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Frequency-dependent dielectric constant prediction
of polymers using machine learning
Lihua Chen1, Chiho Kim1, Rohit Batra1, Jordan P. Lightstone1, Chao Wu2, Zongze Li 2, Ajinkya A. Deshmukh3, Yifei Wang2,
Huan D. Tran1, Priya Vashishta 4, Gregory A. Sotzing3, Yang Cao 2 and Rampi Ramprasad 1✉

The dielectric constant (ϵ) is a critical parameter utilized in the design of polymeric dielectrics for energy storage capacitors,
microelectronic devices, and high-voltage insulations. However, agile discovery of polymer dielectrics with desirable ϵ remains a
challenge, especially for high-energy, high-temperature applications. To aid accelerated polymer dielectrics discovery, we have
developed a machine-learning (ML)-based model to instantly and accurately predict the frequency-dependent ϵ of polymers with
the frequency range spanning 15 orders of magnitude. Our model is trained using a dataset of 1210 experimentally measured
ϵ values at different frequencies, an advanced polymer fingerprinting scheme and the Gaussian process regression algorithm. The
developed ML model is utilized to predict the ϵ of synthesizable 11,000 candidate polymers across the frequency range 60–1015 Hz,
with the correct inverse ϵ vs. frequency trend recovered throughout. Furthermore, using ϵ and another previously studied key
design property (glass transition temperature, Tg) as screening criteria, we propose five representative polymers with desired ϵ and
Tg for capacitors and microelectronic applications. This work demonstrates the use of surrogate ML models to successfully and
rapidly discover polymers satisfying single or multiple property requirements for specific applications.
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INTRODUCTION
Polymers are important dielectric materials that are often used for
a wide range of applications, including high-energy-density
capacitors1–9, high-voltage cables10, microelectronics11, and
photovoltaic devices12,13. Each application requires a given range
of the polymer dielectric constant ϵ, also referred to as the relative
permittivity. High ϵ polymers are needed for high-energy-density
capacitors and photovoltaic devices to allow facile charge
extraction. On the other hand, polymers with low ϵ are needed
in other applications, e.g., to reduce signal-delay time in
microelectronics, and lower conduction loss in high-voltage
cables. Extensive efforts are undertaken to optimize device
performance by tailoring the ϵ of a given polymer. As a common
example in the capacitor domain, many strategies have been
proposed to increase ϵ of polymers via doping/coating high
ϵ inorganic particles (e.g., BaTiO3)

14,15, grafting/blending with
highly polar polymers (e.g., polyvinylidene fluoride, PVDF)16 or
metal-organic polymers17. However, such modifications are almost
always accompanied with new challenges, e.g., reduced break-
down strength, high dielectric loss and increased film processing
cost. Therefore, it is highly desirable to design pure all-organic
polymers with tailored ϵ values4,8,18,19, while not compromising
other attractive and necessary attributes.
ϵ is related to the electric polarization of a material under an

alternating electric field20,21. It consists of three contributions,
arising from electronic (ϵelec), ionic (ϵionic), and dipolar (ϵdiploar)
polarization. Each of these polarization mechanisms have different
response times, resulting in different contributions to the overall ϵ
as a function of the applied frequency—above optical frequencies
only ϵelec contributions are relevant, in THz regime both ϵelec+
ϵionic contribute, and at lower frequencies all of the ϵelec+ ϵionic+
ϵdiploar contributions are significant. Thus, generally, ϵ decreases

with an increase in the applied frequency (ignoring certain near-
singularity artifacts at the resonant frequencies). This also suggests
the significance of obtaining the complete frequency-dependent ϵ
behavior for polymers, rather than a particular ϵ value at a single
frequency. Extensive computational efforts have been made to
compute the ϵ of polymers in the higher-frequency (THz)
regimes7,22. For example, density functional perturbation theory
(DFPT) has been used to compute the ϵ of crystalline polymers
with acceptable accuracy7,22. However, this method is computa-
tionally expensive and restricted to small systems (<50 atoms). As
a result, the computed ϵ can only account for ϵelec and ϵionic parts,
excluding the ϵdiploar contributions arising from block- and chain-
level changes in the polymers. Furthermore, the assumption of
dense ordered crystalline structures commonly made in these
computations (to allow for a small unit cell) leads to an
overestimation of the ϵionic part. These issues can be partly solved
by using large-scale classical molecular dynamics (MD) simula-
tions23, but these are restricted to polymer systems with reliable
classical force field.
Data-driven techniques are popular and powerful alternatives to

