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ABSTRACT: Polymer solubility is critical for a variety of
industrial and research applications such as plastics recycling,
drug delivery, membrane science, and microlithography. For novel
polymers, it is often an arduous process to find the appropriate
solvents for polymer dissolution. Heuristic approaches, such as
solubility parameters, provide only limited guidance with respect to
solvent prediction and design. The present work highlights a novel
data-driven paradigm for solvent selection in polymers. For this
purpose, we utilize a deep neural network trained on a massive data
set of over 4500 polymers and their corresponding solvents/
nonsolvents. This deep-learning framework maps high-dimensional
fingerprints/features to compact chemically relevant latent space
representations of solvents and polymers. When these low-dimensional representations are visualized, we observe the spontaneous
clustering of nonpolar, polar-aprotic, and polar-protic behavior. This large-scale data-driven approach possesses an overall
classification accuracy of above 93% (on a hold-out set) and significantly outperforms existing methods to determine polymer/
solvent compatibility such as the Hildebrand criteria.

■ INTRODUCTION
Polymers are an ubiquitous class of materials and find
widespread applications in a number of technological and
research endeavors. Because of their immense chemical and
structural diversity, they are utilized in an unimaginable
number of products ranging from bullet-proof vests (Kevlar) to
intricate drug delivery systems.1 However, this very same
diversity renders it difficult to systematically search for
polymers possessing specific properties. More recently, the
nascent field of polymer informatics has shown promise in
accelerating the rational design of novel functional polymers.
High-throughput computations2 in conjunction with an ever-
increasing accumulation of experimental measurements has
allowed us to use cutting-edge machine-learning (ML)
algorithms3,4 to develop predictive models and discover
hidden structure−property relationships and trends.
One important factor in the synthesis and processing of

polymers is the selection of suitable solvents.5 The
compatibility of polymers and solvents is of paramount
importance for paint and coating formulations,6 plastics
recycling,7 drug delivery,8 membrane science,9 and micro-
lithography.10 In some cases, to precipitate a particular
polymer from a mixture/blend, a nonsolvent is used. For a
newly synthesized polymer, it is usually a very time-consuming
process to find the right solvent/nonsolvent. Over the past
decades, a number of quantitative (albeit heuristic) measures
have been developed to aid in the extremely difficult process of
solvent selection for polymers. The Hildebrand criteria,

introduced by Hildebrand and Scott, is likely the most well-
established and well-known of the so-called solubility
parameters.11 Solubility parameters are based on the concept
of “like dissolves like”, and when a polymer and solvent possess
similar values of the Hildebrand solubility parameter, the
solvent is designated as a good solvent for that particular
polymer. The one-component Hildebrand parameter is derived
from the cohesive energy density of the polymeric/molecular
system, and it has been shown to perform reasonably well for
nonpolar systems without hydrogen bonding.11 However, this
method completely fails in enabling suitable solvent
predictions for polar systems with hydrogen bonding. The
phenomenon of polymer/solvent compatibility is contingent
on a multitude of chemical, thermodynamic, kinetic, and
morphological factors. To attempt to capture the multidimen-
sional nature of this problem, the three-dimensional Hansen
solubility parameter system was developed by Hansen and
Abbott.12,13 This approach involves the decomposition of the
Hildebrand parameter into dispersion, polar, and hydrogen-
bonding components. However, as was highlighted in our
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recent work,14 the Hansen parameter is available only for a
handful of polymers and offers only marginal improvement in
prediction accuracy (relative to the Hildebrand approach).
Quantifying such a complex phenomenon using a limited
number of manually fitted parameters has proven to be an
exceptionally challenging endeavor.15 There is, therefore, an
immediate (and crucial) need for the development of novel
theoretical/algorithmic frameworks to address the complex
problem of polymer solubility.
In this work, we introduce a novel paradigm in which room-

