions of the
tendency of a given polymer to crystallize to certain degree is
presently unavailable.
In this work, we established a workflow to predict the most-

likely degree of polymer crystallinity which we refer to as the
polymer’s tendency to crystallize using a diverse data set from
multiple sources. We also successfully demonstrated a
methodology for tackling the measurement-related uncertain-
ties commonly encountered in percent crystallinity calcu-
lations. However, as mentioned above, there are several
sources for process-related variability of the percent crystal-
linity and therefore, percent crystallinity values are unavailable
for consistent process-related factors for several polymers. To
circumvent this, we analyze process-related variability on
percent crystallinity for 30 different polymers. We established
that one may define a polymer’s tendency to crystallize

Figure 1. Workflow schematic used to instantly predict the crystallization tendencies for new polymers.
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corresponding to the median of the spectrum of polymer
crystallinity values.
To effectively tackle and utilize measurement-related

uncertainties, we categorized our data set into two types
high-fidelity and low-fidelity (see Figure 1). In the high-fidelity
data set, the crystallization tendencies of the polymers are
highly accurate, comprising of either values obtained directly
via experiments or obtained via intensive properties like the
heat of fusion and density measurements for polymers where
pure-component (100% crystalline) values have been exper-
imentally established. However, the high-fidelity data set
comprised of just 107 polymers with limited chemical diversity.
The low-fidelity data set was developed via approximate group
contribution methods to overcome the diversity limitations of
the high-fidelity data set. This data set comprised of polymers
whose crystallization tendencies were calculated using heat of
fusion values. The observed heat of fusion was obtained from
experimental measurements and the 100% crystalline heat of
fusion values were calculated using group contribution
methods.13 This data set comprised of 429 polymers and
was far more diverse than the high-fidelity data set. However,
the use of group contribution methods to develop this data set
makes its accuracy lower than the high-fidelity data set.
To estimate the tendency to crystallize for new polymers, we

have developed multifidelity cokriging model based on a fusion
of the high and low-fidelity data sets. Details of the data sets
and a schematic of the workflow for the models are depicted in
Figure 1. Our results suggest that fusing group contribution
methods with a sparse high-fidelity experimentally obtained
data for polymers can be used successfully to make predictive
models. Also, this methodology can be extended to a variety of
polymer properties like the glass transition temperature, the
entropy, and the density. The ability of the cokriging model to
make predictions for a new polymer’s tendency to crystallize
based entirely on its features and without the corresponding
low-fidelity estimate makes it an extremely useful and versatile
method. Although this model inherently assumes “typical”
processing conditions and estimates the “most-likely” percent
crystallinity value occurs, it can help in the estimation of a
polymer’s tendency to crystallize in a far more cost-effective
and efficient manner.

■ DATA SETS

Data Set Variability: Polymer Processing. As men-
tioned previously, the process-related variability is a factor
while estimating the percent crystallinity for a polymer. While a
uniform and consistent data set which encapsulates a subset of
process parameters is unavailable, we can analyze the process-
related variability for a selected number of polymers in our
data set. Here, we evaluated the spread in the high-fidelity
polymer crystallinity values for 30 different polymers over 1375
distinct samples.13,20−24 For each polymer, the percent
crystallinity is evaluated using experimental heat of fusion
ΔHfus values as

H

H
% crystallinity 100fus observed

fus crystalline

,

,100%
=

Δ
Δ

×
(1)

where the 100% crystalline heat of fusion values for all 30
polymers have been accurately experimentally determined by
Wunderlich et al.25 and are, therefore, high-fidelity values.
For these 30 polymers, a histogram for their deviations from

their respective median measurements is shown in Figure 2a.
From this plot, it is evident that the processing-related
variability of the data set follows a normal distribution with a
standard deviation of 15.40% with a peak at 0% which
represents the median value. Polyethylene constituted around
16.5% of the sample set size. Therefore, we performed the
analysis again, without polyethylene, and found that the noise
still follows a normal distribution but the standard deviation
drops to 13.76% (Figure 2b). The large variation in the percent
crystallinity values of polyethylene can be attributed to the fact
that low-density and high-density polyethylene are widely
studied in literature and have distinct structural differences.
The bimodal nature of the percent crystallinity values of
polyethylene is can be attributed to this (Figure 2c), and it is
unlike that for the other polymers (Figure S1) whose variance
followed a unimodal normal distribution.
This analysis results in two important results. First, the

normal distribution of parts a and b of Figure 2 implies that
there is a “most-likely” value of the percent crystallinity (equal
to its median) for polymers which exhibit multiple values.
Therefore, choosing the median percent crystallinity value to
represent each polymer in the data set is justified. We will refer
to this value as the polymer’s tendency to crystallize for the
remainder of this work. Furthermore, this analysis quantified