build surrogate models for property prediction and material
design, greatly accelerating the (discovery and application of new
materials8,24–29. In the polymer domain, group contribution
methods have been developed to predict various properties of
polymers, such as ϵ21. However, major problems with this
approach include the inability to generalize to new polymers
containing functional groups outside the library of considered
groups, and the disregard of sequence and connections of the
constituting functional groups. A recent successful development
has been to use hand-crafted features (also called descriptors or
fingerprints) within the context of machine-learning (ML) models
for polymer property prediction6,22,30–32. Although reliable
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ϵ-prediction models were developed in our previous work32, those
are limited by the accuracy of the underlying DFPT dataset,
especially due to the assumption of crystalline polymer structures
(as mentioned above). More importantly, those models cannot
predict the complete frequency-dependent ϵ behavior.
In this work, we develop an ML model to predict the frequency-

dependent ϵ behavior of polymers, using a dataset of 1210
experimentally measured values at various frequencies (spanning
15 orders of magnitude). This is achieved using a 3-level
hierarchical polymer fingerprinting scheme and the Gaussian
process regression (GPR) algorithm to train the model, as shown in
Fig. 1. The resulting ML model can accurately and rapidly predict ϵ
of new polymer candidates across a wide range of frequencies, as
validated using the performance on unseen test set. To better
understand the ML models developed and derive simple chemical
trends, we investigate the key chemical features that dominate
the ϵ of polymers. Furthermore, to showcase the predictive power
and the usefulness of the developed surrogate models, we
computed the frequency-dependent ϵ of a candidate set of 11,000
unseen polymers manually accumulated from various available
sources7,21,32–34. Another critical design property (glass transition
temperature, Tg), reflective of the thermal stability of these
polymers, was predicted using our previously developed ML
model32. Using these two predicted properties, five representative
polymers satisfying specific ϵ and Tg requirements are proposed
for capacitor and microelectronic applications.

RESULTS
Dataset and polymer fingerprints
As illustrated in Fig. 2a, 1210 experimental ϵ values belonging to
738 unique polymers were collected from the literature9,19,21,33,35–42

to train the ML models. These measurements were made
at 9 frequency values (i.e., 60, 102, 103, 104, 105, 106, 107, 109,
and 1015 Hz), at room temperature and under dry conditions. Here,
ϵ values at 1015 Hz represent the optical frequency region and
were obtained by taking the square of the experimental refractive

index. Given the limitation of available experimental values, each
polymer in Fig. 2a has ϵ values available at 1–8 frequency values.
Furthermore, this 738-polymer dataset includes 11 elements, i.e.,
C, H, B, O, N, S, P, Si, F, Cl, and Br and various polymer classes, e.g.,
polycarbonates, polyimide, polyamide, polyolefins, polyvinyl,
polyethers and polyesters. The ϵ distribution as a function of
frequency (in Hz) is presented in Fig. 2a, along with the
corresponding polymer count at each frequency. We note that
the ϵ dataset ranges from 1.3 to 11 and is slightly unbalanced in
terms of data count at different frequencies. This can be attributed
to the difficulties experienced when making empirical measure-
ments at various frequencies, but we believe that the data
diversity is sufficient to build reliable regression models. The
trends in ϵ values for 6 common and diverse polymers highlighted
in Fig. 2a signify the importance of polymer chemistry. It is worth
noting that ϵ of polar polymers like PVDF and polyvinyl alcohol
(PVA) significantly decreases with an increase in frequency while
for non-polar polymers, such as polypropylene (PP) and ETFE, ϵ is
not sensitive to the applied frequency. Therefore, for the ML
model to capture such trends accurately, it is essential that the
dataset is representative and balanced in terms of polymer
chemistry and count, respectively. More details on the ϵ dataset
are provided in the “Methods” section.
The next important step towards building accurate and reliable

ML models is to generate relevant features that uniquely
represent each polymer and also capture its frequency-
dependent ϵ behavior. To capture the polymer chemistry, we
used features from three hierarchical levels, i.e., (1) atomic-level
fragments, (2) block-level fragments, and (3) chain-level features. A
total of 411 chemical features were used to numerically fingerprint
738 polymers. Additionally, the frequency in log-scale (log F) was
incorporated as the key feature to capture the frequency-
dependent behavior, overall resulting in a 412-dimensional
feature vector. Next, the least absolute shrinkage and selection
operator (LASSO) method was adopted for dimensionality
reduction and elimination of irrelevant features. The details on
the fingerprinting scheme and the use of the LASSO method are

Fig. 1 Machine-learning workflow. Schematic of the workflow adopted to build general data-driven models of frequency-dependent ϵ for
polymers.