temperature polymer−solvent compatibility is determined
using a purely data-driven framework in contrast to existing
heuristic approaches based on solubility parameters. We first
accumulate a massive data set of over 4500 polymers and their
corresponding solvents/nonsolvents. The data set is used to
train a deep neural network binary classifier, which takes as
input the polymer and solvent descriptors and as output
whether the solvent is a good solvent or a nonsolvent (for that
particular polymer). The fingerprinting methodology, neural
network architectures, and training protocols are detailed in
the Methods. Our data-driven deep-learning framework is
shown to overwhelmingly outperform the Hildebrand
approach for all classes of polymers and solvents. In addition
to the vastly improved prediction accuracy, this approach
enables the visualization of solvents and polymers in terms of
chemically relevant low-dimensional latent space vectors. It is

important to note that these latent space representations have
been obtained intrinsically via the ML algorithm, without the
need to input any empirically or manually derived parameters.
Further discussions and details are elucidated in this Article.
Finally, we also implement this method on our online polymer
informatics platform, Polymer Genome.

■ RESULTS AND DISCUSSION

Our data set is comprised of 4595 polymers with an associated
list of good solvents. A subset of this data set comprised of
3707 polymers also has an associated list of nonsolvents. A few
examples from this data set are depicted in Table 1. There are
a total of 11 958 polymer + solvent combinations and a total of
8469 polymer + nonsolvent pairs. In this work, we only
consider 24 widely used solvents/nonsolvents (listed in Table
S1) that can be broadly categorized as nonpolar, polar-aprotic,
or polar-protic solvents. We randomly select 10% of the data
set as a test-set (or hold-out set) and perform 5-fold validation
for the rest of the data set as shown in Figure S1.
The chemical and structural features of the polymers are

encoded in terms of a numerical vector (or fingerprint) as
detailed in the Methods, and the solvents are represented using
the so-called one-hot encoding technique. These numerical
representations of the polymer and solvent are fed into a neural
network whose architecture is schematically illustrated in
Figure 1. The neural network, described in more detail in the

Table 1. Examples of Polymer and Solvents from the Data Set Used for Training the Neural Network Classifier

Figure 1. Neural network architecture for the prediction of good solvents and nonsolvents for polymers. The trained model is served on Polymer
Genome (www.polymergenome.org). Once the user draws a new polymer, the algorithm iterates over the list of 24 solvents and provides a ranking
of good solvents and nonsolvents.
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Methods, functions as a binary classifier, which can
simultaneously learn chemically relevant low-dimensional
features of the polymers and solvents (as a result of the
polymer latent space layer and the solvent latent space layer,
respectively).
First, we evaluate the performance of the neural network

approach in terms of simple classification accuracy. If the
activation value of the final sigmoid neuron is greater than (or
equal to) the threshold value of 0.5, the solvent is considered

as a good solvent for that particular polymer. If the activation
value is less than 0.5, the solvent is considered as a nonsolvent
for that polymer. Therefore, an activation value of 1 would
imply an ideal good solvent and an activation value of 0 would
imply an ideal nonsolvent.
To quantify the classification accuracy, we ask the following

question for several cases of polymer−solvent combinations:
what percentage of the time is the classifier able to correctly
predict whether the polymer is soluble in that particular

Figure 2. (a) ROC curve of the neural network model on the test set. (b) Accuracy of the neural network classification versus the latent space
dimensionality of the polymer and solvent on the test set. The red square indicates the most accurate model obtained (based on the validation set
shown in Figure S2).

