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A B S T R A C T

The lattice thermal conductivity (κL) is a critical property of thermoelectrics, thermal barrier coating materials
and semiconductors. While accurate empirical measurements of κL are extremely challenging, it is usually ap-
proximated through computational approaches, such as semi-empirical models, Green-Kubo formalism coupled
with molecular dynamics simulations, and first-principles based methods. However, these theoretical methods
are not only limited in terms of their accuracy, but sometimes become computationally intractable owing to their
cost. Thus, in this work, we build a machine learning (ML)-based model to accurately and instantly predict κL of
inorganic materials, using a benchmark data set of experimentally measured κL of about 100 inorganic materials.
We use advanced and universal feature engineering techniques along with the Gaussian process regression al-
gorithm, and compare the performance of our ML model with past theoretical works. The trained ML model is
not only helpful for rational design and screening of novel materials, but we also identify key features governing
the thermal transport behavior in non-metals.

1. Introduction

The lattice thermal conductivity (κL) dictates the ability of a non-
metal to conduct heat, and serves as a critical design parameter for a
wide range of applications, including thermoelectrics for power gen-
eration [1,2], thermal barrier coatings for integrated circuits [3,4], and
semiconductors for microelectronic devices [5]. Depending on the
specific application, materials with different ranges of κL values are
desired. For example, low κL is preferred as thermoelectrics (e.g., PbTe
and Bi2Te3) to maximize the thermoelectric figure of merit, while for
semiconductors (e.g., SiC and BP), high κL is required to avoid over-
heating in electronic devices. Motivated by their practical and tech-
nological significance, extensive theoretical and empirical efforts have
been made to compute κL, aimed at discovering materials with targeted
thermal conductivity for specific applications.

In one of the early and famous theoretical works, κL of inorganic
materials was estimated using semi-empirical Slack model [6], which
relies on the Debye temperature (ΘD) and the Gruneisen parameter (ϒ)
as inputs, obtained from either experimental measurements or first-
principles calculations [6,7]. Although the Slack model can provide a
quick κL estimate, the uncertainty in its input parameters (Θ , ϒD ) se-
verely impacts its prediction accuracy. Slight modifications in the
functional form of the Slack model (or its closely related Debye-

Callaway model [8]) have also been attempted by treating certain
power coefficients as fitting parameters, which are determined using
experimentally measured κL values.

However, the underlying problem of ΘD and ϒ uncertainty and their
unavailability for new materials persists. Alternatively, the Green-Kubo
formalism, combined with non-equilibrium molecular dynamics simu-
lations, has been employed to predict κL in semiconductors (e.g., Si)
[9–11]. However, this method can only be used for materials for which
reliable atomistic force fields are available. With the recent develop-
ments of computing power and first-principles implementations, the ab
initio Green-Kubo approach has been proposed to compute the κL of Si
and ZrO2, but it is limited by the high computational cost to achieve the
heat flux and system size convergences [12]. Additionally, the phonon
Boltzmann transport equation (BTE) can now be solved numerically
within the relaxation time approximation [13–16]. In this approach, κL
is computed from the group velocity, the mode-dependent heat capa-
city, and the single-mode relaxation time (approximated by the phonon
lifetime), all of which rely on either the harmonic or the anharmonic
force constants computed at the first-principles level. While BTE cal-
culations could in principle be done for large systems [16], they are
generally restricted to small unit cells owing to high computational
costs.

Machine learning (ML) based methods, which are emerging in
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Materials Science and Engineering [17–22] provide yet another ap-
proach to build surrogate models to rapidly predict the thermal con-
ductivity of materials. Seko et al. developed ML models based on κL
computed for 110 materials (by solving the phonon Boltzmann trans-
port equation as mentioned above) and a set of descriptors character-
izing elemental and structural properties [13,23]. The main concern
with such ML model is the discrepancy between the DFT computed
training data and the actual experimental values (especially for solids
with very high κL) which directly impacts the accuracy of these models.
Furthermore, the identification of key features in determining the κL is
far from trivial.

To fill the above-mentioned gaps, we have built an ML model for κL,
starting from a benchmark empirical data set of 100 inorganic com-
pounds. The scheme adopted in this work is illustrated in Fig. 1. First,
the recently released Matminer package [24] was used to generate a
comprehensive list of 63 features to numerically represent the mate-
rials. This step was followed by the recursive feature elimination al-
gorithm, down selecting the relevant features. The Gaussian process
regression (GPR) algorithm, with 5-fold cross-validation (CV), was then
utilized to build predictive models. The performance of the κL models
was compared with past studies and validated by 5 unseen materials.
The developed ML model, which is trained on the κL dataset spanning
across 3 orders of magnitude, can be used to instantly predict κL of new
inorganic materials while the associated GPR uncertainty could indicate
whether the new materials are within the training domain or not. It is
hoped that the model developed in this work can be used to screen new
inorganic materials with targeted κL, and it can be systematically im-
proved when new materials are identified and added to the initial da-
taset.