Fig. 2 Experimental dielectric constant dataset and the chemical space of training and unseen datasets. a Experimental ϵ as a function of
the frequency (unit, Hz), along with the data count at each frequency. The trends in ϵ values of six representative polymers are also shown
using dashed lines. b Chemical space of the training set (738 polymers) considered this work (light blue squares), with respect to a larger
unseen dataset of 11,000 polymers (gray circles), illustrated using the first two principal components (PC1 and PC2). A few representative
polymer classes of the training dataset are highlighted with colored symbols.
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included in the “Methods” section, while the final number
of features retained for model development are summarized in
Table 1.
To validate the generality, reliability and usefulness of the ML

models developed in this work, the frequency-dependent ϵ of an
unseen dataset of 11,000 candidate polymers previously synthe-
sized elsewhere (but for which no dielectric characterization has
been done)7,21,32–34, were predicted. This unseen dataset contains
polymers distinct from the training dataset (of 738 polymers), but
is made up of the same 11 elements, i.e., C, H, B, O, N, S, P, Si, F, Cl,
and Br. Furthermore, the chemical diversity of this unseen dataset
is quite similar to that of the training dataset (of 738 polymers), as
illustrated in Fig. 2b using the first two (PC1 and PC2) components
obtained from the principal component analysis (PCA) on
chemical features of all polymers. The similarity of two datasets
is further discussed using the agglomerative hierarchical cluster-
ing analysis in Supplementary Section 1. Note that the training
dataset (light blue square) spans the chemical space well,
indicating that it is representative of the unseen polymer dataset
(gray circles). Several representative polymer classes of the
training dataset are also labeled with colored symbols in Fig. 2b.

Frequency-dependent machine-learning models of dielectric
constant
Considering that ϵ depends on both polymer-type and the applied
frequency, the ML models (using the GPR algorithm) were trained
in two different fashions with varying train-validation-test splits,
referred to here as the (1) polymer-types-split (738 polymers) and
(2) data-points-split (1210 points) approach. In the former split, the
test set consists of completely different polymers than those in the
training set, resulting in evaluation of ML performance on unseen
polymer cases. While both random and stratified sampling
methods were used in the latter to split train-validation-test sets
across all polymers and all frequencies, as discussed in Supple-
mentary Section 2.1. The random sampling method is selected in
the present work due to the comparable ML performance of two
sampling methods. For all models, fivefold cross-validation (CV)
was used to avoid overfitting, and two error metrics, namely, root
mean square error (RMSE) and the coefficient of determination
(R2), were used to evaluate their performance.
Figure 3a1, b1 show the learning curves of the ML models

trained using polymer-types-split and data-points-split methods,
respectively. The average training and test RMSE of ϵ prediction as
a function of training set size is plotted, with the error bars
denoting 1σ standard deviation in the reported RMSE values over
50 runs. Results for both the cases, i.e., with all 412 features (GPR-
XAll) and with those retained after LASSO dimensionality reduction
(GPR-XLASSO) are included. As expected, the test RMSE decreases
with an increase in training set size for all cases. We note that the
GPR-XLASSO does a better job of improving the ML performance
when trained using the data-points-split approach in comparison
with the polymer-types-split approach. Further, a higher test RMSE
of 0.67 resulted in polymer-types-split models using 90 % training
set (664 polymers), while a test RMSE of 0.35 was obtained in data-
points-split models (with 1089 training points). Considering the ϵ

dataset ranges from 1.3 to 11, this amounts to an error of ≲7%. In
addition to the LASSO feature reduction method, the recursive
feature elimination (RFE) using linear support vector regression
algorithm was used in the data-points-split model to backward
eliminate irrelevant features. The corresponding learning curve is
shown in Supplementary Fig. 4, revealing that the GPR-XLASSO
model provides higher prediction accuracy.
To further validate the generality and accuracy of the two ML