Figure 3. Solvent-wise prediction accuracy of soluble (top) and insoluble (bottom) polymers. We compare the accuracy of the neural network
versus the Hildebrand criteria for nonpolar, polar-aprotic, and polar-protic solvents. With respect to good-solvent prediction, the Hildebrand
parameter fails catastrophically for many solvents such as n-hexane, water, and methanol. Overall, the nonsolvent prediction accuracy of the
Hildebrand parameter is higher as compared to that of good-solvent prediction due to a less stringent criteria of polymer insolubility.
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solvent? On the basis of the above criteria for classifying
solvents/nonsolvents, we obtained an accuracy of 99.6% for
the training set, an accuracy of 98.1% for the validation set, and
an accuracy of 93.8% for the test set. The ROC (receiver
operating characteristic) curve and associated AUC (area-
under-curve) value for the good-solvent classification for the
entire data set are shown in Figure 2a. We also show how the
accuracy of the model is dependent on the polymer latent
space dimensionality and solvent latent space dimensionality.
As detailed in the Methods, the original dimensionality of the
polymer fingerprint is 644, and the dimensionality of the
solvent fingerprint is 24. Considering that the Hildebrand and
Hansen criteria possess a dimensionality of one and three,
respectively, determining the dimensionality of the ideal
descriptor set is the next logical step. From Figure S2 we see
that the validation accuracy saturates around 98.1. The most
accurate model (highlighted in red in Figure 2b) is chosen as
the final model for implementation and further analysis.
We compare the classification accuracy of the neural

network against the well-established Hildebrand criteria.
Although the Hildebrand parameter is available for all 24
solvents, only 100 or so polymers possess a corresponding
solubility parameter that can be extracted from the existing
literature. To overcome this limitation, we construct an ML
model (from available data) to predict the Hildebrand
parameter of all 4595 polymers in the data set. The
construction and validation of the model are described in
detail in the Methods.
In contrast to the neural network, the Hildebrand solubility

criterion when applied to this large polymer data set displayed
a good-solvent classification accuracy of only 50% and a
nonsolvent classification accuracy of 70%. The nonsolvent
classification accuracy is superior to that of the good-solvent
classification because it is a simple criterion of exclusion. As

shown in Figure 3, the performance of the Hildebrand model is
significantly inferior with respect to solubility prediction for
polar-protic solvents such as water, methanol, and ethanol.
However, surprisingly, it also performs poorly for nonpolar
solvents, n-hexane and diethyl ether. The two solvents possess
Hildebrand parameters of 14.9 and 15.4 MPa1/2, respectively.
On closer inspection of the histogram of the predicted
Hildebrand parameter values shown in Figure S3c, we see that
there are few polymers with Hildebrand parameters in the
vicinity of these two solvents. This data set bias is reflected in
the poor predictive capabilities for the solvents n-hexane and
diethyl ether.
In Figure 4, we visualize the distribution of polymers and

solvents in their corresponding latent spaces. To facilitate the
visualization, we reduce the dimensionality of the polymer and
solvent latent space using principal components analysis
(PCA). Figure 4a−c clearly demonstrates the different regions
of polymer latent space occupied by soluble (blue) and
insoluble (red) polymers for benzene (a nonpolar solvent),
dimethylacetamide or DMAc (polar-aprotic solvent), and
water (polar-protic solvent), respectively. In Figure 4d, we
see how nonpolar, polar-aprotic, and polar-protic solvents are
clustered into different regions of the solvent latent space.
Finally, to demonstrate the sensitivity of the ML algorithm

to the training set size, we plot the learning-curves of test
accuracy and training accuracy versus the training set size in
Figure S3. The convergence of the training and test accuracy is
demonstrated as we systematically expand the training set size
(starting from a training set size of 5% of the total data set),
indicating that our learning algorithm is close to its optimal
performance for the given data set size. The standard deviation
of the accuracy during the 5-fold cross validation is shown as
error bars.

Figure 4. (a−c) The three principal components of the 20-dimensional latent space of polymers, which are soluble/insoluble in benzene, DMAc,
and water, respectively. The blue “●” are polymers that are soluble, and the red “●” denote polymers that are insoluble in that particular solvent.
(d) The distribution of nonpolar (black), polar-aprotic (red), and polar-protic (blue) solvents within the 20-dimensional solvent latent space
(projected onto three principal components).
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In summary, we have developed a novel deep-learning
framework capable of accurately predicting good solvents and
nonsolvents for an enormous number and types of polymers.
In a recent work,14 we critically examined the accuracy of the
Hildebrand and Hansen criteria for a number of polymers and
solvents (for which these criteria were available). The
Hildebrand criteria were shown to have an accuracy of 60%
for solvents and 76% for nonsolvents, whereas the Hansen
criteria were shown to have an accuracy of 67% for solvents
and 76% for nonsolvents.14 Our approach, therefore, not only
outperforms the existing heuristic methods14,15 but is also
applicable over a larger chemical space and enables the
extraction of chemically meaningful representations for both
solvents and polymers. The purely data-driven framework
described in this work can be systematically improved as it is
exposed to an even larger quantity and diversity of data.
Moreover, the presence of a chemically meaningful low-
dimensional latent space sets the stage for techniques such as
transfer-learning,16 one-shot learning, and generative models.4

