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Abstract
Machine-learning (ML) approaches have proven to be of great utility in modern materials innovation pipelines. Generally, ML models are
trained on predetermined past data and then used to make predictions for new test cases. Active-learning, however, is a paradigm in
which ML models can direct the learning process itself through providing dynamic suggestions/queries for the “next-best experiment.” In
this work, the authors demonstrate how an active-learning framework can aid in the discovery of polymers possessing high glass transition
temperatures (Tg). Starting from an initial small dataset of polymer Tg measurements, the authors use Gaussian process regression in con-
junction with an active-learning framework to iteratively add Tg measurements of candidate polymers to the training dataset. The active-learn-
ing framework employs one of three decision making strategies (exploitation, exploration, or balanced exploitation/exploration) for selection of
the “next-best experiment.” The active-learning workflow terminates once 10 polymers possessing a Tg greater than a certain threshold tem-
perature are selected. The authors statistically benchmark the performance of the aforementioned three strategies (against a random selection
approach) with respect to the discovery of high-Tg polymers for this particular demonstrative materials design challenge.

Introduction
In order to design new materials for specific applications, we
often have to search for materials which possess a given set
of properties within a required window. For example, design
of polymers for energy storage applications requires that such
materials possess simultaneously high dielectric constant and
bandgap.[1–9] Another example is the design of solid polymer
electrolytes for Li-ion batteries. Such materials are required
to possess a suitably high Li-ion conductivity[10] in conjunction
with an appropriate electrochemical window.[11] In order to
guide this search for materials with promising functionalities,
scientists and researchers often rely on intuition gained from
past experiments to design the next set of experiments. Even
so, how does one decide whether to continue searching within
a particularly promising class of materials or switch to searching
for candidates in a more unexplored region of chemical or struc-
tural space? Rather than making such decisions based purely
on human intuition, active-learning algorithms that exploit
Bayesian optimization (BO) frameworks may be utilized.[12–15]

Over the past decade, machine-learning (ML)-based algo-
rithms and techniques have been of tremendous utility in a vari-
ety of fields, including in materials science.[16–19] Approaches
to the ML can roughly be divided into two categories, passive
and active, each making characteristic assumptions about the

learner and its environment.[20] In passive learning approaches
such as classification, clustering, and regression, the ML algo-
rithm or surrogate model can only make inferences on the envi-
ronment based on the predetermined training data provided to
it. Within the active-learning paradigm, however, the learning
algorithm can make dynamic queries or suggestions to direct
the learning process itself. For instance, when faced with a pau-
city of training data, the ML algorithm can direct the user to
provide data from unexplored regions (quantified by the predic-
tion) so as to gain knowledge and improve the overall accuracy
of the model. On the other hand, provided with some prior user-
defined objective/cost function, the algorithm can also direct
the user to sample points which can maximize/minimize this
function. The former approach of sampling unexplored regions
with large uncertainty is referred to as “exploration” whereas
the latter approach of acquiring data which maximizes the task-
specific utility of a particular action/measurement is referred to
as “exploitation.” Another common strategy is to balance
exploration and exploitation, by taking both knowledge gain
and the task-specific utility of actions into account.

In the current report, we outline an active-learning approach
to efficiently search the chemical space for polymers which
possess a glass transition temperature (Tg) higher than a certain
minimum threshold. In other words, given an initial (small)
dataset of polymers and their corresponding Tg measurements,
our algorithm provides dynamic suggestions on the next set of
polymers to synthesize and test so as to achieve our objective of†Chiho Kim and Anand Chandrasekaran equally contributed to this work.
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designing high-Tg polymers. We demonstrate this approach on
a dataset of 736 polymer Tg measurements that we have curated
from various publicly available sources of data.[21–23] Our
results indicate that all three strategies (exploitation, explora-
tion, and balance exploitation/exploration) consistently out-
perform a random search approach. We observe that the two
best-performing strategies are the balanced exploration/explo-
ration and pure exploitation strategies. We notice that the for-
mer is the most robust strategy to employ in finding the most
number of high-Tg polymers using the least number of “exper-
iments,” particularly when the size of the initial dataset is small.
The active-learning framework and strategies detailed in this
work can be generalized to many materials classes and can
also be used to optimize more than one materials property
simultaneously.

