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ABSTRACT

The refractive index (RI) is an important material property and is necessary for making informed materials selection decisions when optical
properties are important. Acquiring accurate empirical measurements of RI is time consuming, and while semi-empirical and computational
determination of RI is generally faster than empirical determination, predictions are less accurate. In this work, we utilized experimentally
measured RI data of polymers to build a machine learning model capable of making accurate near-instantaneous predictions of RI. The
Gaussian process regression model is trained using data of 527 unique polymers. Feature engineering techniques were also used to optimize
model performance. This new model is one of the most chemically diverse and accurate RI prediction models to date and improves upon
our previous work. We also concluded that the model is capable of providing insights about structure–property relationships important for
estimating the RI when designing new polymer backbones.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0008026

I. INTRODUCTION

The refractive index (RI) is a material property directly related
to optical, electrical, and magnetic behavior of a material.1 In light
scattering measurements of dilute polymer solutions, the refractive
index increment is an essential parameter for determining the
molecular weight, size, and shape of the polymer in solution.2

Additionally, the RI serves as an important property when designing
and selecting polymeric materials used as waveguides, optical films,
and optical fibers.3 Furthermore, high refractive index polymers
(HRIPs), RI �1:5, are attractive materials for substrates in advanced
display devices, optical encapsulants and adhesives in organic light
emitting diodes, image sensors, and anti-reflective coatings.4–7

Driven by pragmatic and technological needs, efforts to calcu-
late RI have been made since the mid-19th century. Early theoreti-
cal methods proposed by Lorentz and Lorenz as well as Gladstone
and Dale are accurate but limited by the lack of available molar
refraction and molecular volume (V) data for new polymer materi-
als.8 In the 1970s, group contribution based methods emerged2 and
more recently, semi-empirical methods materialized, enabling
multiple pathways for RI estimation. However, these methods
are constrained by limitations of the Lorentz–Lorenz equation9

and disregard the three-dimensional structural arrangements of

polymers.2,9 To fully incorporate physical and chemical structure
effects on the RI, density functional perturbation theory (DFPT)
was used to compute RI.10 However, this method is computation-
ally expensive and has inherent limitations arising from practical
assumptions made to model polymers (e.g., highly crystalline
structures).11,12

Regression based prediction methods appeared in the polymer
science and engineering community in the 1970s, providing power-
ful means for rapidly predicting polymer properties.2,10,13 Since the
conception of these techniques, quantitative structural property
relationship (QSPR) methods8,14–16 and other hand-crafted feature
sets were utilized to numerically represent polymer structures for
infusion into machine learning (ML) workflows similar to the one
seen in Fig. 1. In our previous works, we developed a set of hierar-
chical descriptors to numerically represent polymers.10 Using this
method, the chemical and structural features of a polymer at differ-
ent length scales—atomistic, block, and morphological—are gener-
ated. Our unique fingerprinting scheme combined with available
polymer property datasets, either empirical or computational, was
used to build ML models that rapidly predict various polymer
properties including the glass transition temperature, tensile
strength, and density.10 In this previous work, a predictive RI
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model was trained on DFPT computed data. There were limitations
in this model due to the assumptions inherent to DFPT simula-
tions17 (such as the assumption of highly compact crystalline struc-
tures which led to over-estimation of the RI in the training set).

Here, we trained and optimized a ML model for predicting RI
using experimentally measured RI of 500 polymers. A unique hier-
archical polymer fingerprinting scheme,10 a feature reduction tech-
nique, and the Gaussian process regression (GPR) algorithm were
used to train the ML model. The performance of the developed
model was bench-marked against our previous work and validated
using 27 polymers entirely distinct from the training set. We
believe the resulting model instantaneously and accurately predicts
RI of new polymers while identifying critical features necessary for
designing polymer structures to achieve specific RI values. These
contributions can assist in the rational design and screening of
polymer candidates for applications where optical properties, spe-
cifically RI, are crucial for design specifications.

II. DATASET AND METHODOLOGY

A. Dataset

Our dataset is comprised of experimentally measured RI of
527 polymers at room temperature. The polymers in this dataset
are made of nine chemical species including H, C, N, O, S, Si, F,
Cl, and Br and span multiple polymer classes, e.g., polyoxides, pol-
yvinyls, polyolefins, polyamides, polyimides, polyureas, polyethers,
etc. As illustrated in Fig. 2(a), RI values range from 1.3 to 2.0 and
follow a bell-shape distribution, i.e., with the majority of data
located from 1.4 to 1.8. Only a few data points are available in high
(.1.8) and low (,1.4) RI ranges, respectively. Data were obtained
from numerous publicly available sources, including the Polymer
Handbook,18 Handbook of Polymers,19 and Polymer Data
Handbook.20 Data were also acquired from literature sources8 and
online repositories.10,21 When multiple RI values were reported for
the same polymer, the median RI of the set was chosen to avoid

FIG. 1. Workflow for building and
implementing data-driven RI prediction
models for polymer design.