2. Technical details

2.1. Data set

Fig. 2 and Table 1 summarize the dataset of empirically measured κL
values (at room temperature) for 100 single crystal inorganic materials
collected from the literature [7,6,18,25–54], including 81 binary and
19 ternary compounds. κL of single-element materials are excluded
since thermal conductivity of individual elements within a compound
were used as features. The dataset is significantly diverse in chemical
compositions (35 cations and 22 anions), crystal structures (with space
group 225, 216, 122, 186, etc.), and the range of κL, which spans over 3
orders of magnitude ( − −0.4–760Wm K1 1). The entire κL data set—along
with the bulk modulus feature values—is provided in Table S1 of the
Supporting Information (SI).

Given the wide range of κL, our learning problem was framed in the
logarithmic scale, i.e., log(κL) was set as the target property, to allow
better generalization of the ML models across the entire range.
Furthermore, 95 out of 100 cases were used to train (with CV) the ML
models, while the remaining 5 data points were held-out separately
(completely unseen to the entire training process) to further validate
the performance of the learned κL model. For cases where multiple κL
values were reported in the literature, their average was used to train
the ML model.

2.2. Feature set and dimensionality reduction

To build accurate and reliable ML models, it is important to include
relevant features that collectively capture the trends in the κL values
across the different materials. The features should not only uniquely
represent each material, but also be readily available to allow instant
predictions for new cases. In this regard, Matminer is a good resource to
easily and quickly generate features, applicable specifically to the field
of materials science [24]. In total, 61 features, belonging to three dis-
tinct categories, i.e., elemental, structural and pertaining to valence
electrons, were obtained using the Matminer package [24] by providing
the chemical formula and the atomic configuration of all compounds. A
total of 18 elemental properties were derived, including atomic radius,
atomic mass, atom number, periodic table group and row, block,
Mendeleev number, covalent radius, volume per atom from ground
state, molar volume, coordination number (cn), Pauling electro-
negativity, first ionization energy, melting point, boiling point, thermal
conductivity, average bond length and angle of a specific site with all its
nearest neighbors. Since our dataset consists of binaries and ternaries,
each of these elemental feature values was obtained by taking the
minimum, maximum, and weighted average over the constituting
chemical species, resulting in a total of 54 elemental features. For the
structural features, volume per atom, packing fraction and density were
considered. These quantities were computed for the crystal structure

Fig. 1. Schematic of the workflow adopted to build data-driven models of κL.

Fig. 2. Experimentally measured κL for 100 inorganic compounds with respect
to their space group number. For space group 225 and 216, only a few re-
presentative cases are labeled.

Table 1
Different properties of the κL data set utilized in this work, including the class of
materials, their chemical composition and space group, and the range of κL

values.

Classification Area Category Examples Count

Compounds Binary AgBr, SiO2, Al2O3, … 81
Ternary AgGaS2, HfCoSb, … 19

Chemical Cations Na, K, Li, Be, Mg, Al, … 35
composition Anions F, Cl, Br, I, O, S, Se, … 22

Space group 225 CuCl, SnTe, NaCl, … 39
216 InSb, AlAs, SiC, … 26

122, 166, etc. CdGeP2, Bi2 …Se ,3 35

Expt. κL 0.4–10 Sb2O3, AgCl, Mg2Sn, … 53
(Wm−1K−1) 10–100 CoO, ZnS, CdGeAs2, … 40
at room temperature 100 – 760 GaN, BN, BeO, … 7
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obtained from the Materials Project database [55]. Moreover, 4 features
that capture the average number of valence electrons in the s p d, , , and
f shells of the constituting elements were also included. Finally, two
additional features, DFT computed bulk modulus and the space group
number, were also incorporated, resulting in a 63-dimensional feature
vector. The values for bulk modulus of all compounds were obtained
from the Material Project database [55]. As per standard ML practices,
all features were scaled from 0 to 1 during model training.