Figure 2. Capturing the variability of the high-fidelity data set due to polymer processing. (a) Normal distribution fit for variation from median for
30 polymers with multiple reported values of percent crystallinity. (b) Normal distribution fit for variation from median for 29 polymers, without
polyethylene with multiple reported values of percent crystallinity. (c) Percent crystallinity values of polyethylene for 229 distinct samples.
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the processing-related variability for polymer crystallinity to
about 13−15%. This also gives us a best-case estimate of the
expected error from machine learning models that use only
high-fidelity data.
High- and Low-Fidelity Data Sets. The data sets used in

this study belong to two categorieshigh- and low-fidelity.
The high-fidelity data set comprises of accurate and explicit
experimental values where the variance in the percent
crystallinity values for a polymer is only due to its processing
and experimental measurement heterogeneity. The high-
fidelity data set comprises of 107 polymers with associated
percent crystallinity values. All values are curated from existing
sources of experimental measurements like handbooks,
published papers and online sources.13,20−24 The percent
crystallinity values in this data set comprise of either explicit
percent crystallinity values via X-ray diffraction (XRD) and
nuclear magnetic resonance (NMR) or are obtained via
intensive properties like the heat of fusion and density
measurements for polymers where pure-component (100%
crystalline) values have been experimentally established. For
cases where multiple values were reported, we used the median
percent crystallinity to train machine learning models. This
value corresponds to the polymer’s tendency to crystallize at a
high-fidelity level.
The low-fidelity data set comprises of percent crystallinity

values estimated using a combination of experimental and
group-contribution methods. Therefore, the variance in this
data set arises from not just processing and experimental
heterogeneity but also the inherent uncertainty of the group-
contribution method. This makes the accuracy of this data set
lower than the high-fidelity data set. The low-fidelity data set
includes 429 polymers. For this data set, the percent
crystallinity value for each polymer is calculated using eq 1
described above. Here, the heat of fusion ΔHfus, observed is
curated from differential scanning calorimetry (DSC) experi-
ments from a variety of existing sources like polymer

handbooks and prior published works. For polymers where
multiple experimental heat of fusion values were reported, we
used the median value to calculate the percent crystallinity and
train machine learning models. This value is the polymer’s
tendency to crystallize at the low-fidelity level. However, the
ΔHfus, 100% crystalline is not available for all polymers. Therefore,
we used group contribution methods using values established
by Van Krevelen13 to calculate the ΔHfus, 100% crystalline values for
this data set. Additionally, we believe the spread of the
calculated low-fidelity values to be similar to the distribution
shown in Figure 2 since the heat of fusion directly correlates to
the polymer’s tendency to crystallize. For all polymers whose
high-fidelity value is known, the low-fidelity value is also
available.
To demonstrate the diversity of the data sets, we compared

both data sets using principal component analysis (PCA)
(Figure 3). Since the high-fidelity data set is a subset of the
low-fidelity data set, we performed a principal component
analysis (PCA) of the low-fidelity fingerprint vector (explained
in the Methods section below). The horizontal and vertical
axes are the first two principal components, PC1 and PC2. The
high-fidelity data set is less diverse than the low-fidelity data
setthe high diversity data set includes polymers that belong
to the class of polyolefins, polyvinyls, and polyacrylics.
However, the low-fidelity data set also includes polymers in
the polyimines and polyimides chemical space where the high-
fidelity data set is absent.

