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ABSTRACT: Cost versus accuracy trade-offs are frequently
encountered in materials science and engineering, where a
particular property of interest can be measured/computed at
different levels of accuracy or fidelity. Naturally, the most
accurate measurement is also the most resource and time
intensive, while the inexpensive quicker alternatives tend to be
noisy. In such situations, a number of machine learning (ML)
based multifidelity information fusion (MFIF) strategies can
be employed to fuse information accessible from varying
sources of fidelity and make predictions at the highest level of
accuracy. In this work, we perform a comparative study on
traditionally employed single-fidelity and three MFIF strat-
egies, namely, (1) Δ-learning, (2) low-fidelity as a feature, and (3) multifidelity cokriging (CK) to compare their relative
prediction accuracies and efficiencies for accelerated property predictions and high throughput chemical space explorations. We
perform our analysis using a dopant formation energy data set for hafnia, which is a well-known high-k material and is being
extensively studied for its promising ferroelectric, piezoelectric, and pyroelectric properties. We use a dopant formation energy
data set of 42 dopants in hafniaeach studied in six different hafnia phasescomputed at two levels of fidelities to find merits
and limitations of these ML strategies. The findings of this work indicate that the MFIF based learning schemes outperform the
traditional SF machine learning methods, such as Gaussian process regression and CK provides an accurate, inexpensive and
flexible alternative to other MFIF strategies. While the results presented here are for the case study of hafnia, they are expected
to be general. Therefore, materials discovery problems that involve huge chemical space explorations can be studied efficiently
(or even made feasible in some situations) through a combination of a large number of low-fidelity and a few high-fidelity
measurements/computations, in conjunction with the CK approach.

KEYWORDS: multifidelity learning, hafnia, machine learning, density functional theory, dopant formation energy,
materials informatics

1. INTRODUCTION

After witnessing transformative feats in distinct areas of
artificial intelligence (AI),1−3 such as computer vision,4 AI-
played games,5 speech recognition, and natural language
processing,6 machine learning (ML) based methods are
gradually finding inroads in the physical and chemical
sciences.7−9 In fact, the data-enabled statistical learning
approach has been recently recognized as the fourth paradigm
in materials sciencefollowing empirical, theoretical, and
computational paradigms.10,11 A vast portfolio of materials
classification, regression, and design problems are being
approached using ML-based methods, including accelerating
materials property prediction, assisting autonomous high-
throughput experiments, emulating first-principles computa-
tions, and more.8,12−25

A common practice in materials informatics is to utilize past
data (or “training set”), generated at a consistent level of
experiment (or theory), to build efficient surrogate models of
diverse material properties, which are otherwise expensive to
obtain from fresh experiments or simulations. For example, ML

models utilizing Gaussian process regression (GPR), kernel
ridge regression (KRR), neural networks, etc., have been made
to quickly estimate several macro- or microscopic quanti-
ties.26−33 A notable observation among all such commonly
availed ML models is that they are built using training data
obtained from a single and consistent source, and thus, can be
referred to as single-fidelity (SF) models. However, from a
practical standpoint, it is common to find a material property
being estimated through multiple sources (experiments/
physical models) with varying levels of fidelity. Further, the
accuracy of the measurement or simulation also tends to be
proportional to its cost, making the volume of high-fidelity data
relatively low. A few such examples are discussed next using
Figure 1.
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The first example highlights a hierarchy of increasingly
accurate (and expensive) calculations that can be performed
within the framework of density functional theory (DFT).
While results from computations involving inexpensive local
density and generalized gradient approximations (LDA or
GGA) to the electronic exchange-correlation (xc) interaction
may constitute low-fidelity estimates, the use of more
expensive hybrid (e.g., HSE06) and double hybrid functionals
can provide high-fidelity results or data. Similarly, if one aims
to estimate a property of a “realistic” amorphous polymer, a
simple physical model based on a single infinite chain or an
oligomer molecule can provide an inexpensive first-order low-
fidelity estimate. As another example in the context of
experiments, characterization of a scintillator compound can
be performed with light yield measurements on high-quality
single crystals or on polycrystalline ceramics. While the former
may represent a high-fidelity expensive measurement only
available after laborious and time-consuming single crystal
synthesis process, the latter can be considered as a cheaper and
relatively quick low-fidelity estimate. The above examples