FIG. 2. (a) Refractive index (RI) dataset, including 500 training polymers and 27 unseen polymers. (b) Chemical diversity as a function of the first and second principal
components (PC1 and PC2), where color symbols represent polymer class.
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irregularities caused when averaging outlying values.22 In this
work, 500 of the 527 points were used to train the ML model with
fivefold cross-validation (CV), while the remaining 27 polymers
were withheld to validate the developed ML model.

B. Features engineering

A hierarchical fingerprinting scheme generated features that
numerically represent the chemical and bonding relationships red
of a polymer. It includes (1) atomic-level features that capture
atomic information of “AiBjCk” fragments (i, j, and k are the
number of fold-coordinated A, B, and C atoms, respectively); (2)
block-level features which describe the presence of a set of 500 pre-
defined building blocks typically found in polymers; and (3)
morphological-level features that cover information at chain-level
scale, e.g., the length of the side chains and fraction of atoms that
are part of rings. More detailed descriptions of our fingerprinting
technique have been described previously.10 Using this fingerprint-
ing scheme, 388 features (denoted by XAll) were generated for all
527 polymers. Feature values for all 527 polymers were normalized
from 0 to 1.

In addition, we performed principal component analysis
(PCA) on the entire 527 polymer dataset with all 388 features to
visualize the breadth of the chemical and structural diversity. In
Fig. 2(b), the first (PC1) and second (PC2) principle component
values for each polymer were plotted. Various polymer classes were
labeled by colored symbols in Fig. 2(b), revealing the diverse chem-
ical space in consideration.

To identify relevant features, the Least Absolute Shrinkage
and Selection Operator regression (LASSO) method was used to fit
the entire training set (500 polymers) and the initial 388 features
with fivefold CV. By optimizing the regularization term, the model
with the highest R2 coefficient was obtained. Upon completion, 21
features (denoted by XLASSO) with non-zero coefficients remained
and were subsequently used to train ML models in Sec. III.

C. Gaussian process regression

Gaussian process regression (GPR) with the radial basis func-
tion (RBF) kernel was applied to train the ML models. The
co-variance function between two polymers with features x and x0

is expressed as

k(x, x0) ¼ σ f exp � 1
2σ2

l

kx � x0k2
� �

þ σ2
n: (1)

Here, σ f , σ l and σn denote the variance, the length-scale parame-
ter, and the expected noise in the RI dataset, respectively. Each
value was determined by maximizing the log-likelihood estimate
during the model training process. In addition, fivefold CV was
adopted in all ML models to avoid overfitting. The root mean
squared error (RMSE) and the R2 coefficient were the two metrics
used to evaluate the performance of the GPR models.

In order to understand the effect of training set size on predic-
tion accuracy, models were generated using increasing training set
sizes. Initially, 100 polymers were randomly selected from the train-
ing set and used to train a model. The training set in subsequent
models increased by 50 polymers until the entire 500 polymer
dataset was used for training. 50 models were developed for each
training set size and the average RMSE and standard deviation
were calculated for all 50 models. The results from this process
were used to build the learning curve shown in Fig. 3(a).

III. RESULTS AND DISCUSSION

As illustrated in Fig. 3(a), the performance of developed ML
models were evaluated using the learning curves, which show the
average training and test RMSE as a function of training set size.
The test set in this figure refers to 500 minus the training set size,
all of which are distinct from the 27 polymers used for model vali-
dation. The error bars represent 1 standard deviation of the average

FIG. 3. (a) Prediction accuracy for ML-XAll and ML-XLASSO models trained using different train set sizes, averaged over 50 runs. The corresponding test set sizes in (a)
are equal to the difference between total training dataset (500) minus the train set size. (b) Parity plot obtained from the ML-XLASSO model (21 features) with train and test
set size of 450 and 50, respectively. (c) Parity plot obtained from ML-XLASSO model using the entire training set, including prediction of the 27 unseen with the ML-XLASSO
and prediction using the ML- XDFPT from our previous work.
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RMSE values over 50 runs. As expected, the test RMSE of the ML
model trained with all initial features (ML-XAll) and LASSO
reduced features (ML-XLASSO) decreased with increasing training
set size. We also note that models trained with XLASSO features, on
average, led to lower test RMSE than XAll features, demonstrating
that LASSO regression is an effective method for eliminating irrele-
vant features in this work. Further, ML-XLASSO provides a test
RMSE of 0.05 (,4% of absolute RI values), when 90% of the train-
ing set was used. A corresponding parity plot is shown in Fig. 3(b),
i.e., experimental RI vs ML predicted RI using ML-XLASSO. The
error bars in the plot represent the GPR uncertainty.

The RIs ranging from 1.8 to 2.0 are underestimated (,10%)
by the ML model. This is a result of sparse training data in
this specific region [see Fig. 2(b)]. Table S1 in the supplementary
material shows five HRIPs with under-predicted RI. One common-
ality among the repeat units is the presence of rings on the main
chain. In addition, all five examples contain S and or N. Although
these features correlate positively with RI (see Fig. 4), perhaps the
degree to which these features contribute to high RI is not enough.
It is possible other feature reduction techniques would have yielded
a more accurate feature set. Features such as number or weight
average molecular weight or stereochemistry not present in the
current feature set could also improve prediction of HRIPs. Despite
the under-prediction of HRIPs, a test RMSE of 0.05 is achieved
with the ML-XLASSO model.