Method
First, we randomly select five polymers from the dataset of 736
polymers, and pretend that we know the Tg value only for these
polymers. We then train a Gaussian process regression (GPR)
model on just the five randomly selected polymers; the exper-
imental Tg measurements for the remaining 731 polymers are
kept hidden to the learning algorithm. Although this initial
model is likely highly inaccurate, it provides us with the ability
to make predictions of Tg (along with the associated uncer-
tainties) on the remaining 731 candidate polymers. As shown
in Fig. 1, we then use one of the three different strategies
(explained in the following sections) to iteratively choose the
next-best polymer to synthesize and test (from the 731 remain-
ing polymers) so as to achieve our goal of designing a certain
number of high-Tg polymers in the shortest possible time.
Since this is a demonstrative problem, we do not actually syn-
thesize and test the polymer but instead the Tg of this sixth

recommended polymer is “revealed” to the learning algorithm
and added to the training set. A new ML model is trained on
these six polymers and predictions are made for the remaining
730 polymers. This loop is repeated continuously until we have
“discovered” 10 polymers possessing Tg greater than 450 K.

Although we only perform a “virtual” experiment in the cur-
rent work, such frameworks can be used in synergy with actual
experiments[12] or time-consuming ab initio calculations.[24,25]

As mentioned earlier, we utilize one of the three strategies to
determine the next-best experiment. The three strategies utilize
exploitation (searching close to the area of the current best esti-
mate), exploration (searching in unexplored areas), and balanced
exploitation/exploration. As explained in more detail in the
“Workflow” section, the exploitation strategy uses only predicted
Tg to provide suggestions for the next-best polymer to synthesize
and test. On the other hand, the exploration strategy provides
suggestions based on just the uncertainty of predicted Tg of the
candidate polymers (not the prediction itself). Finally, the
balanced exploration/exploitation strategy provides a recommen-
dation based on the utilization of both the predictions and the
associated uncertainties of the remaining candidate polymers.

We statistically evaluate the aforementioned three strategies
within the context of finding 10 polymers possessing Tg higher
that 450 K. We also evaluate how the three different strategies
perform when changing the size of the initial dataset and also as
a function of the relative difficulty of the objective to be
achieved.

Dataset
Data for this work were obtained from publicly-available collec-
tions of experimental measurements: Polymer Handbook,[21]

Prediction of Polymer Properties,[22] and an online repository
of polymer properties.[23] The polymer dataset was highly-

Figure 1. Overview of a typical active-learning framework. First, a model is trained based on the current knowledge of a system or environment. Using this
model, predictions and associated uncertainties are obtained for new cases. Depending on the strategy that one wishes to employ, one may use the prediction,
the uncertainty, or both the prediction and uncertainty to suggest the next-best case to be studied. Once the new case has been tested, the results thus obtained
are used to update the current knowledge of the system and the iteration is repeated until a desired objective is achieved.
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diverse and the constituent polymers were composed of nine
atomic species: C, H, O, N, S, F, Cl, Br, and I. In order to visu-
alize the diversity of 736 chemically unique polymers consid-
ered in this study, we performed principal component
analysis (PCA) using 244 components of the hierarchical poly-
mer fingerprint (described in the “Hierarchical polymer finger-
printing” section). Figure 2(a) shows distribution of polymers
in a two-dimensional (2D) principal component space. Two
leading components, PC1 and PC2 are assigned to x and y
axes of the plot, respectively. The Tg of each polymer is used
to color code the depicted points. As illustrated, the dataset
not only includes common polymers such as polyethylene
and polystyrene but also polymers with a large number of
rings or those with very long side-chains. Also the Tg of the
polymers in the dataset varied widely, ranging from 76 to
613 K with a mean of 326 K. A histogram of the distribution
of Tg values in the dataset is shown in Fig. 2(b). The repeat
unit of the polymers were represented using the simplified
molecular-input line-entry system (SMILES).[26]

Hierarchical polymer fingerprinting
In order to comprehensively capture the key features that may
control the Tg, we utilized the hierarchical polymer fingerprint-
ing scheme.[27] The fingerprint building process consists of
three hierarchical levels of descriptors. The first one is at the
atomic scale wherein the occurrence of atomic triples (or a
set of three contiguous atoms, e.g., C2–C3–C4, made up of a
twofold coordinated oxygen, a threefold coordinated carbon,
and a fourfold coordinated carbon) was calculated.[28,29] For
the polymers considered in this study, there are 123 such com-
ponents. The next level deals with quantitative structure prop-
erty relationship descriptors, such as van der Waals surface
area,[30] topological surface area,[31,32] and fraction of rotatable

bonds,[33] implemented in the RDKit cheminformatics
library.[34] Such descriptors, 99 in total, form the next set of
components of our overall fingerprint. The third level and larg-
est length scale descriptors captured morphological features
such as the topological distance between rings, fraction of
atoms that are part of side chains and length of largest side
chain.[27] We include a fixed set of 22 such morphological
descriptors.