reflect the prevalence of materials information available at
multiple levels of fidelity across different domains. Naturally,
the important question to be asked is Can we fuse information
f rom such multiple sources to make ML models that predict at the
highest level of f idelity?
Besides utilizing information available from varying sources,

one also needs to be able to use partial information present at
different levels. This is particularly critical in materials science,
wherein availability of high quality experimental data is often
limited while relatively large volumes of low-fidelity data can be
accessed. However, despite their practical relevance, develop-
ment of ML methods that can handle multifidelity information
fusion (MFIF) for materials property predictions remains
scarce. In fact, to the best of our knowledge, only three such
models, namely, the Δ-learning,34,35 regression models
explicitly using low-fidelity as a feature (LFAF)36,37 and
multifidelity cokriging (CK),38 have been put forward thus far.
Figure 2 highlights the fundamental differences between the

three MFIF approaches and the traditionally employed SF
models and the nature of data sets utilized in each case. In the

Figure 1. General trade-off between accuracy and computational/experimental cost prevalent across different domains in materials science. The
presence of increasingly complex xc functionals in DFT computations, construction of physical models with varying levels of morphological
complexity, and empirical measurements of samples with increasing purity allow estimation of materials properties at varying levels of accuracy. The
general trend of increasing time and cost with higher-fidelity measurements can also be observed.

Figure 2. Comparative description of various ML models, i.e., (a) SF(GPR), (b) Δ(GPR), (c) LFAF(GPR), and (d) CK, employed in the present
study to learn dopant formation energies in hafnia. f(x) → y represents a machine-learned mapping function that relates the feature space x to the
property space y. In this work, the feature vector x comprised a set of chemically informed elemental features and identities of different hafnia
phases, while yhi and ylo represent the DFT-computed high-fidelity and low-fidelity values of dopant formation energies in hafnia, respectively. GPR
denotes Gaussian process regression. See the text for details on definitions of fΔ(x), f LFAF(x, ylo), f

lo(x), and fd(x).
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SF ML approach, a surrogate model maps easily accessible
material attributes or features (x) to a target property
computed or measured at a single level of fidelity (usually
the highest available fidelity, i.e. yhi). In contrast, the Δ-learning
and LFAF approaches fuse information from different sources
in a closely related, although nonequivalent, manner. The
former learns the differences or Δ between the high-fidelity
(yhi) and the low-fidelity (ylo) estimates of the target property,
with the final high fidelity ML estimate made by summing the
learned Δ to the known low fidelity value (i.e., yhi = ylo +
fΔ(x)). On the other hand, the LFAF approach explicitly
augments the feature x with the low fidelity value to directly
learn the corresponding high fidelity estimate (i.e., yhi =
f LFAF(x, ylo). An additional point to be noted in the SF, Δ-
learning, and LFAF approaches is that all of them are general
learning schemes independent of the ML algorithmsuch as
GPR, KRR, or neural networks. Lastly, the relatively advanced
CK model learns the available data as two independent
Gaussian processesone for the low fidelity data ( f lo(x)) and
one for the difference between the two fidelities ( fd(x))
while explicitly taking into account the pairwise correlations
between features, low-fidelity data, and high-fidelity data (see
Figure 2).39 We also note that while each of the three MFIF
methods can, in principle, account for more than two fidelities
by resorting to a recursive formulation, the CK is most flexible,
as it does not require the knowledge of low-fidelity estimates of
a new case to make a predictionwhereas both the Δ-learning
and LFAF approaches strictly require the availability of all the
fidelities during prediction.
Although rare, a few examples of aforementioned MFIF

approaches can be found in materials science. While the Δ-
learning method has been applied to learn formation enthalpies
in small molecules,34,35 LFAF36 and CK have been utilized to
learn bandgap in solids.40 In a systematic study on LFAF
(titled as, crude approximation of property or CEP), Zhang
and co-workers clearly showed the advantage of MFIF learning
over the traditional ML method, especially for small data sets,
using three distinct examples of learning band gap of binary
semiconductors, lattice thermal conductivities, and bulk and
shear moduli of zeolites.37 A frequentist analogue of the CK
approach has also been studied very recently by employing
recursive KRR.41 In all these examples, many low-fidelity DFT
predictions obtained from relatively simple (LDA or GGA) xc
functionals were combined with a few complex (HSE) high-
fidelity xc functional predictions to make ML models at the
highest-level of accuracy. However, a study that systematically
explores the comparative performance, merits, and limitations
of different SF and MFIF methods remains absent.
In this work, we assess the ability of different SF and MFIF

approaches to predict the dopant formation energy in hafnia
(HfO2), with formation energy data obtained at different levels
of cost and accuracy. The motivation behind the specific
material choice stems from the fact that hafnia is a well-known
high dielectric constant material, in which dopants have been
extensively utilized to enhance the dielectric permittivity.42−48