models, all frequency-dependent information of five common
polymers, namely, polyethylene terephthalate (PET), polypropy-
lene (PP), polyacrylonitrile (PAN), polyvinyl chloride (PVC) and
PDTC-HK511, was intentionally included in the 10% test set
(completely unseen by the 90% train set). These five polymers
were selected based on their difference in polarity, wide range of
ϵ values, and larger availability of frequency-dependent data. The
resulting parity plots between ML prediction vs. experimental ϵ
using the GPR-XLASSO models are portrayed in Fig. 3a2, b2. The
error bars in these cases represent the GPR uncertainty and the
size of markers denote the frequency applied. It can be seen that
the R2 for the test set of polymer-types splits and data-points splits
models is 0.74 and 0.92, respectively. The corresponding
frequency-dependent ϵ behavior for PP, PVC, and PAN polymers
is shown in Fig. 3a3, b3. The remaining two polymers (PET and
PDTC-HK511) are available in Supplementary Fig. 5. It can be
observed that frequency-dependent ϵ trend for PP and PAN are
predicted fairly well using the polymer-type-split models,
although the GPR uncertainties are slightly high due to absence
of similar polymer chemistry within the training set. This issue is,
however, greatly improved in the data-points-split model, wherein
more polymer types (695) are included in the training set as
compared to that in the polymer-type-split method (with 664
polymers).
A major benefit of the presented ML models is their ability to

predict ϵ across a wide range of frequencies (60–1015Hz). In
Fig. 3a3, b3, we also show the ϵ predictions for the three unseen
polymers at 1012 Hz, where empirical data is unavailable. The ML
predictions can be seen to closely follow the available frequency-
dependent ϵ trend. We also compare these models with our
previous work utilizing DFPT-based computed ϵ values at THz
frequency (denoted as ML-DFPT). As illustrated in Supplementary
Fig. 6, the ML-DFPT predicted ϵ of PET, PP, and PVC are much
higher than their corresponding experimental values at 109Hz,
leading to incorrect frequency-dependent ϵ trend; ϵ value should
decrease with increase in frequency. The reason for this
discrepancy is the overestimation of DFPT computed ϵ values,
which are computed using unrealistic crystalline structures of
polymers having unreasonably higher densities than realistic
semi-crystalline or amorphous case. On the other hand, the
present ML models utilize information available at different
frequencies (both the lower regime and the higher optical region)
to accurately predict the ϵ values at 1012 Hz.
Overall, Fig. 3 shows that the data-points-split-based ML models

perform better than their polymer-types-split-based counterparts
in terms of test RMSE, the error trends in the learning curve, and
the prediction capability of five completely unseen polymers. Such
observation is expected and understandable because of inclusion
of fewer polymer types in the polymer-types-split training set.
Moreover, in the data-points-split approach it is possible that the
same polymers with different frequencies are randomly sampled
in the training and the test sets, thus improving the ML
performance. From a theoretical standpoint, these two ML models
provide predictive capability of ϵ at two extremes: data-points-
split model is appropriate for polymer cases with some known
frequency-dependent ϵ values, while polymer-types-split model is
applicable for completely new polymers with no ϵ information.
With these systematic and careful studies, we believe that the
random data-points-split approach is reliable and appropriate to

Table 1. Details of ML models. NX is the number of features.

Models Train-validation-test split Feature
reduction

NX ML

a Polymer-types (738), None 412 GPR-RBF

Group-shuffle-split,
fivefold

LASSO 57

b Data-points (1210), None 412 GPR-RBF

K-fold, fivefold LASSO 53
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be used to train the final predictive model with the entire dataset
and CV.