Workflow
As mentioned earlier, we set an arbitrary goal of finding 10
polymers possessing a Tg greater than 450 K. To achieve this
objective, we would have to perform a series of virtual experi-
ments, on one polymer at a time, to obtain the true experimental
value of Tg for that polymer. At any given point of time, where
the Tg of N polymers have been measured, how does one decide
which polymer would be the best candidate for the (N + 1)th
measurement? Instead of performing an experiment on a ran-
domly selected polymer, it would be optimal if a suggestion
was provided via an effective decision-making framework
(leveraging experience gained from past measurements) to
accomplish the goal of finding 10 high Tg polymers in the
shortest possible time.

First, we start the design process by setting up an initial data-
set with a random selection of five polymers from the entire
dataset of 736 polymers. These five points are considered as
“measured” polymers and will be used for training the initial
surrogate model. Prior to developing the ML models we “fin-
gerprinted” the polymers using a hierarchical polymer finger-
printing technique explained in the previous section. Among
the fingerprint components, several morphological descriptors,
such as the shortest topological distance between rings, fraction
of atoms that are part of side-chains, and the length of the

Figure 2. Graphical summary of the chemical space of polymers considered in this work. (a) 736 chemically unique polymers distributed in a 2D principal
component space. Two leading components, PC1 and PC2 are produced by PCA, and assigned to x and y axes of the plot, respectively. The structure of a few
representative polymers, with various number of rings and sizes of side chains are highlighted. (b) Distribution of the Tg values for all the polymers considered in
this work.

Artificial Intelligence Research Letter

MRS COMMUNICATIONS • www.mrs.org/mrc ▪ 3
https://doi.org/10.1557/mrc.2019.78
Downloaded from https://www.cambridge.org/core. University of Connecticut, on 13 Jun 2019 at 11:51:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1557/mrc.2019.78
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


largest side-chain, are included to properly capture the relevant
features that could influence the Tg of a particular polymer.

Following the fingerprinting step, we created the surrogate
model using GPR to learn the nonlinear relationship between
the polymer fingerprints and their Tg values. A radial basis
function kernel was utilized and fivefold cross validation was
used to determine the hyperparameters of the new model at
every iteration of the active learning workflow. Once the ML
model has been built by training on the initial dataset, Tg values
for the candidate polymers are predicted. We investigated the
performance of three decision-making strategies (or acquisition
functions); exploitation, exploration, and balanced exploitation/
exploration, that employ different approaches (based on different
criteria) to provide suggestions for the next-best experiment.

• Strategy 1—Exploitation: In this strategy the next-best poly-
mer is the one that has the highest predicted Tg value. This
prediction is obtained from an ML model trained on previous
experiments. The exploitation approach favors polymers that
are chemically similar to high-Tg polymers in the training set.

• Strategy 2—Exploration: Here, the next-best candidate is the
one which displays the largest uncertainty (as predicted by the
GPR model). Such an approach favors exploration of chemi-
cal space in order to acquire more information about the
global landscape of Tg variation across all the polymers to
be tested. As such, this strategy is not optimal for the targeted
search of high-Tg polymers but we analyze the performance
of this approach nonetheless.

• Strategy 3—Balanced exploitation/exploration: We utilize
the maximum expected improvement (EI) acquisition func-
tion[13,35] to utilize both the prediction and uncertainty to pro-
vide the suggestion for the next-best polymer candidate. For
example, especially in the early stages of the dataset expan-
sion, a particular polymer may not possess the highest pre-
dicted Tg but it may possess an unusually large uncertainty.
Since the EI criterion takes into account both the prediction
and the uncertainty, such a polymer may indeed be the
most likely candidate for the next experiment. Within our
GPR-based ML framework, the calculated EI metric is non-
parametric and it automatically (and dynamically) provides
a balance between exploration and exploitation approaches.
The equations for the evaluation of the EI metric are shown
in the Appendix.