Moreover, there has been a renewed interest in this material
owing to the recent observations of ferroelectricity in thin films
of doped hafnia.49−51 Utilization of dopants to enhance its
ferroelectric, piezoelectric, and pyroelectric behavior owing to
stabilization of particular phases in hafnia is also being studied
extensively.52,53 An improved understanding of the dopant
formation energies in different HfO2 phases is naturally
desirable in all the applications mentioned above. Further,

this problem acts as an ideal case study to evaluate comparative
performance of different SF and MFIF approaches since the
combined chemical space of dopants and hafnia phases is
modest enough to draw reasonable conclusions, and yet, the
cost for the involved DFT computations is practically feasible.
The data set employed for training of different ML models

consists of first-principles dopant formation energies computed
for a set of 42 substitutional dopants, each studied in six
different hafnia phases. Different choices for the plane wave
basis set size, sampling density in the reciprocal space and
atomic relaxations were utilized to generate low and high-
fidelity values for the DFT-computed dopant formation
energies, as discussed further in section 2.1. This information
is then combined with a set of physically relevant elemental
features (x) based on dopant chemistry and identity of the
different hafnia phases to form a benchmark training data set
used to compare the different SF and MFIF regression models
illustrated in Figure 2. Since SF, Δ-learning, and LFAF are
compatible with any regression scheme, we use a consistent
and commonly employed GPR framework across all of them.
Our results suggest that while all MFIF approaches are more

accurate than traditional SF methods, CK is the most efficient
and flexible among the three MFIF approaches. Models similar
in accuracy to Δ-learning and LFAF can be made using CK
approach, but at much less training data generation and
prediction cost. The ability of the CK model to make
prediction for a new casedopant formation energy of a new
dopant in hafnia for this worksolely based on features (and
without the knowledge of its respective low-fidelity estimate)
renders it a very powerful ML learning approach for property
prediction and materials screening. Further, based on the
accuracy and cost results obtained on the toy example of
hafnia, it can be concluded that the CK approach provides an
efficient pathway to tackle problems involving large exploration
space (e.g. materials discovery), for which obtaining expensive
high-fidelity data is impossible.

2. TECHNICAL DETAILS

2.1. Training Data Set. We start by building a training
database of dopant formation energies in bulk HfO2. The
dopant formation energy (FD

ph) of a dopant D in the ph phase
of hafnia is defined as

= [ + ] − [ + ]F E E E ED
ph

D
ph ph

DHfO Hf
hcp

HfO
equi

2
bulk

2
bulk (1)

where E
D
ph

HfO2
bulk and E ph

HfO2
bulk are the respective DFT computed

energies of substitutionally doped and pure hafnia. A 96 atoms
supercell with 3.125% concentration of substitutional doping
was employed to simulate doped HfO2. EHf

hcp and ED
equi represent

the DFT computed per atom energies of commonly observed
bulk elemental phases of hafnium (i.e., the hcp phase) and the
dopant D, respectively. These represent the chemical potential
of Hf and D, respectively. For the substitutional doping, six
different phases of hafnia, namely, monoclinic (M) P21/c,
tetragonal (T) P42/nmc, cubic (C) Fm3̅m, orthorhombic (OA)
Pbca, polar orthorhombic (P−O1) Pca21, and another polar
orthorhombic (P−O2) Pmn21, were considered as these are
either empirically known to occur under reasonable temper-
ature−pressure variations or are theoretically predicted to have
energy close to the equilibrium M phase.54−58 For the choice
of substitutional dopants in the different phases of bulk HfO2,
we selected 42 elemental species, highlighted in Figure 3, from
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the 3rd, 4th, and 5th rows of the Periodic Table, with the
exception of Al, Si, Mg, and Gd. The rationale for these dopant
choices was largely based on the recent reports of interesting
ferroelectric observations in hafnia films doped with these
elements.59−61 All of the computational DFT data is made
available at our online repository https://khazana.gatech.edu.
The various energy terms described in eq 1 were computed