This deep learning-based solvent/nonsolvent prediction
toolkit has been implemented in our online polymer
informatics platform “Polymer Genome”. The user may draw
the repeat unit of any arbitrary polymer and obtain the
rankings of the best good solvents and nonsolvents for that
polymer. The rankings are inferred from the relative magnitude
of the activation of the final sigmoid neuron. The solvent
predictions based on the Hildebrand approach are also
provided (separately) in addition to predictions obtained
from the deep-learning framework. Because Polymer Genome
already predicts a variety of other properties such as the glass
transition temperature (Tg), band gap, dielectric constant,
refractive index, etc., the prediction of suitable solvents will
significantly aid in the accelerated design of synthetically
feasible/soluble polymers with a tailored set of properties.
Going forward, additional descriptors for temperature-depend-
ent solubility or for solubility involving mixtures of solvents
would likely increase the utility of this approach.

■ METHODS
Data Set. Data were obtained from a number of publicly available

resources, including handbooks such as the Polymer Handbook,17

Handbook of Polymers,18 Properties of Polymers,19 and Polymer Data
Handbook.20 Data were also accumulated from a number of literature
sources and online repositories of data, including Polymer Database21

and PolyInfo.22 The chemical space of the polymers spans over a wide
range but predominantly included the following atomic species: H, B,
C, N, O, F, Si, P, S, Cl, Br, and I. Copolymers, polymer blends,
polymers with additives, and cross-linked polymers are not considered
in this study. We also limit this study to the investigation of room-
temperature solubility and do not consider partial solubility or high-
temperature solubility.
The polymers are represented using the simplified molecular-input

line-entry system or SMILES. The SMILES strings of the polymers
are constructed using the online draw tool implemented in the
Polymer Genome platform,23 and the terminal atoms of the polymer
repeat unit are denoted by “*”.
Fingerprinting. The descriptors used for polymers have been

described in detail in earlier works.23,24 In the current work, a total of
644 descriptors are utilized, and these descriptors are broadly
categorized into four structural hierarchies. The first family of
descriptors includes the so-called atomic-triple fingerprint,25 and the
second family of descriptors is obtained from the open-source
cheminformatics package RDKit.26 A total of 300 atomic-triple
fingerprints are utilized, and 39 RDKit-based descriptors are used.27

The third family of descriptors is obtained by searching for commonly

occurring substructures/blocks in this large polymer data set; 288
such descriptors are utilized. Finally, a set of 17 polymer-chain specific
descriptors are included to encode certain higher level features such as
the length of the side chain, number of rings in the main chain, etc. All
of the descriptors are modified to take into account the one-
dimensional periodicity of large molecular weight polymer chains. For
instance, all of the fingerprint components are normalized with
respect to the number of atoms in the polymer repeat unit.

In the current work, because we are considering only a limited
number of solvents, we utilize one-hot encoding to represent each of
the 24 solvents. One-hot encoding is a technique to represent
categorical variables using a binary representation. In this particular
case, the fingerprint vector for a particular solvent would have a
dimensionality of 24, of which 23 components would be zero and only
one component would possess the integer value of one.

