
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

A multi-fidelity information-fusion approach to machine learn and predict
polymer bandgap

Abhirup Patra1, Rohit Batra1, Anand Chandrasekaran, Chiho Kim, Tran Doan Huan,
Rampi Ramprasad⁎

School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, GA 30332, USA

A R T I C L E I N F O

Keywords:
Density functional theory
Machine learning
Multi-fidelity learning
Polymers
Bandgap

A B S T R A C T

The fidelity of data is of paramount importance in the construction of reliable and accurate machine learning
(ML) models. Low-fidelity data, although noisy, can usually be obtained for a large number of material samples.
High-fidelity data, on the other hand, is time-consuming and oftentimes, only available for a limited number of
target samples. While the former can provide useful information to help generalize the ML models over large
materials space, the latter is useful to build more accurate surrogate models. Information fusion schemes that
utilize the data available at multiple levels of fidelity can outperform traditional single fidelity based ML
methods, such as Gaussian process regression. In this work, a variant of the multi-fidelity information fusion
scheme, namely multi-fidelity co-kriging, is used to build powerful prediction models of polymer bandgaps. To
benchmark this strategy, we utilize a bandgap dataset of 382 polymers, obtained at two levels of fidelity: using
the Perdew-Burke-Ernzerhof (PBE) exchange-correlational functional (“low-fidelity”) and the Heyd-Scuseria-
Ernzerhof (HSE06) functional(“high-fidelity”) of density functional theory. The multi-fidelity model, trained on
both PBE and HSE06 data, outperforms a single-fidelity Gaussian process regression model trained on just HSE06
band-gaps in a number of scenarios and is also able to generalize better to a more diverse chemical space.

1. Introduction

Machine-learning (ML) [1] has emerged as an important tool [2–4]
to solve many materials science and engineering problems, including
classifying materials phases [5], predicting material properties 6–8,
uncovering possible hidden structure-property or property-property
correlations [9], or suggesting potential materials synthesis routes
[10,11]. A critical requirement common across all such ML methods is
the availability of reliable and accurate data to “train” these predictive
models. Referred to as the training set, this data is obtained from either
physics-based computations or collected from past experiments.

Since the accuracy of a ML model is bounded by the quality of the
underlying training data, it is highly desired that such data is prepared
at the highest possible level of fidelity (or accuracy). However, in most
scenarios, especially in materials science, the available data is quite
diverse in terms of fidelity. For example, for a given material property,
data produced using different computational techniques and/or ex-
periments often differ in the level of quality. Further, higher the quality
of a data source, higher is the cost associated with the measurement,

which in turn, severely restricts the availability of large volumes of
high-fidelity data. Computation of the bandgap (Eg) of insulator is a
classic example. On the one hand, Eg computed using the relatively
inexpensive Perdew-Burke-Ernzerhof (PBE) [12] exchange-correlation
functional of density functional theory (DFT) are typically significantly
underestimated relative to experiments. On the other hand, Eg com-
puted using the Heyd-Scuseria-Ernzerhof (HSE06) [13] functional
provides a more accurate estimate, although at a much higher com-
putational cost. Consequently, for a large number of materials, PBE Eg
values have been computed, while high-fidelity HSE06 Eg for only a
relatively small fraction of materials is known. Thus, within this con-
text, restricting oneself to building ML models based only on limited
high-fidelity data can have serious limitations in terms of general-
izability of the model. On the other hand, ML models developed using
low-fidelity data (although plentiful) will be limited in accuracy. In
fact, a multi-fidelity information scheme that utilizes information
available at different levels of fidelity could be a more optimal way to
build predictive surrogate models.