using electronic structure DFT calculations, performed using
the Vienna Ab Initio Simulation Package62 (VASP) employing
the Perdew−Burke−Ernzerhof (PBE) exchange-correlation
functional63 and the projector-augmented wave method-
ology.64 Two data sets with varying levels of fidelity were
constructed using the different DFT computation settings as
described in Table 1. We note that the last three terms of eq 1

are relatively inexpensive to compute owing to the relatively
small bulk supercell size (as compared to the doped supercells)
and therefore only high fidelity settings were used to compute
these bulk energies of pure phases. On the other hand, the
energy term, E

D
ph

HfO2
bulk , is significantly more computationally

demanding, as this quantity needs to be computed for all
combinatorial possibilities of dopants in different hafnia phases
for a relatively large supercell. Thus, two different settings (cf.
Table 1) corresponding to the employed k-point sampling
densities and plane-wave basis set size were used to evaluate
this term. The low-fidelity data set was generated using a single
k-point (at Γ-point) and a basis set of plane waves with kinetic
energies only up to 250 eV, while the high-fidelity
computations were performed using a 3 × 3 × 3
Monkhorst−Pack k-point mesh65 for the reciprocal space
integrations and a basis set of plane waves with kinetic energies
up to 500 eV. Furthermore, only in the case of the high-fidelity
data set, internal coordinates of the atoms were allowed to
relax until all components of the atomic forces along the
Cartesian axes were smaller than 10−2 eV/Å. In the low-fidelity
data set, however, atoms were fixed at their equilibrium bulk
positions of the respective hafnia phases. For all doped hafnia
computations, the supercell lattice parameters were fixed at

their corresponding equilibrium bulk values. Spin polarized
computations were performed in each case. The low-fidelity
and high-fidelity data sets are henceforth collectively referred
to as ylo and yhi, respectively, and the constituting individual
formation energy values, corresponding to a given dopant, are
indicated with symbols ylo and yhi. We also note that the high-
fidelity energy values were found to be consistent with the
previous reports.58,66,67

Considering 42 dopants in 6 phases of hafnia results in a
total of 252 data points within each of the ylo and yhi data sets.
However, a careful analysis of the final relaxed geometries of
the doped hafnia supercells revealed that in four specific cases
the doped supercells went through a strain-induced phase
transformation during the course of atomic relaxation (for the
high-fidelity case) and eventually collapse to a different phase,
rendering the definition of FD

ph defined in eq 1 invalid. These
cases correspond to Cu- and W-doped hafnia T-phase, and
Mn- and Si-doped hafnia C-phase, which were excluded from
the remaining analysis, and the updated ylo and yhi data sets of
computed dopant formation energies consisted of 248 points
each.
Figure 4 shows a good correlation between the calculated

dopant formation energies using the aforementioned low- and

high-fidelity settings within the DFT computations for the
above 248 cases. Interestingly, the dopant formation energy
values from the ylo data set appear consistently higher than the
corresponding values in the yhi data set. This is potentially due
to the mechanical stresses inherently present in the atomically
constrained structures of ylo data set. However, a few

Figure 3. Periodic table of elements highlighting the 42 dopants utilized in this work in yellow.

Table 1. Details of the Computational Parameters Used
during DFT Calculations to Generate Low-Fidelity ylo and
High-Fidelity yhi Datasets

DFT-parameters low-fidelity high-fidelity

DFT xc functional PBE PBE
plane wave cutoff 250 eV 500 eV
k-points mesh Γ-point only 3 × 3 × 3
atomic relaxation false true