To retain only the relevant features, recursive feature elimination
(RFE) using linear support vector regression algorithm (with 5-fold CV)
was performed on the initial 63-dimensional feature vector and the
dataset of 95 training points. RFE eliminates the irrelevant features by
recursively ranking feature importance and pruning the least important
ones. In our case, it reduced the dimensionality from 63 to 29 (see Table
S2 of the SI). We also used random forest algorithm for feature di-
mensionality reduction. In particular, we trained the data set of 95
points using 100 trees, and used the feature importance/weight to de-
termine the relevance of the features. As discussed in Section 2 of the SI,
nearly 40 features were identified to be important using the random
forest method, most of which were found to be consistent to those re-
tained from the RFE scheme discussed earlier. This provides more
confidence to the RFE based dimensionality reduction step performed
in this work. Overall, the 29-dimensional feature vector obtained after
RFE resulted in more accurate models than the original 63-dimensional
feature, as will be discussed in detail next, while a detailed comparison
of the RFE and random forest methods is provided in SI.

2.3. Gaussian process regression

The Gaussian process regression (GPR) with the radial basis func-
tion (RBF) kernel was utilized to train the ML models. In this case, the
co-variance function between two materials with features x and ′x is
given by

⎜ ⎟′ = ⎛
⎝

− − ′ ⎞
⎠

+x x x xk σ
σ

σ( , ) exp 1
2

|| || .f
l

n2
2 2

(1)

Here, three hyper parameters σ σ,f l and σn signify the variance, the
length-scale parameter and the expected noise in the data, respectively.
These hyper parameters were determined during the training of the
models by maximizing the log-likelihood estimate. Further, 5-fold CV
was adopted to avoid overfitting. Two error metrics, namely, the root
mean square error (RMSE) and the coefficient of determination (R2),
were used to evaluate the performance of the ML models. To estimate
the prediction errors on unseen data, learning curves were generated by
varying the size of the training and the test sets. We note that the test
sets were obtained by excluding the training points from the data set of
95 points. The left-out set of 5 points was completely separated from the
learning process, and was used for just evaluation purposes on a few
“extrapolative” material cases. Additionally, for each case, statistically
meaningful results were obtained by averaging RMSE results over 100
runs with random training and test splits.

3. Results and discussion

It is worth analyzing the correlation between these 29 features and
the empirically measured κL to see how much trend is captured by these
elemental, structural and chemical attributes. While in Fig. 3 we plot
the κlog( )L vs four important features, the corresponding plots for the
remaining cases are provided in Fig. S3 of SI. A strong positive corre-
lation between log(κL) and bulk modulus, and a strong inverse relation
between log(κL) and the mean average bond length are evident from the
figure. While density alone does not show a strong correlation with
log(κL), the combined feature bulkmodulus/density does indeed show
a very strong linear relation. This is in-line with the physical under-
standing that group velocity, which is an integral part of the semi-

empirical models discussed earlier, is related to the lattice anharmonic
force constants, and can be approximated as bulkmodulus/density .
Thus, bulk modulus can be considered to play a critical role in influ-
encing the κL of different inorganic non-metals. Similarly, the inverse
relationship between log(κL) and the mean average bond length is also
physically meaningful as when the bonds are shorter, the bond-strength
anharmonicity are stronger, and the resulting κL is larger. For the case
of mean atomic mass (a common feature used in the past ML model
works), a slightly dispersed relationship is observed, indicating that it
may be less important in governing κL, as was the case with the rest of
the 25 features illustrated in Fig. S3 of the SI.

Next, the performance of the ML models can be evaluated from the
learning curves presented in Fig. 4(a), wherein average RMSE on the
training and the test sets as a function of training set size are included.
The error bars denote the 1σ deviation in the reported RMSE values
over 100 runs. Results using both the initial set of 63 features (GPR),
and those for the reduced 29 features (GPR-RFE) are included. Clearly,
the RFE dimensionality reduction step leads to improved model per-
formance with lower test errors, which signify better generalization of
these models for unseen data. As expected, the test RMSE of both the
GPR and the GPR-RFE models decreases with increase in training set
size, reaching a convergence of 0.28 in test error and of 0.18 in train
error for GPR-RFE models when the training set is about 80 % of the
data (i.e. 76 points). Fig. 4(b) and (c) show the performance of GPR-RFE
models via the example parity plots (i.e., ML predicted vs experimental
log(κL)), using 76 and 95 train points, respectively. The error bars in
these cases represent the GPR uncertainty. Pretty high R2 coefficient
(⩾ 0.93) on the test set in both these cases suggest a good κL model has
indeed been developed.