Several information fusion schemes have been introduced to
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combine knowledge available at multiple levels of fidelity for a
common target property of interest [14]. These include, Δ-learning
(which uses low-fidelity data as a fingerprint/feature) and the multi-
fidelity co-kriging (MF) approach. Recently, Batra and co-workers [14]
showed the superiority of the MF approach over other methods, espe-
cially when the size of high-fidelity dataset is particularly limited. Fig. 1
illustrates the difference between the traditional single-fidelity (SF)
based learning and the MF approach. In the SF scheme, only the target
property obtained at the highest level of fidelity (i e. ., yhi) is used to
learn a mapping from the material fingerprint (x). On the other hand, in
the MF approach, property values obtained from two (or more) levels of
fidelity, i.e., ylo and yhi, are used simultaneously to construct the ML
model. It is important to note that the MF scheme also learns from
instances where just the low-fidelity value is known, and the corre-
sponding high-fidelity value is unknown – one such case is marked as
“missing” in the column yhi in Fig. 1(b). Owing to its advantages over
traditional SF scheme, the MF method has been recently employed in
some chemical or materials science problems. For example, Pilania
et al. [15] used the MF framework to learn bandgap in perovskite
materials obtained at two levels of fidelity using different DFT func-
tionals.

In this work, we explore the utilization of the MF strategy in
polymer informatics. We previously demonstrated [16,17] the power of
the SF scheme in learning from computed [18] and measured data for
several properties of polymers, e.g., bandgap Eg, dielectric constant ∊,
glass transition temperature Tg, etc. culminating in a polymer infor-
matics platform named Polymer Genome (PG). Several polymer designs
have emerged from this effort [19–21]. Since the chemical or config-
urational space spanned by polymers is enormous, a MF learning ap-
proach is quite appropriate wherein large regions of the space are ex-
plored at a low-fidelity level, while a few interesting cases are explored
at a higher-fidelity level (the above example of bandgap computation is
particularly valid for the case of polymers). Advanced approached such
as these can significantly expand and extend recent polymer discovery
efforts [22–24]. Our results clearly show that utilizing less accurate PBE
bandgap in conjunction with only a few HSE06 bandgap values to train
the MF model resulted in much better learning performance when
compared to the Gaussian Process Regression (GPR) models trained
using just the high-fidelity HSE06 bandgap data. Thus, the MF approach
can clearly help to accelerate the polymer (or materials) discovery
process by effective use of limited resources aimed at large number of
exploratory and cheap low-fidelity points, along with only a few ex-
pensive, but accurate, high-fidelity values.

This paper is organized as follows. In the “Methodology” section we
describe the dataset utilized in this work, and provide theoretical de-
tails on its generation. The SF and the MF methods are discussed next in
the same section. In “Results & Discussions” we benchmark the per-
formance of the SF and MF approaches in a number of different

scenarios. Finally, in the “Conclusion” section we summarize the in-
sights gained in this work and provide a perspective of how such MF
approaches could be of relevance in other aspects of the rational-design
of polymeric materials.

2. Methodology

2.1. Dataset

An important property of a polymer that describes its usefulness as
an optical, electronic or energy storage material is its electronic
bandgap. Thus, we considered a DFT computed bandgap dataset of 382
polymers, calculated using both PBE and HSE06 functionals [18]. De-
tails of how these polymer crystal structures were constructed and their
properties were computed can be found in earlier works [18,23,25].
Fig. 2 shows the correlation between the low-fidelity PBE bandgaps
(Eg

PBE) and the high-fidelity HSE06 bandgaps (Eg
HSE). As expected, the

PBE bandgaps are underestimated compared to those calculated using
the HSE06 functional but this underestimation is not strictly linear.
Further, the dataset can be seen to span a fairly large range of bandgap
values (0.75–10 eV), containing polymers with very high bandgap, such
as Polyoxymethylene ([-CH2-O-]n) and Poly-2,3,3-Trifluoroacryloyl
fluoride ([-C3F4O-]n) with bandgap of 9 and 10 eV, respectively, and
polymers like Polythiophene ([-C4H2S-]n) with a bandgap of just
0.75 eV. In terms of chemical diversity, the 382 polymers are composed
of six atomic species: C, H, O, N, S, and F, and the following building-
blocks: CH2, CO, CS, NH, C6H4, C4H2S, CF2, CHF and O.