Neural Network Details. A slightly modified version of the
multilayer perceptron neural network algorithm is utilized for this
particular binary classification (good solvent or nonsolvent) problem.
The neural network, as depicted in Figure 1, consists of two input
branches, one for the solvent fingerprints and the other for the
polymer descriptors. The solvent branch of the neural network
(NNsolv) consists of two hidden layers, each with 100 neurons, and
the polymer branch of the neural network (NNpoly) consists of three
hidden layers, each with 100 neurons. The final hidden layer of the
solvent branch of the neural network consists of 20 neurons and is
labeled as the “solvent latent space” in Figure 1. Similarly, the final
layer of the polymer branch of the neural network consisted of 20
neurons and is labeled as the “polymer latent space”. The solvent
latent space and polymer latent space hidden layers are merged using
a concatenation operation and passed on to a final set of hidden layers
(NNmerge). There are four hidden layers in NNmerge, each with 100
neurons. All of the hidden layers in the neural network are
constructed with the parametrized rectified linear unit (PReLU)
activation function. The final output of the neural network consists of
a single neuron with the sigmoid activation function wherein an ideal
good solvent is denoted by an activation value of “1” and an ideal
nonsolvent is denoted by an activation value of “0”. The threshold to
differentiate between a nonsolvent and a good solvent is set at 0.5.

A randomized 90%/10% train/test split is utilized, and 5-fold cross
validation is further performed on the training set as shown in Figure
S1. During the 5-fold cross validation, the validation set was utilized
to determine the optimal number of epochs for each fold. The
“Adam” gradient descent method is utilized for training the neural
network weights along with a training batch-size of 100. The 10% test
split represents the hold-out set, and the performance of the neural
network on this set represents the generalizability of the model.

Gaussian Process Regression for the Hildebrand Parameter.
As mentioned earlier, we sought to benchmark the performance of
our solvent prediction neural network against existing methods for
determining solubility. For this purpose, we use the Hildebrand
criteria, because it is not only widely utilized, but it is also the only
solubility parameter that is available for a considerable number of
polymers. As reported in recent works,14,23 we accumulated a data set
of 113 polymer Hildebrand parameters from the data set sources.
Once the polymer fingerprints are obtained for the polymers,
Gaussian Process Regression using the radial basis function (RBF)
kernel is utilized to map the polymers to their associated Hildebrand
solubility parameters. Through this process, we are able to obtain a
machine learning model to predict the solubility parameter of all of
the polymers in our data set of 4595 polymers. A summary of the
Hildebrand parameter polymer data set and the performance of the
associate model are illustrated in Figure S1. For the case of the 24
solvents, the Hildebrand parameter was readily available from
multiple sources in the literature.12 Following the standard
procedure,28 if the absolute value of the difference in Hildebrand
parameters of the solvent and polymer was less than 2 MPa1/2, the
solvent was classified as a good solvent for that particular polymer. If
the difference was greater than 2 MPa1/2, the solvent was classified as
a nonsolvent for that polymer.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.0c00251
Macromolecules XXXX, XXX, XXX−XXX

E

http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.0c00251/suppl_file/ma0c00251_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.0c00251/suppl_file/ma0c00251_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.0c00251/suppl_file/ma0c00251_si_001.pdf
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.0c00251?ref=pdf


■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.macromol.0c00251.

Table showing the number of soluble and insoluble
polymers for each solvent along with the Hildebrand
solubility parameter for the solvent; cross-validation and
test split schema; heat-map of validation set accuracy as
a function of latent space dimensionality; Hildebrand
parameter of 113 polymers in the training set along with
ML predicted Hildebrand parameter; and learning-curve
of train and test accuracy (PDF)

■ AUTHOR INFORMATION
Corresponding Author
Anand Chandrasekaran − School of Materials Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia
30332, United States; orcid.org/0000-0002-2794-3717;
Email: anandc88@gmail.com

Authors
Chiho Kim − School of Materials Science and Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States; orcid.org/0000-0002-1814-4980

Shruti Venkatram − School of Materials Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia
30332, United States

Rampi Ramprasad − School of Materials Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia
30332, United States; orcid.org/0000-0003-4630-1565

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.macromol.0c00251

Author Contributions
†A.C. and C.K. contributed equally to this work.
Author Contributions
All authors contributed to the conception and design of the
study, as well as writing of the manuscript. A.C. developed the
data-curation/preprocessing pipeline and designed the neural
network architecture. A.C. and C.K. wrote the Python-based
training and prediction code. R.R. supervised the work.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the Office of Naval Research
through grants N00014-17-1-2656 and N00014-16-1-2580.