Factors affecting dielectric constant
In addition to building the ML models, it is valuable to analyze the
key features that correlate highly with the measured ϵ behavior in
polymers. In the data-points-split approach, 53 features were
retained from the initial set of 412 after LASSO-based dimension-
ality reduction. Figure 4 summarizes some representative features
with strong negative or positive correlation with ϵ, with the
corresponding coefficients available in Supplementary Fig. 7. As
expected, there is a negative correlation between log F (frequency
in log-scale) and ϵ with a coefficient of –0.93. Additionally, the
presence of certain atomic- and block-level features, including
CH2CH2, CF2CF2, benzene rings, CH3, CF3, (CH3)3, and CH2CH2CH,
and chain-level features, such as the high number of 3-vertex
carbon atoms, number of cyclic double bonds and presence of a
purely single bond, lead to lower ϵ. The main reason being that
these functional groups introduce zero or negligible net dipole
moments but larger free volumes, resulting in small net dipole

density and thus lower ϵelec. In contrast, the presence of polar
groups, such as CH2CF2CH2, C–F, C–Cl, –OH, ketone, thioketones,
NH, amide, pyridine, pyrrole, CH2CH2O, and various fragments
including NH/amide could strongly enhance the electronic
polarity (ϵelec) of polymers. Consequently, these positive (negative)
correlated features can increase (decrease) the total ϵ across the
entire frequency regime by controlling ϵelec. Furthermore, the
structural arrangement of these functional groups strongly affects
the polymer ϵ value, e.g., PVDF (CF2CH2CF2CH2) has an ϵ of 9.45 at
100 Hz while ETFE (CH2CH2CF2CF2) has an ϵ of just 2.6. Thus, it was
essential to cover such special sequence-controlled block-level
features in our fingerprinting scheme (e.g., CH2CH2CF2 and
CH2CF2CH2) to distinguish polymers. Also, the chain-level features
including the topological polar surfaces area of polar elements
(e.g., O, N, S, F, and Cl) and the number of H-bond acceptors have
a positive relationship with ϵ. These features can increase the ionic
(ϵionic) and dipolar (ϵdipolar) parts by strengthening the H-bonding
and dipole interactions between polymer chains, thus increasing
the overall ϵ at THz and lower frequency regime. All these findings
can be helpful guidelines for rational design of polymers with
desired frequency-dependent ϵ values.

Fig. 3 Machine-learning models of dielectric constant. ML models of ϵ based on polymer-types-split a and data-points-split b. a1 and b1 are
learning curves trained using all features (GPR-Xall) and LASSO (GPR-XLASSO) reduced features, with the error bars denoting 1σ standard
deviation in the reported RMSE values over 50 runs. a2 and b2 are parity plots using GPR-XLASSO and the 90% train set, where all frequency-
dependent information of five polymers (PP, PET, PAN, PVC, and PDTC-HK511) were intentionally included in the 10% test set. Symbol sizes
represent the frequency applied. a3 and b3 show Expt. vs ML predicted ϵ of PP, PVC and PAN in a2 and b2, respectively, with frequency= 60,
102, 103, 104, 105, 106, 107, 109, and 1015Hz. The remaining two polymers (PET and PDTC-HK511) are available in Supplementary Fig. 5.
Furthermore, the additional ML predicted ϵ values at 1012 Hz of these three polymers are shown. Error bars in a2, a3, b2, and b3 are predicted
GPR uncertainties.
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Application-specific polymers design with desired dielectric
constant
Next, we move on to apply the developed ML model to discover
novel polymers with desired ϵ for capacitors and microelectronic
devices. As illustrated in Fig. 5a, the frequency-dependent ϵ of the
11,000 unseen candidate polymers in Fig. 2b were predicted using
the GPR-XLASSO model trained on the full dataset (1210 points),
the data-points-split approach and fivefold CV. We note that
ϵ predictions can be made across a wide range of frequencies
(e.g., 60, 102, 103, 104, 105, 106, 107, 108, 109, 1012, and 1015 Hz),
although no training data is available at THz frequency. The
inverse relation of predicted ϵ with frequency for these new
polymers can be observed in Fig. 5a and further validations are
shown in Supplementary Fig. 8.
To optimize polymer candidates for capacitor and microelec-

tronic applications, in addition to ϵ, another critical design
property, Tg, is considered. Polymers with high Tg are expected
to be thermally stable, which is essential for these two
applications9,43,44. Thus, in Fig. 5a, we also provide ML predicted
Tg using our previously developed models32. Based on the past
considerations appropriate for high-temperature energy density
capacitors2,3,43,44, Tg ≥ 450 K was used as the first criterion to
discover polymers for high-temperature applications. As men-
tioned earlier, polymers with high ϵ are required for capacitors,
thus, 85 polymers with ϵ ≥ 5 (at 100 Hz) were selected from Fig. 5a
expected to display high-energy density. As insulating films in
microelectronic devices need polymers with low ϵ to decrease the
signal-delay time, 191 polymers with ϵ in a range of 2.0–2.5 (at
100 Hz) were identified. For each application, the frequency-
dependent ϵ of five representative polymers is shown in Fig. 5b.
The corresponding monomer unit, and the ML-based ϵ (at 100 Hz)
and Tg (in K) predictions are summarized in Fig. 6. Here, ID 1–5
represent cases with high ϵ for capacitors and ID 6–10 are
polymers with low ϵ for microelectronic devices.
As shown in Fig. 5b, the frequency-dependent ϵ trend of ten