In order to better understand the merits of the MF approach, we first
divide our entire dataset of 382 polymers, denoted as D382, into two
categories, D351 and D31 consisting of 351 and 31 polymers, respec-
tively. This particular choice is based on the number of building blocks
present in the polymers. Polymers in D351 comprise less than or equal
to six building blocks, while the polymers in D31 have more than six
building blocks in their repeat unit. Further, SF and MF models con-
structed using the D351 dataset were evaluated on the D31 dataset,
thereby providing a unique opportunity to test our models on not only
completely unseen data, but also on cases which are expensive to
compute using DFT [26] computations. As illustrated in Fig. 2b, within
each of the D351 and D31 data sets, both PBE and HSE06 Eg values
were available, resulting in four subsets, namely, D351HiFi, D351LoFi,
D31HiFi and D31LoFi. These subsets of data were further utilized to de-
monstrate the superiority of the MF approach under different scenarios.

2.2. Fingerprinting

In order to establish a ML-based mapping between the polymer and
its bandgap, a numerical representation or fingerprint of the polymer is
required, represented as a d-dimensional vector x shown in Fig. 1. In

x x1 x2 … xd yhi

X (train)

x11 x12 … x1d y1hi

x21 x22 … x2d y2hi

… … … … …

xN1 xN2 … xNd yNhi

X*(test) x*1 x*2 … x*d ?

Traditional single-fidelity GPR
(Low accuracy, cheap predictions)

(a)

yhiX

x x1 x2 … xd ylo yhi

X (train)

x11 x12 … x1d y1lo y1hi

x21 x22 … x2d y2lo y2hi

… … … … … …

xN1 xN2 … xNd yNlo missing

X*(test) x*1 x*2 … x*d missing ?

Multi-fidelity co-kriging
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f)X(f lo f)X( d(X)

Fig. 1. Comparison of the datasets and mapping functions learned using the SF and the MF approach. The SF maps the fingerprint/feature space to the targeted HSE
bandgap (yhi) via →f yx( ) hi. On the other hand, the MF model utilizes the same fingerprint space to predict low-fidelity bandgap (ylo) via →f yx( )lo

lo and the
difference between these two fidelities using the → = −f y yx( ) Δd

hi lo mapping relation.
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accordance with our previous work [17], a hierarchical three-level
fingerprinting scheme—composed of atomic [22], quantitative struc-
ture-property relationship (QSPR) and morphological compo-
nents—was used to represent the chemical and morphological in-
formation of the polymers. In total, a 187-dimensional fingerprint was
used to fingerprint every polymer in this dataset. However, it is helpful
to reduce the dimensionality of fingerprints to improve the performance
of our model. To do so, we used the recursive feature elimination (RFE)
algorithm [27] and removed those fingerprint components which pos-
sessed a minimal contribution to the overall prediction accuracy of the
targeted property (HSE band gap in our case). This reduced the di-
mensionality of our fingerprint to 116 and this “filtered” version of the
fingerprint was used to train both the SF and the MF models. Details of
this procedure has been described in detail elsewhere [17].

2.3. Machine learning models

2.3.1. Single-fidelity model
To serve as a benchmark method against the MF model, we used the

commonly employed SF based GPR algorithm. This is also the ML
technique using which the current predictive models of Polymer
Genome have been built. GPR, also known as kriging, is a widely used
regression technique in applied sciences, including materials science
[28,29]. It is a kernel based ML algorithm that uses the Bayesian sta-
tistical framework. The GPR model is built by fitting a Gaussian process
to the training data, which is then used to obtain a distribution at any
new point. In this work, the radial basis function (RBF) was used as the
covariance function. The hyper parameters of the RBF kernel were
determined by maximizing the log-likelihood function using the
training data and 5-fold cross validation. It is important to note that,
GPR or kriging is a SF model, which was trained using only the high-
fidelity HSE06 bandgap data as the target property. Thus, we refer to
models constructed using this scheme as SF GPR models.