Figure 4. Correlation between the high-fidelity (yhi) and the low-
fidelity (ylo) dopant formation energies obtained for a total of 42
dopants in six phases of hafnia using DFT computations. The plot
contains 248 points, with 4 cases excluded as described in the text.
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occurrences of data points for which yhi is slightly greater than
ylonot obvious from Figure 4 owing to relatively large energy
scale of the dopant formation energiesconfirms additional
sources of error owing to the light computational settings used
to create the low-fidelity data set. It is important to note that a
good correlation between the low- and the high-fidelity data
sets can be highly beneficial in a MFIF approach as it signifies
presence of relevant information at the low-fidelity level as
well.
2.2. Details of the Feature Set. Identification of easily

accessible and relevant features is an integral part of any
statistical learning exercise. Since we are interested in learning
dopant formation energies in different phases of hafnia, we
select features (x) that uniquely represent different dopants
and diverse hafnia phases, are readily available and carry
information pertaining to the chemical similarity/dissimilarity
of the 42 elemental dopant species considered in this work. In
particular, we use five elemental features, namely, empirical
radii,68 electronegativity,69 valency or nominal oxidation state,
electron affinity70 and ionization potential70 to capture the
chemistry of the dopant elemental species. The six hafnia
phases were denoted by a categorical variable, referred to as
phase id, which varied from 0 to 5. Further discussion on the
correlation of these features with the target property yhi is
provided in section 5.1. We note that although additional
features can further improve the performance of the ML
models shown here, we expect the major conclusions of this
study to remain valid, since the feature set x is consistent
across all the ML strategies compared in this work.
2.3. Machine Learning Models. As stated earlier, the

GPR scheme was utilized for each of the SF, Δ-learning, and
LFAF approaches. GPR uses a Bayesian framework, wherein a
Gaussian process is used to obtain the aforementioned
functional mapping f(x) → y based on the available training
set and the Bayesian prior, incorporated using the covariance
(or kernel) function. The square exponential kernel with three
hyper-parameters, i.e., σf, σl, and σn, was chosen for this work,
details of which can be found in section 5.2. This choice of
kernel is quite standard and is known to work well for a variety
of materials problems.7,13,71 Further, it facilitates a fair
comparison with the CK approach, wherein a similar kernel
was employed.
In case of the SF models, the set of six features discussed in

section 2.2 were used as x, and since the standard GPR scheme
can only incorporate a single level of fidelity, y = yhi was used
(cf. Figure 2a). As alluded to earlier, the Δ-learning and the
LFAF are straightforward extensions of traditional GPR
scheme, wherein both ylo and yhi data is utilized simultaneously.
While in Δ-learning a fΔ(x) → Δ mapping is established by
setting y = Δ = yhi − ylo,

34,35 in LFAF a f LFAF(x, ylo) → yhi
mapping is learned.36 Both of these approaches are schemati-
cally captured in Figure 2b and c, wherein it’s important to
note in both cases the knowledge of ylo is essential for all points
in the training and test sets. This particular constraint makes
these two MFIF approaches expensive, as will be demonstrated
later. These ML models are, henceforth, referred to with labels
SF(GPR), Δ(GPR), and LFAF(GPR) to remind that each of
these three approaches were implemented using GPR,
although any other regression scheme could have been
employed.
The flexibility of the CK approach allows it to have a

variable number of low- (Nlo) and high-fidelity (Nhi) data
points, as shown in Figure 2d. Given that it is inexpensive to

compute ylo, we will constrain the nature of our problem such
that Nhi ⊆ Nlo, i.e., for all cases whose high-fidelity value yhi is
known, the respective low-fidelity value ylo is also available (cf.
Figure 2d). In analogy to GPR, the CK model assumes the
high-fidelity data to be a realization of the Gaussian process
Zhi(.), which is further defined as the sum of a low-fidelity
process Zlo(.) scaled by a factor ρ plus another independent
Gaussian process Zd(.), capturing the difference between the
available low- and high-fidelity data points. Thus

ρ= +x x xZ Z Z( ) ( ) ( )dhi lo (2)

Note that the Gaussian processes Zlo(x) and Zd(x) represent
the functional mapping f lo(x) and fd(x) in Figure 2d,
respectively. Further, in order to make a prediction for a
new case x*, no knowledge of the low-fidelity data is required.
Again, similar to GPR, we describe these two Gaussian
processes using the squared exponential kernel defined in
section 5.2. The details associated with hyper-parameter
optimization, and the mean estimate of the CK approach are
also included.
The CK approach can be extended to account for the

possible noise present in the high-fidelity data. This involves
introduction of a noise parameter in the diagonal of the
associated covariance matrices, details of which can be found
elsewhere.38 For this work, a variety of CK models were built
by varying the values of Nlo and Nhi during training, using the
aforementioned six-dimensional feature vector x and the noise
in data set yhi set to 0.1 eV.
For all the four ML models, i.e., SF(GPR), Δ(GPR),