polymers is correctly captured. Moreover, the monomer chemistry
for the selected 5 polymer with high ϵ (ID 1–5) includes either
amide, OH or C–Cl groups, agreeing with the positive correlation
trend discussed above (and shown in Fig. 4). Similarly, the
presence of CF3 group and benzene rings greatly decrease the

polymer ϵ, as mentioned earlier and can be seen from the selected
list of low ϵ polymer with amides groups (ID 6–8) and OH groups
(ID 9) in Fig. 6. We also note that all of the selected 10 polymers
contain rigid benzene rings, resulting in high Tg. Based on the
prediction accuracy reached by our models on the unseen test set,
the ability of the model to correctly capture inverse ϵ vs. frequency
behavior, and the chemical arguments made above, we believe
that these proposed ten polymers are good candidates for further
experimental validations.

DISCUSSION
Using an experimental ϵ dataset of 738 polymers (or 1210 data-
points) at various frequencies, unique 3-level hierarchical polymer
features and the GPR algorithm, we built a single ML model to
accurately predict the frequency-dependent ϵ behavior of
polymers. There are several advantages of the ML models
presented here: first, it can predict ϵ of polymers across a wide
range of frequencies (60–1015 Hz, excluding the resonant
frequency regions). The single ML model developed here more
accurately capture the inverse relationship between ϵ and
frequency, compared with separate ML models for ϵ at different
frequency regimes, as discussed in Supplementary Section 4. As
the frequency in log-scale was used as a feature in the single ML
model, the frequency-dependent trend was learned from the
training data itself. Furthermore, we found the single ML model to
be more generalizable for new cases, as it was trained using a
larger polymer dataset. Additional advantages of having the
frequency in log-scale as a feature is that it allows us to make ϵ
predictions at any arbitrary frequency value, which is not possible
with separate ML models. This complete frequency-dependent
picture provides comprehensive information to assist rational
design of new polymers. The present ϵ-prediction model is already
implemented in our Polymer Genome platform (http://www.
polymergenome.org).
Second, the predicted GPR uncertainty acts as a useful guide to

know when the ML predictions can be trusted. The present ML
model is more suitable for homo-polymers containing C, H, B, O, N,
S, P, Si, F, Cl, and Br atoms. Also, higher uncertainties can be
expected within the frequency range of 1010–1014Hz owing to the
unavailability of training data in this regime. These uncertainties

Fig. 4 Representative features affecting dielectric constant. Representative features having strong negative or positive correlations with
ϵ. R represents an arbitrary chemical group of C, O, H, N elements, and log F denotes the log-scale frequency value used as a feature in the
ML model.
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can provide useful guidance for next experiments via active
learning, with the newly generated data aiding model
improvement45.

Third, key features that strongly affect the polymer ϵ behavior
were analyzed, forming a crude first stage criteria to find polymers
with the desired ϵ. To attain high ϵ, common polar groups,
including C–F, –OH, C=O and amides, and rigid groups such as

Fig. 6 Details of ten representative polymers. The monomer unit, and the ML predicted Tg and ϵ (at 100 Hz) of ten representative polymers
shown in Fig. 5b. Polymers with ID 1–5 have high ϵ (≥5), while ID 6–10 are polymers with low ϵ (2–2.5). The associated ML prediction
uncertainty is also provided.
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Fig. 5 Machine-learning-predicted dielectric constant of 11,000 unseen polymers. a ML predicted ϵ at various frequencies (i.e., 60, 102, 103,
104, 105, 106, 107, 108, 109, 1012, and 1015 Hz) for 11,000 unseen polymers from Fig. 2b, along with their ML predicted Tg values. b Ten
representative polymers with high Tg (≥450 K) selected from a, such that five polymers (ID 1–5) have high ϵ (≥5), and remaining five (ID 6–10)
have low ϵ (2–2.5).