2.3.2. Multi-fidelity co-kriging model
First proposed by Kennedy and O’Hagan [30], MF is a natural ex-

tension of the kriging method with data available at multiple levels of
fidelity [31]. As shown in Fig. 1 (b), the high-fidelity prediction in the
MF approach not only depends on the low-fidelity function ( f x( )lo ) but
also on the difference between the low-fidelity and the high-fidelity
functions ( f x( )d ). In the two-level MF approach, this is achieved by
expressing the overall ML model as = +ρZ x Z x Z x( ) ( ) ( )hi lo d , where, Zlo
is the low-fidelity estimation and Zd is the Gaussian process related to
the difference between the two fidelities of data. In the context of this
work, Z (.)lo and Z (.)hi are the Gaussian processes representing the low-

fidelity (PBE bandgap) and the high-fidelity (HSE06 bandgap) datasets
for the polymers under consideration. However, the MF approach as-
sumes that for the polymers for which HSE06 bandgaps (yhi) are
available, their respective PBE bandgaps (ylo) are also known. None-
theless, it is important to note that when the prediction for a new case is
to be made, only the feature vector x is required.

Table 1 shows the various GPR and MF models that were con-
structed using different subsets of the polymer bandgap dataset. The
philosophy behind creating a series of such ML models is to evaluate the
performance of the SF and the MF approaches under different scenarios
of systematically increasing low as well as high-fidelity data. For both
the SF GPR and MF approaches, 5-fold cross-validation was adopted to
ensure that the models do not over-fit the training data. The perfor-
mance of the two approaches was compared in terms of the root mean
square error (RMSE) and the correlation coefficient evaluated on dif-
ferent test sets, as explained in the next section.

3. Results and discussions

Before bench-marking the models described in the earlier section,
we first sought to comprehensively study the performance of the MF
method with respect to variation in the number of low-fidelity (Nlo) and
high-fidelity (Nhi) data points (assuming ⊆N Nhi lo). These models were
trained using subsets of the D351 dataset and the test-points were the
remaining D351HiFi points (not in the training set). Averaged test RMSE
over 50 runs for each of these models are shown in Fig. 3(a). Notably,
the positive effect of larger Nlo can be seen on the test RMSE – the test
error decreases systematically as we increase the number of low-fidelity
data points to train our model. This clearly suggests that although low-
fidelity points are not accurate, they still contain enough information to
improve the ML model performance. This is also reflected in the first
panel of Fig. 3(b), where we show learning-curves of the test and
training errors as a function of number of high-fidelity points in the

Fig. 2. (a) The correlation between the two levels of fidelities (PBE and HSE06) present in the bandgap dataset of 382 polymers. (b) Division of the dataset into
different subsets based on the fidelity of the data and the length of the polymer chains. Here, D351HiFi and D351LoFi denote two division of D351 dataset based on
HSE06 and PBE bandgap values respectively. Likewise, D31 dataset is also divided into D31HiFi and D31LoFi datasets with HSE06 and PBE bandgap values of 31
polymers.

Table 1
The ML models constructed using different subsets of the Eg dataset in
order to evaluate the accuracy of the MF approach in comparison to GPR
under different scenarios of available training data.

Model Training data

GPR351 D351HiFi

GPR382 D351HiFi+ D31HiFi

MF351 D351LoFi + D351HiFi

MF382a D351LoFi + D351HiFi + D31LoFi

MF382b D351LoFi + D351HiFi+ D31LoFi + D31HiFi
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training set.
To further highlight the flexibility and the associated effect on the