■ METHODS

Feature Set and Dimensionality Reduction. A
hierarchical fingerprinting method was used to capture
descriptors that control the tendency to crystallize in polymers
and was described in a previous work.14 The fingerprinting
scheme comprises of four hierarchical levels of descriptors. The
first level is at the atomic scale comprising of the count of
atomic triples (e.g., O2−C3−C4, representing of a 2-fold

Figure 3. Graphical summary of the high and low fidelity data sets against the chemical space of polymers. Two leading components, PC1 and PC2,
are produced by principal component analysis, and assigned to axes of the plot.
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coordinated oxygen, a 3-fold coordinated carbon, and a 4-fold
coordinated carbon). The second set of fingerprint compo-
nents captures a population of predefined chemical building
blocks (e.g., −C6H4−, −CH2−, −C(O)−). The third
hierarchical level comprises of quantitative structure−property
relationship (QSPR) descriptors, such as van der Waals surface
area, topological surface area and the fraction of rotatable
bonds, implemented in the RDKit cheminformatics library.
The fourth and last fingerprinting level includes morphological
features such as the topological distance between rings, fraction
of atoms that are part of side chains and length of the largest
side chain. Additionally, the melting temperature of each
polymer was added as an additional fingerprint given its
positive correlation with the heat of fusion (ΔHfus).

26 For new
polymers whose melting temperature is unknown, they can be
predicted using the machine-learning based model imple-
mented at www.polymergenome.org. Consequently, this
feature space includes 256 features.
To retain only relevant features, LASSO (least absolute

shrinkage and selection operator) was performed on the initial
256-dimensional feature vector and both, the high and low-
fidelity data sets with 5-fold cross-validation.27 LASSO is a
shrinkage and selection method for linear regression which
minimizes the usual sum of squared errors, with a bound on
the sum of the absolute values of the coefficients. Since a
single-fidelity GPR model is trained on the high-fidelity data
set as a baseline and a multifidelity cokriging model is trained
using data sets where the low-fidelity data set is larger (with
429 polymers), feature engineering was performed on both
data sets. For the high-fidelity data set, LASSO retains 14
pertinent features (including the melting temperature), which
are then used to train the single-fidelity GPR model. For the
low-fidelity data set, LASSO retained 97 important features
(including the melting temperature) which were used to train
the multifidelity cokriging model. LASSO retains more features
on the low-fidelity data set since it is larger and more
chemically diverse than the high-fidelity data set.
Factors Affecting the Crystallization Tendency of

Polymers. In addition to performing feature elimination to

retain only relevant features, it is also valuable to analyze the
retained features and its correlation to the tendency to
crystallize. In this analysis, we study the 97 features retained
after performing feature elimination on the low-fidelity data set
since the data set is more diverse and representative of the
polymer chemical space. The representative features are
tabulated in Table 1 and their corresponding coefficients
which determine their correlations are summarized in Table
S1. As expected, there are positive correlations to atomic and
block-level features like phenyl, carbonyl, and anhydride
groups that are known to increase the chain stiffness and,
therefore, its crystallization tendencies.28 However, an
interesting observation was that chain stiffening groups
promote crystallization only when they are present in the
main chain. In our data set, chain stiffening groups like amide
and sulfones were mostly present in the side chain (in
polymers like acrylamides and certain sulfur-containing
polyoxides). Since the crystallization is a function of the
packing of the polymer, these functional groups were
negatively correlated since the presence of chain stiffening
functional groups reduce the packing including the afore-
mentioned amides, sulfones as well as bulky ring-containing
side groups. Since the majority of terminal CH3 groups are
present in side chains, this group is also negatively correlated
to the tendency to crystallize. Further, there are correlations to
block and chain-level features which propagated greater
packing. For instance, it is positively correlated to the linear
CH2 chains, the length of the main chain (relative to the side
chain) and negatively correlated to the length of the side
chains (since they enhance branching, reducing the crystal-
linity). Additionally, the melting temperature is known to
increase with the increase in the crystallinity,26 and we see a
strong positive correlation between them. These chemical
guidelines can help in rationally designing polymers with
desirable crystallization tendencies.