LFAF(GPR), and CK, the prediction accuracy was computed
on a completely unseen and randomly chosen test set
consisting of 48 data points (∼20% of the total data set of
248 points). This allows us to compare the accuracy of
different ML methods and track the learninability of dopant
formation energies in hafnia using the feature x. Further, in
each case, statistically meaningful results were obtained by
averaging the performance of various ML models over 50 runs.
To avoid overfitting, 5-fold cross validation was adopted in the
GPR-based approaches.

3. RESULTS AND DISCUSSION
3.1. SF, Δ-Learning, and LFAF-Learning Models. To

estimate the learnability of the regression problem at hand, i.e.,
the dopant formation energy in hafnia, we start by building the
aforementioned SF(GPR), Δ(GPR), and LFAF(GPR) models.
Figure 5a presents the average root-mean-square error
(RMSE) for all the three approaches as a function of training
set size. As expected, the prediction accuracy of all the ML
models can be seen to increase with increasing training set size.
However, the MFIF based Δ(GPR) and LFAF(GPR) models
that use both x and ylo information outperform the SF(GPR)
model, demonstrating that the low-fidelity data, although not
accurate, contains a significant amount of relevant information.
Note that the observed performance disparity is particularly
pronounced at relatively small training set sizes, which are
often encountered in materials science problems. While the
SF(GPR) RMSE converges around 0.70 eV for the largest
training size, the corresponding RMSEs for Δ(GPR) and
LFAF(GPR) are 0.51 and 0.47 eV, respectively. Further, both
the Δ(GPR) and LFAF(GPR) models show similar perform-
ance since the two approaches utilize exactly the same amount
of information, although the learning problem is cast in a
different way. The results presented in Figure 5a, clearly
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demonstrate the advantage of utilizing information available at
lower levels of fidelity to learn target property at a higher level

of fidelity. As another benchmark, we evaluated the role played
by the feature set x to enable the learning process. Using just
the low-fidelity data as feature and linear regression as the ML
method, we tried to learn the high-fidelity data. Test error of
∼0.95 eV, in contrast to that of 0.47 eV for the MFIF
strategies, were obtained. This could be because of (1) use of
chemically meaningful features to uniquely represent the
dopant-hafnia phase pair and (2) use of nonlinear (GPR) ML
algorithms to allow better learning.
While Figure 5a captures the average performance of

different models as a function of training set size, panels in
Figure 5b compare prediction performance on individual cases
included in the training and test sets for the SF(GPR) and
LFAF(GPR) modelsall for a training size of 200 data points.
The results for Δ-learning are quite similar to LFAF, as can be
seen from Figure 5a, and are therefore not explicitly shown
here. The test set RMSE, mean absolute error (MAE), and R2

coefficients, frequently referred to as goodness of f it, reported in
each panel illustrate the improvement in the prediction
accuracy moving from SF to MFIF based models; for example,
while SF converges at R2 ≃0.96, the MFIF approaches R2

≃0.99. Furthermore, the prediction accuracy can be observed
to be similar for all phases of hafnia, represented using different
symbols in Figure 5b. As another error measure besides RMSE,
we also compared mean absolute relative error (defined as the

average of *
−y y

y

ML
hi

hi

i
k
jjjj

y
{
zzzz for the test set) across all the

approaches. Similar to RMSE, this was also found to be
highest for SF models, in comparison to MFIF modelswith
errors of 9.5% for SF(GPR), 8.90% for Δ(GPR), 5.22% for
LFAF(GPR), and 5.28% for CK models (to be discussed
later). Additionally, we note that while the GPR scheme was
used to estimate performance of SF, Δ-learning, and LFAF,
similar results are expected using any other regression method.
We corroborate this using KRR in section 5.3.
An important limitation to emphasize in the context of both

the Δ-learning and LFAF approaches is that in order to make
predictions for a new case, the corresponding low-fidelity *ylo,

Figure 5. Prediction accuracy for GPR models trained using SF, Δ-
learning, and LFAF methods. All results in part a are for test sets
consisting of 48 randomly selected points and averaged over 50 runs,
with error bars illustrating 1σ deviation. Panels in part b illustrate
example parity plots with train and test sets of 200 and 48 points,
respectively, in each case. Colors are used to represent training
(green) and test (red) sets, and distinct symbols are used to indicate
different hafnia phases. Several error measures (R2, MAE, RMSE) are
also provided.