performance of the MF approach, two sets of learning curves are shown:
one with 300 and other with 350 known low-fidelity PBE bandgap
values. In each case the test set consisted of the remaining HSE06
points. The following important observations can be made: first, both
test and train errors of the MF model are smaller compared to that of
the GPR model for a particular training set size (i.e. Nhi or HSE bandgap
data size), especially when the training set size is fairly small. We again
note that GPR represents a benchmark case just trained using the high-
fidelity data. Second, test error in the MF model decreases when Nlo is
higher or larger number of low-fidelity data is known during training
(see the =N 300lo and =N 350lo curves). Thus, the MF learning-curve
for the model trained with 350 low-fidelity data reaches the test RMSE
of 0.27 eV compared to the value of 0.47 eV test RMSE of the SF GPR
model when tested for the case of 200 high-fidelity bandgap values.
Both the above observations are in-line with the previous remark that
the knowledge of the low-fidelity data, although somewhat inaccurate,
can still improve the accuracy of the ML models. Finally, we note that
the number of low-fidelity and high-fidelity data required to improve
the performance of the MF approach in comparison to the SF model is
problem-specific. It depends on the accuracy of the LF data, noise in the
HF data, and the ratio of the cost required to obtain the data points at
different levels of fidelity.

The training error of the two models on the entire D351 dataset,
namely GPR351 and MF351, are depicted comparatively on the leftmost
side of the 2nd panel of Fig. 3(b). In the middle of the 2nd panel, we
show the predictive capabilities of these models on the hold-out set of
31 polymers (D31). We also show how this test error is drastically re-
duced when low-fidelity data is introduced for the D31 dataset (see
MF382a). Finally, 5-fold cross-validation is used on the entire dataset of
382 polymers to construct the models GPR382 and MF382b. We notice
that the MF models outperform GPR models in all scenarios and possess
tremendous utility when making predictions in new chemical spaces.
We note that the MF382b built using the entire dataset can be considered
as the best model for future use. Fig. 4 shows a parity plot, comparing
the predicted vs the DFT computed HSE06 bandgap values of this final
model. Favorable performance across the entire 0.75–10 eV range can
be seen.

4. Conclusion

In conclusion, we demonstrated that fusing information available at
multiple levels of fidelity can indeed be useful for building powerful
and accurate predictive models. Using a bandgap dataset of 382 poly-
mers, computed at two different levels of fidelity by employing dif-
ferent DFT functionals, i.e. low-fidelity PBE and high-fidelity HSE06,
we built a series of multi-fidelity co-kriging models, and evaluated their
performance against traditional Gaussian process regression based
models which use information only at a single level of fidelity. The
multi-fidelity models were found to consistently outperform the tradi-
tional single fidelity models, especially in scenarios when large volumes
of low-fidelity data was available. Further, for cases where the low-
fidelity information was available, we found that the predictions from

Fig. 3. Figure (a) shows averaged test RMSE of MF model for different combination of low-(Nlo) and high-fidelity (Nhi) data points. These RMSE’s were calculated by
taking the mean of the test RMSE from 50 different runs. First panel of figure (b) depicts a comparison of learning-curves for the GPR and MF model. Train errors of
both GPR and MF model are shown in the next panel when both are trained with D351 dataset. Prediction accuracy of D31 dataset is shown in the third panel,
whereas the last panel shows the train error of the MF model trained with the full dataset of 382 polymers.

Fig. 4. As reported earlier (in the third panel of Fig. 3 (b), the inclusion of more
PBE bandgaps in the training data remarkably improved the prediction accu-
racy of MF model. In this figure, we show a parity plot of that model (MF382b).
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the multi-fidelity models were much more accurate than the single fi-
delity models, which rely on just the high-fidelity data. This clearly
demonstrates that although low-fidelity data is not accurate, it contains
enough information to be fused with limited high-fidelity data, and
allows better generalization of ML models. Thus, for problems involving
exploration over large chemical space with particularly high cost as-
sociated with high-fidelity measurements/computations, this multi-fi-
delity approach is expected to provide a cost-effective pathway to
generate accurate surrogate models. In this regard, we intend to im-
plement MF algorithms as part of the continuously expanding predic-
tion toolkit of Polymer Genome ( https://www.polymergenome.org).
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