L. Chen et al.

6

npj Computational Materials (2020)    61 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



pyridine and pyrrole can be introduced into polymers. On the
other hand, the introduction of non-polar groups (e.g., benzene
rings and CH3) or functional groups with low polarization density
(e.g., CF3) leads to low ϵ. However, we note that presence of some
flexible polar groups may induce an unwanted high dielectric loss,
which can be further eliminated by introducing additional
screening criteria on other polymer properties, e.g., low dielectric
loss and high breakdown strength.
Finally, ϵ and Tg of about 11,000 polymers have been predicted

using the ML models developed in this and our previous work32,
respectively, providing a huge pool of polymers for various
applications. Using the Tg and ϵ as the screening criteria, 5 high
and 5 low ϵ polymers are proposed for capacitors and
microelectronic devices, respectively. While this work initiates a
great opportunity to select polymers satisfying two properties, it
can be easily extended to three or more properties.
Although we believe that the developed ML model is fairly

accurate and universal, more efforts are envisioned in the future.
First, Fig. 3 shows that a test RMSE of 0.67 and 0.35 is achieved for
the polymer-types-split and data-points-split-based ML models
using 90% training set and 10% test set, respectively. Therefore, it
is expected that the average RMSE of predicted values for new
cases ranges from 0.35 to 0.67. For polymers in applications
requiring a high ϵ of 5–11, even the RMSE of 0.67 leads to an
acceptable relative error of 6–13.4%. For applications require
polymers with ϵ ranging from 2 to 3.5, the RMSE of 0.35 results in a
relative error 10–17%, which is slightly high but acceptable. The
relative error of some completely unseen polymers may reach to
19–33% with respect to the RMSE of 0.67. However, their
predicted GPR uncertainties should also be high. Therefore, more
data should be collected from literature either manually or using
natural language processing techniques46 to improve the model
performance and dataset diversity. Second, almost no empirical
data is available in the THz region. First-principles MD simulations
with the reactive force fields have been recently shown to
accurately estimate ϵ values at THz frequencies using amorphous
phases of polymers47. Such method can successfully overcome the
problem of ϵ overestimation introduced because of the unrealis-
tically higher densities of crystalline polymer models used in the
DFPT method. There is a great opportunity to incorporate
theoretical data to fill the empty THz region of our dataset. Third,
new polymer features can be included at the morphological-level,
e.g., molecular weights, cross-link and torsion angles, to represent
more complicated polymer chemical space. Also, more advanced
feature reduction methods can be developed to replace the
present linear LASSO method.

METHODS
Dataset
The experimental ϵ of 738 polymers, measured at room temperature,
under dry conditions and at 9 frequency values, i.e., 60, 102, 103, 104, 105,
106, 107, 109, and 1015Hz, were considered in this work. These values were
taken from refs. 9,19,21,33,35–42. The ϵ measurements within the frequency
range of 60–109 Hz is commonly made using the impedance analyzer, the
precision inductance, and capacitance and resistance (LCR) meter18,42. ϵ
values at 1015 Hz were obtained by taking the square of the experimental
refractive index measured using refractometers. Since experimental
conditions significantly impact the measured ϵ, we collected the data
only when the measurements were made at room temperature (295 ± 5 K)
and under dry conditions (with relative humidity <1%). We note that it is
almost impossible to find consistent sample qualities across the literature,
with the common variations observed in sample thickness and different
order of polymer crystallinity. While such uncertainties are unavoidable in
experimental datasets, we believe they are acceptable to train reliable ML
models. For cases where multiple data-points were available we used the
average ϵ value.
Our developed ML model was used to make prediction for a completely

unseen dataset of roughly 11,000 homo-polymers that have previously

been synthesized and reported (but for which no dielectric characteriza-
tion has been done). This dataset is substantially diverse, containing
numerous polymers classes, e.g., polyolefins, polyimides, polycurateda-
mides, polyvinyls, polyethers, polyesters, polydienes, polyoxides, and
polycarbonates, but not more complex polymers such as copolymers,
polymer blends, as well as ladder, cross-linked, and metal-containing
polymers. Because of the evidence of past synthetic work, polymer
candidates identified for specific applications from this candidate list using
our model are expected to have good potential to be synthesized (again)
and tested. This large dataset, which contains polymer identities, names/
labels, and/or monomer representations, was collected from various
available sources, including published articles, handbooks, and online
repositories7,21,32–34.