Machine Learning Models. The single-fidelity machine
learning model utilizes Gaussian process regression (GPR)
with a rational quadratic kernel to map the high-fidelity data
set to its tendency to crystallize.29 GPR uses a Bayesian

Table 1. Representative Features Strongly Correlated to the Crystallization Tendency of Polymersa

aR represents an arbitrary chemical group of C, O, N or H elements.28

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpcb.0c01865
J. Phys. Chem. B XXXX, XXX, XXX−XXX

E

http://www.polymergenome.org
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.0c01865/suppl_file/jp0c01865_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.0c01865/suppl_file/jp0c01865_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c01865?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c01865?fig=tbl1&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpcb.0c01865?ref=pdf


framework, wherein a Gaussian process is used to obtain the
mapping from the polymer to its associated tendency to
crystallize based on the available training set and the Bayesian
prior, incorporated using the kernel function. In this case, the
kernel function between two materials with features x and x′ is
given by

k x x
x x

l
( , ) 1

( )
2

2
2

2

i
k
jjjjj

y
{
zzzzzσ

α
′ = + − ′

α−

Here, the three hyperparameters σ, l, and α are the variance,
the length-scale parameter, and the expected noise in the data,
respectively. These hyper parameters were determined during
the training of the models by maximizing the log-likelihood.
Further, 5-fold cross validation was adopted to avoid
overfitting.
Multifidelity analysis is closely related to machine learning

methods like multitask learning, which relies on learning
correlations among different material properties.30−33 The
multifidelity information fusion model uses a cokriging method
to effectively utilize the high and low fidelity data sets
simultaneously.16,34 The flexibility of the cokriging approach
allows it to have a variable number of low and high-fidelity data
points. For all cases whose high-fidelity value is known, the
respective low-fidelity value is also available. In analogy to
GPR, the CK model assumes the high-fidelity data to be a
realization of the Gaussian process Zhi, which is further defined
as the sum of a low-fidelity process Zlo scaled by a factor ρ plus
another independent Gaussian process Zd which captures the
difference between the available low- and high-fidelity data
points. Therefore,

Z x Z x Z x( ) ( ) ( )hi lo dρ= + (2)

The root-mean-square error (RMSE and R2) values were
used to evaluate and compare the performances of the GPR
and the cokriging models. To estimate the prediction errors on
unseen data, learning curves were generated by varying the size
of the training and the test sets. For all ML models, i.e., GPR
and cokriging, the prediction accuracy was computed on a
completely unseen and randomly chosen test set consisting of
22 data points (20% of the high-fidelity data set). Additionally,
for each case, statistically meaningful results were obtained by
averaging RMSE results over 50 runs with varying training and
test splits.14,16

■ RESULTS AND DISCUSSION
Correlations between the Low- and High-Fidelity

Data Sets. Group contribution methods have been commonly
used to calculate a variety of intensive properties;13 however,
there has been no reported work on its prediction capability for
percent crystallinity. For this work, all polymers in the high-
fidelity data set have associated low-fidelity values calculated
using 100% crystalline heat of fusion values using group
contribution methods. Figure 4 depicts a parity plot of 107
polymers and its associated high-fidelity and the low-fidelity
values. The associated RMSE and R2 are calculated as shown in
Figure 4.
This analysis yields two results. First, this analysis shows that

for this limited data set, the high- and low-fidelity data sets are
quite closely correlated. The group contribution methods work
especially well for polyolefins and polyvinyls. However, for
polyesters and polyamides, the heat of fusion values waver
from the experimental values as the complexity of the polymer

(and thus, the number of groups) increases. Second, the good
agreement between the high- and low-fidelity data sets make
them excellent candidates for multifidelity based machine
learning using cokriging. The cokriging method utilizes the
difference between the high- and low-fidelity values and a good
correlation between the two values is beneficial to this model.
Additionally, this quantifies the uncertainty error from the
different methods of measurements.