• Strategy 4—Random selection: In this strategy, we randomly
select a new candidate polymer, at every iteration, and add it’s
Tg value to the list of “known” Tg values. The first three strat-
egies are evaluated against this random approach.

In order to show the workflow in action, Fig. 3 demonstrates
how the first three strategies utilize different metrics to choose
the next-best polymer candidate for measurement at one partic-
ular iteration. Once 10 polymers possessing Tg greater than
450 K are obtained, the workflow is terminated and the number
of iterations required to achieve this objective is noted. In
order to remove the bias due to the initial (random) choice of
five polymers, this entire workflow was repeated 50 times,

for each strategy, in order to obtain the average number of iter-
ations required for the completion of the objective for each of
the four strategies.

Since the performance of each strategy may vary depending
on the size of the initial dataset or on the difficulty of the objec-
tive to be achieved, we also look into the relative performance
of the four strategies when subject to the aforementioned vari-
ations. More specifically, we analyze the results when starting
with different initial dataset sizes ranging from 5 to 60 and we
also benchmark performance as a function of the threshold tem-
perature (in the range of 300–450 K).

Results and discussion
As mentioned in the previous section, the above workflow is
carried out to evaluate the performance of the three decision-
making frameworks, i.e., exploitation, exploration, and
balanced exploration/exploitation. In order to obtain statisti-
cally meaningful results, the workflow is repeated 50 times,
each time starting with a different initial dataset (consisting
of five randomly chosen polymers). Figure 4 demonstrates
the number of experiments required (on average) to discover
1–10 polymers with a Tg of above 450 K. The error bars denote
the standard deviation across the 50 different runs. For the pur-
pose of comparison, the rates of success when using a random
approach are also depicted in Fig. 4.

The average number of experiments required to discover 10
high-Tg polymers using the exploitation, exploration, balanced
exploitation/exploration, and random approaches are 46, 98,
30, and 234, respectively. We now analyze the performance
of each of the three different strategies individually.

• Strategy 1—Exploitation: The exploitation approach is the
2nd best-performing approach overall. From Fig. 4, we see
that even though it has a very similar performance relative
to the balanced exploitation/exploration approach, it pos-
sesses larger error bars. This implies that the exploitation
strategy tends to get stuck in local minima, depending on
the randomly chosen polymers in the initial dataset. As
depicted in Fig. 5(a), we see that exploitation approach is
the best-performing strategy when the initial dataset size is
large. This is because larger initial dataset sizes lead to mod-
els that can predict Tg accurately over a wider range of chem-
ical space. Also, as shown in Fig. 5(b), the exploitation
approach also performs well when the threshold temperature
for satisfying the selection criteria is lower. Lowering the
threshold temperature reduces the difficulty of the search
and exploitation approach is easily able to find high-Tg poly-
mers in certain regions of chemical space.

• Strategy 2—Exploration: Of the three quantitative decision-
making strategies, the exploration strategy is the least efficient
one, even-though it still out performs the random search
approach. From Fig. 4, it is interesting to note that the explo-
ration strategy has a sharper slope in the initial stages of the
search but the rate of success slows down toward the later
stages of the search. The exploration approach performs
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well in the initial stages because it is able explore a larger
variety of chemical space as a result of using uncertainty to
provide suggestions for the next-best test case. However,
toward the later stages of the search, it is no longer required
to search in unexplored regions since the ML model already
has a good understanding of which regions of chemical
space are likely to show high-Tg.

• Strategy 3—Balanced exploitation/exploration: The balanced
exploitation/exploration approach is the best-performing and
most robust strategy overall. As seen in Fig. 4, it not only per-
forms better than the exploitation approach but it also shows
small error bars and therefore it has a lower tendency to get
stuck in local minima. It significantly outperforms the exploi-
tation strategy when the initial size of the dataset is small. The
EI metric dynamically provides the right balance between
prediction and uncertainty of the prediction when suggesting
the next-best polymer candidate to test. When the initial data-
set size is small, uncertainties are larger across the test dataset
and therefore this strategy will exhibit similar behavior as the
uncertainty based exploration case. Toward the later stages of