We compared the performance of our ML model with other semi-
empirical models by computing the average factor difference (AFD) [8],
using the definition =AFD 10a, where =a

∑ −= κ κ|log( ) log( ) |N i
N1

1 L
expt.

L
model , with N being the number of data

points. As shown in Table 2, the computed AFD of GPR-RFE models
using the entire set of 95 points is 1.36 ±0.03, which is comparable to
the reported values of 1.38 and 1.46, respectively, obtained using the
Slack [56] and Debye-Callaway [8] models. More importantly, the
latter two ML models rely on the experimental/computed features that
are much more difficult to obtain owing to their dependence on the use
of the Slack or Debye-Callaway models. The ML model presented here
uses easily and rapidly accessible chemical and structural features de-
rived directly from the identity of the material, making it more in-
expensive and flexible. In addition, the predicted GPR uncertainty can
be used to guide the next experiments via active learning [57]. Further,
we note that the possibility of further diversifying our ML model with
data from first-principles or semi-empirical methods using multi-fidelity
fusion approaches also exists [58,59].

In order to further validate the generality and the accuracy of our
ML models, we used the GPR-RFE models trained on the entire set of 95
points (see Fig. 4(a)) to predict the log(κL) of 5 unseen inorganic solids
with various space group numbers present in the hold-out set. These
include Sc2O3 (206), Ga2O3 (12), MnO (225), AlCuO2(166), and
Ca5Al2Sb6 (55), where the number within brackets is the space group
number. Fig. 4(c) shows the comparison between the predicted and the
experimental log(κL), with error bars capturing the GPR uncertainty. A
good performance for these 5 unseen data points is clearly evident. The
high GPR uncertainty in the case of Ca5Al2Sb6 correctly signals its space
group number differences from that of the majority training data, and
the application of the ML model in the “extrapolative” regime. Overall,
the results presented here strongly advocate the good performance of
the GPR-RFE models developed, which can be used to provide an in-
expensive and accurate κL prediction for other inorganic materials,
especially for materials with rock-salt or zincblende structures.

Additionally, it is noteworthy that the space group number is one of
the important features in our ML model, although it has little physical
meaning beyond allowing the model to distinguish between different
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structure types. If we intentionally eliminated it from the 29 features,
the test RMSE of 5 unseen materials increases from 0.12 to 0.39, as
shown in Fig. 4(d). This issue is due to the limitation of our present
dataset, most of which belong to space groups 225 and 216. As a result,
the space group number is required to distinguish materials in terms of
their structures in the ML model. However, this problem can be solved

when more data with more diverse space groups are included in the
training dataset. Furthermore, our present ML model is more suitable
for defect-free inorganic materials. There are some accuracy limitations
of our model to predict κL of materials with defects, allotropic materials
and intermetallic compounds. However, the predictive ML model can
be more easily improved by actively learning on more diverse training

Fig. 3. The correlation between experimental κL and four representative features employed in this study. bulk modulus/density is derived from bulk modulus and
density features.

Fig. 4. (a) Prediction accuracy for GPR and GPR-RFE models trained using different train set sizes, averaged over 100 runs. The corresponding test sets in (a) is the
difference between total data and train sets. (b) illustrates example parity plot obtained from the GPR-RFE model (29 features) with train and test set of 76 and 19
points, respectively. Parity plots obtained from the GPR-RFE model with 95 train points and 5 unseen test points including, Sc2O3, Ga2O3, MnO, AlCuO2, and
Ca5Al2Sb6, using (c) 29 features and (d) 28 features, eliminating the space group number feature from the 29 features.
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(even temperature-dependent) data sets compared with previous semi-
empirical models, due to the easily accessible features.

4. Conclusion

In conclusion, we have developed a simple and general ML model to
predict κL of inorganic solid materials. This model is faster, and at par
or more accurate than traditional physics-based computational
methods. This work involves curating a benchmark dataset of experi-
mental values of κL of 100 inorganic compounds, generating and opti-
mizing a comprehensive set of features (using the Matminer package),
and training the Gaussian Process Regression model on the data pre-
pared. The accuracy of the developed ML models was found to be
comparable to past semi-empirical models. Additionally, key features in
determining κL were identified. Overall, this present work would be
useful for rational design and screening of new materials with desired
κL for specific applications, and fundamentally understanding the heat
transport in inorganic solid materials.

Data Availability

The entire experimental κL data set and DFT computed bulk mod-
ulus are available in Table S1 of the Supporting Information.
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AFD of κL 1.36 ± 0.03 1.38 1.46
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