Machine Learning Models: Performance and Com-
parison. The high-fidelity data set and a combination of the
high- and low-fidelity data sets were used to train the machine
learning models. The performance of machine learning models
is evaluated using learning curves with varying test-train splits.
The learning curve represents the learning trend of the model
upon adding more data. For all the machine learning models in
this work, the test set comprises of 22 points, which is around
20% of the high-fidelity data set. Using only the high-fidelity
data set, a Gaussian process regression (GPR) model was
trained using 14 pertinent features selected using LASSO.
Using a combination of the high- and the low-fidelity data sets,
cokriging multifidelity machine learning models were trained
using 97 important features selected using LASSO. The first
multifidelity model assumes the unavailability of the low-
fidelity data for the test set, and therefore comprises of 407
low-fidelity points. The second multifidelity model accounts
for the case where the low-fidelity values of the test set is
available, and therefore uses all the 429 low-fidelity data points.
The performance of the machine learning models can be
evaluated from the learning curves presented in Figure 5a,
wherein average RMSE on the training and the test sets as a
function of training set size are included. The error bars denote
the 1σ deviation in the reported RMSE values over 50 runs.
Parts b and c of Figures 5 are parity plots that depict the
prediction performance on individual cases included in the
training and test sets for the single-fidelity GPR model and
multifidelity cokriging model with 407 multifidelity points
which uses 85 training points and 22 test points. Along with
learning curves, parity plots are a valuable comparison tool, in
this case between the single and multifidelity model.
From Figure 5a, we can make several pertinent conclusions.

First, for all train-test combinations (Figure 5a−c), the
cokriging multifidelity models outperforms the GPR single-
fidelity model. The average RMSE of the GPR single-fidelity

Figure 4. Prediction capability of the group contribution method for
crystallization tendencies as a function of the high- and low-fidelity
data sets.
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model which uses 85 training points is 17.04%. In comparison,
the multifidelity models with 407 and 429 low-fidelity points
has an average RMSE of 12.58% and 13.06% respectively. The
performance of both the multifidelity models are quite similar,
but as expected, the standard deviation for the model with 429
low-fidelity points is lower than that of the model with 407
low-fidelity points. The fairly consistent performance of the
models can be attributed to the limited chemical diversity of
the high-fidelity data set where the learning is extremely rapid.
This is also suggested from the similar performance trend
displayed by both the single-fidelity and the multifidelity
models. Additionally, the multifidelity models also utilize a
large number of low-fidelity points in its training. With this, we
have established that group contribution methods which were
used in the low-fidelity data set captures meaningful
information that can be successfully used with cokriging
machine learning in this manner. Second, both multifidelity
models perform similarly. This implies that, in order to make
predictions for tendency of new polymers to crystallize under
conventional synthesis and processing conditions, the low-
fidelity crystallization tendency is not required. Therefore, this
model does not require any further experimentation or
information to make new predictions at the high-fidelity level
of accuracy. Next, the RMSE of the multifidelity model can be
discussed in comparison to the group contribution method’s
prediction capability. The variance in the high- and low-fidelity
data sets arises from two sourcesthe variance from different
polymer processing conditions which was previously discussed
and due to the group contribution method used to curate the
low-fidelity data set. The group contribution method is devoid
of processing variability which is higher in value (13−15%)
than its prediction error (10.11%). Additionally, the low-
fidelity data set is significantly more diverse and is not included
in the group contribution analysis. This explains the higher
RMSE of the multifidelity model compared to the group
contribution method’s prediction error. Finally, we also believe
that the multifidelity model captures the polymer processing
variance; the processing variability established previously is
13−15% which is similar to the RMSE of the multifidelity
models.
Multifidelity Model Verification. For the verification of

the multifidelity cokriging model, we utilized the multifidelity
model trained on all data points in both, the high- and low-

fidelity data sets. We used five polymers which were not
utilized in this work previously for the verification. These
polymers were chosen specifically for their wide range in the
percent crystallinity values as well as their varying representa-
tion in the training data sets. The polymers are poly-
(vinylphenol), nylon-5,6, poly(methacrylonitrile), poly(p-styr-
ene sulfonic acid), and kevlar, and their crystallinity values
were gathered from the literature (monomer structures in
Table S2)21,35−40 As demonstrated in Figure 6, the polymers

have crystallinities ranging from noncrystalline/amorphous to
70%. Additionally, we also selected them on the basis of their
representation in the data set to assess the predicted
uncertainty values. Polymers like poly(vinylphenol), poly(p-
styrene sulfonic acid), and nylon-5,6 are well-represented in
the data set whereas poly(methacrylonitrile) and kevlar have
few similar training examples. We predicted their crystallinities
using the methodology described in this work, and the results
are presented in Figure 6. We find that there is excellent
agreement for all polymers except for poly(vinylphenol) which