Figure 3. (a) Parity plot depicting ML predictions versus the actual Tg value for 42 polymers. Starting from an initial seed dataset of five polymers, 37
experiments were performed, resulting in the addition of 37 additional values to the dataset. The selection of the next-best candidate can be made using different
criteria. (b) The predicted Tg values for the remaining 694 polymer candidates. Polymer #184 has the highest predicted Tg value and is thus selected when we use
the exploitation approach. (c) Polymer #487 has the highest uncertainty associated with its prediction. When using the exploration framework, this particular
polymer is the most suitable candidate since it indicates a point in chemical/fingerprint space that is least explored. (d) The EI metric is calculated for all
remaining polymer candidates using both the polymer’s Tg prediction and the corresponding uncertainty associated with the prediction. This balanced approach
would lead to the selection of polymer #418 as the next-best candidate. In (e) we summarize the actual effect of making a selection based on the three different
frameworks. In this particular case, the EI metric leads to the selection of the most suitable candidate, possessing a Tg which is above our required threshold of
450 K.

Figure 4. Number of experiments required (on average) to discover 1–10
polymers with Tg greater than 450 K when starting with an initial dataset size
of five polymers. The average is calculated using 50 different runs and the
standard deviation is denoted by the error bar.
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the search, the uncertainty (and the variation in uncertainty) is
smaller across the remaining candidate polymers. Therefore,
the balanced approach will perform in a manner akin to the
exploitation strategy toward the end of search. For these rea-
sons, as depicted in Fig. 5, the balanced approach performs
exceptionally well when the initial dataset size is small and
when the threshold temperature criteria is large.

• Strategy 4—Random selection: As expected, the random
selection strategy is the most inefficient strategy for the discov-
ery of high-Tg polymers relative to the other three decision-
making strategies which are instead guided by quantitative
metrics at every iteration. The random strategy only performs
well when the threshold Tg temperature is low. This is simply
due to the overall distribution of Tg values in the dataset which
has a mean Tg value of 326 K as mentioned earlier.

Conclusion and outlook
To summarize, we have demonstrated an active-learning based
approach that can be used to identify and discover new polymer
materials possessing a high Tg. Within the context of Bayesian
decision theoretic frameworks, we have evaluated the perfor-
mance of three metrics that can be used to provide suggestions
for the “next-best experiment.” We observed that the exploita-
tion and balanced exploitation/exploration approaches (based
on the EI criterion) showed the best performance in terms of
rates of discovery of promising polymer candidates. The

balanced exploration/exploitation approach results in the most
robust framework and performed especially well when the ini-
tial dataset size was small.

While ML techniques have been used widely in materials
science over the past few years, such approaches are, more
often than not, dependent on large amounts of data. In many
cases the source of the data is a time-consuming experiment
or quantum-mechanical calculation. While properties like Tg
are widely available in the literature, other crucial properties
such as dielectric breakdown[8] or Li-ion diffusivity[10] are
hard to come by and difficult to measure. The integration of
active-learning or BO frameworks within the materials discov-
ery pipeline will provide quantitative guidance to systemati-
cally expand materials property datasets in an efficient and
targeted fashion.
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Appendix:Expected improvement
Balancing between exploitation and exploration requires the
optimization of a constant A that controls the trade-off between
exploitation and exploration in the statistical higher bound,

HB (xi) = Tg,pred(xi) − As(xi) (1)

where Tg,pred(xi) is the predicted Tg, and s(xi) is the uncertainty
of the prediction given by the GPR model. xi is the fingerprint
vector of a given polymer i. HB (xi) becomes Tg,pred(xi) when A
= 0 thus the selection of xiwill become pure exploitation. When
A =∞, HB (xi) is equivalent to s (xi) (pure exploration).

Instead of manually finding a good A value, HB (xi) can be
determined by maximizing the EI which is given by,

E[I(x)] = P[I(x)][Tg,pred,max − Tg,pred(x)]

+ s(x)��
2

√ exp − Tg,pred,max − Tg,pred(x)
2s(x)

( )2
[ ] (2)

P[I(x)] = 1

2
1+ erf

Tg,pred,max − Tg,pred(x)��
2

√
s(x)

( )[ ]
(3)

P[I(x)] is the probability of improvement on selection of the
next polymer with the fingerprint vector of x that will give an
improvement on the best observed value so far, Tg,pred,max.
Using this function, we no longer need to explicitly find the
best A in Eq. (1). Detailed mathematical derivation can be
found in Ref. 35.
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