■ REFERENCES
(1) Bajpai, A.; Shukla, S. K.; Bhanu, S.; Kankane, S. Responsive
polymers in controlled drug delivery. Prog. Polym. Sci. 2008, 33,
1088−1118.
(2) Huan, T. D.; Mannodi-Kanakkithodi, A.; Kim, C.; Sharma, V.;
Pilania, G.; Ramprasad, R. A polymer dataset for accelerated property
prediction and design. Sci. Data 2016, 3, 160012.
(3) Staker, J.; Marshall, K.; Abel, R.; McQuaw, C. M. Molecular
Structure Extraction from Documents Using Deep Learning. J. Chem.
Inf. Model. 2019, 59, 1017−1029.
(4) Mater, A. C.; Coote, M. L. Deep Learning in Chemistry. J. Chem.
Inf. Model. 2019, 59, 2545−2559.
(5) Miller-Chou, B. A.; Koenig, J. L. A review of polymer dissolution.
Prog. Polym. Sci. 2003, 28, 1223−1270.

(6) Adamska, K.; Voelkel, A.; Heb́erger, K. Selection of solubility
parameters for characterization of pharmaceutical excipients. Journal
of Chromatography A 2007, 1171, 90−97.
(7) Kobayashi, S.; Uyama, H.; Takamoto, T. Lipase-catalyzed
degradation of polyesters in organic solvents. A new methodology of
polymer recycling using enzyme as catalyst. Biomacromolecules 2000,
1, 3−5.
(8) Breitkreutz, J. Prediction of intestinal drug absorption properties
by three- dimensional solubility parameters. Pharm. Res. 1998, 15,
1370−1375.
(9) Koros, W.; Fleming, G. Membrane-based gas separation. J.
Membr. Sci. 1993, 83, 1−80.
(10) Reichmanis, E.; Thompson, L. F. Polymer materials for
microlithography. Chem. Rev. 1989, 89, 1273−1289.
(11) Barton, A. F. M. Solubility parameters. Chem. Rev. 1975, 75,
731−753.
(12) Hansen, C. Hansen Solubility Parameters; CRC Press: New
York, 1999.
(13) Abbott, S.; Hansen, C. M. Hansen Solubility Parameters in
Practice; Hansen Solubility, 2008.
(14) Venkatram, S.; Kim, C.; Chandrasekaran, A.; Ramprasad, R.
Critical assessment of the Hildebrand and Hansen solubility
parameters for polymers. J. Chem. Inf. Model. 2019, 59, 4188.
(15) Sanchez-Lengeling, B.; Roch, L. M.; Perea, J. D.; Langner, S.;
Brabec, C. J.; Aspuru-Guzik, A. A Bayesian Approach to Predict
Solubility Parameters. Advanced Theory and Simulations 0 2019, 2,
1800069.
(16) Yamada, H.; Liu, C.; Wu, S.; Koyama, Y.; Ju, S.; Shiomi, J.;
Morikawa, J.; Yoshida, R. Predicting Materials Properties with Little
Data Using Shotgun Transfer Learning. ACS Cent. Sci. 2019, 5, 1717.
(17) Brandrup, J.; Immergut, E. H.; Grulke, E. A. Polymer Handbook,
4th ed.; Wiley: New York, 2004.
(18) Wypych, G. Handbook of Polymers; Elsevier: New York, 2016.
(19) Van Krevelen, D.; Te Nijenhuis, K. Properties of Polymers;
Elsevier: New York, 2009; pp 3−5.
(20) Mark, J. E. Polymer Data Handbook, 2nd ed.; Oxford University
Press: New York, 2009.
(21) Polymer Database; https://polymerdatabase.com/.
(22) Otsuka, S.; Kuwajima, I.; Hosoya, J.; Xu, Y.; Yamazaki, M.
PoLyInfo: Polymer Database for Polymeric Materials Design. 2011
International Conference on Emerging Intelligent Data andWeb
Technologies, 2011; pp 22−29.
(23) Kim, C.; Chandrasekaran, A.; Huan, T.; Das, D.; Ramprasad, R.
Polymer Genome: A Data-Powered Polymer Informatics Platform for