Figure 5. Prediction accuracy for machine learning models trained using single-fidelity GPR and multifidelity cokriging methods. Part a comprises
learning curves for the single-fidelity GPR model and the multifidelity models with 407 and 429 low-fidelity points where the test sets consists of 22
randomly selected points and averaged over 50 runs, with error bars illustrating 1σ deviation. Parts b and c illustrate example parity plots with 107
high-fidelity train points and 22 test points for the GPR and cokriging models, respectively. The cokriging model uses 429 low-fidelity points.

Figure 6. Validation of the multifidelity cokriging model using five
new polymers whose experimental percent crystallinity values are
compared with its predicted values.
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is amorphous and therefore, we chose to use 10% as its
experimental value for representation in Figure 6. The
predicted uncertainties are also in agreement with the presence
of the polymers in the data set. Since poly(methacrylonitrile)
and kevlar do not have similar training examples in the data set,
they present high uncertainty values. This analysis provides
valuable insight about realistic scenarios where the tendency to
crystallize of an new polymer candidate is predicted.

■ OUTLOOK

Predicting polymer properties which are extremely process-
dependent like the polymer crystallinity is nontrivial for several
reasons. A conspicuous assumption that was made in this work
was to assign singular tendency to crystallize values (therefore,
not accounting for process variability) to all the polymers in
the data sets. The multiparameter nature of this data set makes
it extremely difficult to curate a uniform data set that is tailored
to predict a percent crystallinity value for a specific case.
Therefore, we decided to use the most-likely values for
polymers. However, this work can be still used to predict the
ability of a polymer to crystallize, i.e., polyethylene generally
exhibits greater crystallinity than polystyrene.13,20−24 While the
exact value of the percent crystallinity is dependent on the
processing conditions, the inherent ability to crystallize
depends on chemical factors examined in the Features section.
Therefore, for a new polymer, this tool can be useful to
determine its tendency to crystallize and we have implemented
it at www.polymergenome.org. Additionally, the lack of
uniform, high-fidelity data is commonly encountered in
materials science. The methodology used in this work can be
used to overcome this issue for a variety of properties for
organic and inorganic materials. Several polymer properties
like the glass transition temperature, the melting temperature,
entropy, solubility have established group contribution values
by Van Krevelen13 for commonly occurring substructures.
Furthermore, inorganic materials properties like the lattice
thermal conductivity and the formation enthalpy have
established theoretical models which can be utilized in
conjunction with limited experimental data. This work
demonstrates the viability of this methodology for data sets
which have experimental and theoretical values. Going forward,
a possible solution to this could be a natural language
processing (NLP) based machine learning model which can
actively collect and curate highly complex data sets to
overcome these issues.41

■ CONCLUSIONS

In conclusion, we have developed a multifidelity cokriging
model to predict crystallization tendencies for polymers based
on a fusion of the high and low-fidelity data sets. This work
successfully develops two differing data sets to predict
crystallization tendencies and also quantified the polymer
processing-related variations for percent crystallinity. Addi-
tionally, we also identify pertinent features and corresponding
chemical guidelines which affect the polymer’s tendency to
crystallize. We find that the position of functional groups (like
amides, sulfones, carbonyl, phenyls), viz, in the main chain or
the side chain was critical to its crystallization tendency.
Functional groups that promote chain stiffening are positively
correlated to the crystallization if they are present in the main
chain but negatively affect the tendency to crystallize if present
in the side chains since they reduce the overall packing density.

These guidelines can be utilized to rationally design polymers
with desired crystallization tendencies. Further, we find that we
found the multifidelity information fusion framework using
cokriging worked successfully and better than a single-fidelity
GPR model by 23%. Although this model inherently assumes
“typical” processing conditions and estimates the “most-likely”
percent crystallinity values, it can help in the estimation of a
polymer’s tendency to crystallize in a far more cost-effective
and efficient manner. The ability of the cokriging model to
make predictions for a new polymer entirely based on its
features and without the corresponding low-fidelity estimate
makes it an extremely useful and versatile method and can be
extended to other polymer properties.
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