To validate the generality and accuracy of the developed ML
models, the RI of 27 unseen polymers was predicted using the

ML-XLASSO model trained with the entire dataset (500 data points).
These 27 unseen polymers were entirely unique structures from the
training set, and their RI uniformly spanned the range (1.3–2.0) of
the training set, as shown in Fig. 2. In addition, we compared the pre-
dicted RI of 27 unseen polymers using ML-XLASSO and our previous
ML model trained on 400 DFPT computed data (ML-XDFPT).

10

Figure 3(c) shows ML-XLASSO predicted RI of 500 training
polymers, ML-XLASSO predicted RI of 27 unseen polymers, and
ML- XDFPT predicted RI of the same 27 unseen polymers. We note
that the ML-XLASSO model can accurately predict RI of 27 unseen
polymers, with the test RMSE of 0.05 and R2 of 0.88. Our previous
ML-XDFPT had a test RMSE of 0.19 and an R2 of 0.86, which indi-
cates that the present ML-XLASSO model has better RI prediction
capabilities (higher R2 and lower RMSE), when compared with the
ML-XDFPT model. The experimentally measured RI (EXP) and
the ML-XLASSO and ML-XDFPT predicted RI values of the 27
unseen polymers are summarized in Table S1 in the supplementary
material. All 27 polymers predicted using the ML-XDFPT were over-
predicted. In fact, of the entire 527 experimental dataset, only 19 RI
were not over-predicted. There are two main reasons for the
improved results. First, in the ML-XLASSO, experimental values used
for training overcome the accuracy problem of the DFPT training
data mentioned earlier. Second, a more diverse chemical space of
polymers is present in the ML-XLASSO training dataset. Figure 3(c)
indicates that the ML-XLASSO model accurately predicted the RI of
new polymers and could act as a tool for predicting the RI of novel
polymer structures.

FIG. 4. LASSO selected features having strong positive or negative correlations with RI. R denotes an arbitrary chemical group of C, O, H, N elements.
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It is also worth analyzing the LASSO reduced features
(XLASSO). Figure 4 lists the 21 features correlated with RI. The posi-
tive and negative coefficients from the LASSO method indicate pos-
itive and negative correlations with RI. RI arises from the electronic
polarization of materials, i.e., the electron cloud displacement
under an electric field. We note that carbon double and triple
bonds (atomic and block-level features, respectively) and the
number of rings (chain-level feature) have a positive correlation
with RI. This is because the double and triple bonds have a high
mobility of π electrons, leading to high electronic polarization and
thus high RI. The introduction of C–F or C–O bonds, on the other
hand, can decrease the electronic polarization by strongly binding
electrons, due to the high electronegativity of F and O atoms.
Moreover, there is a negative correlation between RI and the chain-
level features including number of three-vertex carbon atoms and
distance between rings, since these features can introduce large
volumes, resulting in low polarization density.

Using correlation information, it is reasonable to create guide-
lines to assist the polymer design process when RI as a target prop-
erty. To achieve a high RI select monomers and polymerization
pathways that maintain numerous carbon double and triple bonds,
rings, and S and N atoms. Alternatively, if a slightly lower RI is
desired, prioritize halogen or ether groups, for example. Coupling
these guidelines with instantaneous ML prediction capabilities
could allow accelerated screening and synthesis of novel polymers
with tuned RI.

IV. CONCLUSION

In conclusion, we have developed a machine learning (ML)
model capable of instantaneous refractive index (RI) prediction of
polymers and provided a set of design criteria for creating new
polymers with highly tuned RI. This model is trained using a
dataset of experimental RI of 500 polymers, a hierarchy of polymer
features and Gaussian process regression algorithm. The perfor-
mance of the developed ML model was validated with 27 unseen
polymers and proven to have greater accuracy and precision com-
pared with our previous work. Key chemo-structural features that
correlate to high and low RI values were identified and can be used
as means for guiding design of new polymer structures where tai-
lored RI is desired. If this model will be used to design polymers
with large RI, the Gaussian process regression uncertainty will
provide the reliability of the predicted values. Novel polymer struc-
tures and polymers with high RI (.1.8) may have high uncertain-
ties and these uncertainties may provide useful guidance for next
experiments via active learning, with newly generated data aiding
in model improvement. A final model was trained using all 527
polymers and the 21 least absolute shrinkage and selection operator
regression features. This model is hosted on the Polymer Genome
platform (https://www.polymergenome.org) and can be utilized to
rapidly predict the RI of desired polymers.

SUPPLEMENTARY MATERIAL

See the supplementary material for five HRIPs with under-
predicted RI from Fig. 3(c) (Table S1) and 27 unseen polymers
with corresponding experimental, ML-XLASSO predicted, and
ML-XDFT predicted RI values (Table S2).
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