Property Predictions. J. Phys. Chem. C 2018, 122, 17575.
(24) Ramprasad, R.; Chandrasekaran, A.; Huan, T. D.; Kim, C.
Patent Pending, U.S. Patent Application no. 62/834,428, 2019.
(25) Mannodi-Kanakkithodi, A.; Chandrasekaran, A.; Kim, C.;
Huan, T.; Pilania, G.; Botu, V.; Ramprasad, R. Scoping the polymer
genome: A roadmap for rational polymer dielectrics design and
beyond. Mater. Today 2018, 21, 785.
(26) Landrum, G. RDKit: Open-source cheminformatics; http://
www.rdkit.org.
(27) Nguyen, K.; Blum, L.; van Deursen, R.; Reymond, J.-L.
Classification of Organic Molecules by Molecular Quantum Numbers.
ChemMedChem 2009, 4, 1803−1805.
(28) Burke, J. Solubility Parameters: Theory and Application; The
Book and Paper Group of the American Institute for Conservation:
Washington, DC, 1984.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.0c00251
Macromolecules XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/10.1021/acs.macromol.0c00251?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.0c00251/suppl_file/ma0c00251_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anand+Chandrasekaran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-2794-3717
mailto:anandc88@gmail.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chiho+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-1814-4980
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shruti+Venkatram"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rampi+Ramprasad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-4630-1565
https://pubs.acs.org/doi/10.1021/acs.macromol.0c00251?ref=pdf
https://dx.doi.org/10.1016/j.progpolymsci.2008.07.005
https://dx.doi.org/10.1016/j.progpolymsci.2008.07.005
https://dx.doi.org/10.1038/sdata.2016.12
https://dx.doi.org/10.1038/sdata.2016.12
https://dx.doi.org/10.1021/acs.jcim.8b00669
https://dx.doi.org/10.1021/acs.jcim.8b00669
https://dx.doi.org/10.1021/acs.jcim.9b00266
https://dx.doi.org/10.1016/S0079-6700(03)00045-5
https://dx.doi.org/10.1016/j.chroma.2007.09.034
https://dx.doi.org/10.1016/j.chroma.2007.09.034
https://dx.doi.org/10.1021/bm990007c
https://dx.doi.org/10.1021/bm990007c
https://dx.doi.org/10.1021/bm990007c
https://dx.doi.org/10.1023/A:1011941319327
https://dx.doi.org/10.1023/A:1011941319327
https://dx.doi.org/10.1016/0376-7388(93)80013-N
https://dx.doi.org/10.1021/cr00096a001
https://dx.doi.org/10.1021/cr00096a001
https://dx.doi.org/10.1021/cr60298a003
https://dx.doi.org/10.1021/acs.jcim.9b00656
https://dx.doi.org/10.1021/acs.jcim.9b00656
https://dx.doi.org/10.1002/adts.201800069
https://dx.doi.org/10.1002/adts.201800069
https://dx.doi.org/10.1021/acscentsci.9b00804
https://dx.doi.org/10.1021/acscentsci.9b00804
https://polymerdatabase.com/
https://dx.doi.org/10.1021/acs.jpcc.8b02913
https://dx.doi.org/10.1021/acs.jpcc.8b02913
https://dx.doi.org/10.1016/j.mattod.2017.11.021
https://dx.doi.org/10.1016/j.mattod.2017.11.021
https://dx.doi.org/10.1016/j.mattod.2017.11.021
http://www.rdkit.org
http://www.rdkit.org
https://dx.doi.org/10.1002/cmdc.200900317
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.0c00251?ref=pdf