Feature engineering
To build accurate and reliable ML models, it is important to include
relevant features that numerically represent materials and collectively
capture the trends in ϵ values across wide frequency range and across
varying polymer chemistry. Our polymer fingerprinting scheme is based on
a pre-defined list of possible components covering various length scales,
including (1) atomic-level fragments, (2) block-level fragments, and (3)
chain-level, i.e., extended features that capture higher level morphological
information in polymers. The atomic-level fragments are specified by the
generic label “AiBjCk”, representing an i-fold coordinated A atom, a j-fold
coordinated B atom, and a K-fold coordinated C atom, connected in the
specified order. For example, N3-C3-C4 represents a threefold coordinated
N, a threefold coordinated carbon and a fourfold coordinated carbon. The
block-level fingerprint components track the presence of 363 pre-defined
building blocks that frequently occur in conventional polymers with some
representative examples being C6H6, C=O, CH2, and CF2. More importantly,
a series of triplet-blocks were defined to represent the specific structural
arrangements of functional groups, e.g., CH2CH2CF2 and CH2CF2CH2. The
occurrence of each block in the polymer repeat unit (monomer)
normalized by the number of atoms (of the monomer) is used as a
block-level fingerprint component. The chain-level features capture
information at the highest length scale, including quantitative structure-
property relationship (QSPR) and morphological features. The QSPR
features, e.g., van der Waals surface area, topological polar surface area,
and the fraction of rotatable bonds, were generated using the RDKit
library. The morphological features, e.g., the length of the longest/shortest
side chains with/without rings and the shortest topological distance
between rings, were developed by us. Using this fingerprinting scheme,
155 atomic-level, 197 block-level and 59 chain-level features were
generated for each of the 738 polymers, leading to a total of 411 chemical
features for each polymer. Additionally, the frequency in log-scale (log F)
was incorporated as a feature in the ML model development process,
resulting in a total of 412 features. As per standard ML practices, all
features were scaled from 0 to 1 during the model training.
The least absolute shrinkage and selection operator (LASSO) method

was used to retain the relevant features by optimizing the regularization
term to achieve the highest R2. Subsequently, the remaining features with
non-zero coefficients were used to construct the ML models. For the
LASSO dimensionality reduction scheme, all 412-dimensional features and
the entire ϵ dataset was used. Furthermore, the group-shuffle-split and K-
fold libraries implemented in sklearn python package were respectively
used for the polymer-types-split and the data-points-split approach. The
resulting number of feature (NX) is summarized in Table 1, including the
frequency feature internally selected by the LASSO method.
To visualize the chemical diversity of the training (738 polymers) and the

unseen (11,000 polymers) datasets adopted here, PCA was performed on
the complete chemical features of these two datasets (706 features in
total), excluding the frequency feature. The first two (PC1 and PC2)
components are shown in Fig. 2b and used to analysis the similarity of two
datasets with the agglomerative hierarchical clustering method. As
illustrated in Supplementary Fig. 1, there are 90% shared chemical space
of two datasets, revealing that the training dataset fairly covers the
chemical space of the unseen dataset.

Gaussian process regression
We used the Gaussian process regression (GPR) with the radial basis
function (RBF) kernel to train the ML models. In this case, the co-variance
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function between two materials with features x and x0 is given by

kðx; x0Þ ¼ σf exp � 1
2σ2l

jjx � x0jj2
� �

þ σ2n: (1)

Here, three hyperparameters σf, σl, and σn represent the variance, the length-
scale parameter and the expected noise in the data, respectively. These were
determined during the model training by maximizing the log-likelihood
estimate. Further, as shown in Table 1, K-fold and group-shuffle-split
methods with fivefold cross-validation were adopted in the polymer-types-
split and the data-points-split models to avoid overfitting, respectively. The
root mean square error (RMSE) and the coefficient of determination (R2)
were used to evaluate the performance of the ML models. Further, learning
curves (Fig. 3) were generated by varying the size of the training and the test
sets to estimate the prediction errors on unseen data. Model performance
(RMSE) was evaluated by averaging over 50 statistical runs with random
training and test splits.
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