Figure 6. (a) Prediction accuracy for CK models trained using Nhi high-fidelity (yhi) and Nlo low-fidelity (ylo) data points. All results in part a are for
test sets consisting of 48 randomly selected points and averaged over 50 runs. Panels in part b illustrate example parity plots with varying training
set and a test set of 48 points. Colors are used to represent training (green) and test (red) sets, and distinct symbols are used to indicate different
hafnia phases. Several error measures (R2, MAE, RMSE) are also provided.
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value should be known beforehand. As referred in Figure 2b
and c, this is due to the fact that ylo is used as a feature (in
addition to x) in the LFAF models, while for the Δ-learning
the final prediction is obtained by adding the ylo value to the
predicted difference. This requirement renders these ap-
proaches particularly ineffective for problems that involve
exploration of large chemical spaces, since to make high-fidelity
predictions one has to first compute the respective low-fidelity
values, which can be either computationally demanding or
practically infeasible if the search space is truly vast. Note that,
while the low fidelity properties are much less computationally
demanding to obtain than the high fidelity properties, they are
still much more costly than the other features, which are
simply elemental properties requiring no computation. In this
sense, Figure 5a serves as a benchmark for two extremes.
SF(GPR) represents a scenario where only yhi is known for the
training set, while the Δ(GPR) and LFAF(GPR) models
exemplify a 2-level case where besides the knowledge of yhi for
the training set, ylo is known for both the training and test set.
As we will see next, the CK approach is useful for an
intermediate, yet practically much more relevant, situation
wherein manybut not allinstances of ylo and only some
instances of yhi are known.
3.2. Multifidelity Cokriging Model. Figure 6a presents

the performance of CK approach as a function of number of
low-fidelity (Nlo) and high-fidelity (Nhi) data points used
during the training process. Since we assumed Nhi ⊆ Nlo during
the model construction, the lower region in the figure is
inapplicable and is intentionally left blank. As evident from the
figure, RMSE on the test set (unseen 48 points) decreases with
an increase in the number of low-fidelity or high-fidelity data
points, with the lowest RMSE of around 0.45 eV when Nhi =
Nlo = 200. Further, the learning rate can be seen to be more
sensitive to Nhi than Nlo. This is understandable as Nhi
represents the fraction of high-fidelity data that the model is
trying to learn, while Nlo signifies rather less relevant low-
fidelity data. A more interesting area in Figure 6a is the top-left
region where RMSE of ∼0.66 eV is achieved using only 50 yhi
and 200 inexpensive ylo points. In comparison the RMSE for
Nhi = 50 is around 1.8 eV with SF(GPR), and 0.75 eV for
Δ(GPR) or LFAF(GPR) models. It should, however, be noted
that this is not a fair comparison between the Δ-learning and
the LFAF approaches, and the CK approach as the former
cases utilize additional ylo information for test set as well.
Nonetheless, the results suggest that the CK approach is

particularly beneficial when exceedingly large amounts of low-
fidelity data is available in comparison to the high-fidelity data.
Such scenarios can be easily encountered when the cost of a
low-fidelity estimate is much less than that of a high-fidelity
estimate (cf. Figure 1). Further, this also means that when one
has to explore large chemical spaces, instead of relying on
expensive high-fidelity computations (or experiments) one can
consider performing large number of low-fidelity along with a
few high-fidelity estimates. Sample parity plots in Figure 6b
further showcase the improvement in performance of CK
model with increasing values of Nhi and Nlo. As evident from
the figure, the R2 coefficient approaches ≃0.99 (comparable to
previously discussed MFIF approaches) with an increase in
both Nlo and Nhi.
As briefly alluded to above, one should be careful while

making a comparison between performance of a traditional SF
models against the MFIF approaches as different types of data
sets are utilized in each case (cf. Figure 2). Moreover, model
complexity in terms of underlying hyper-parameters can also
vary going from one MFIF approach to the other (as detailed
in section 2.3). With that caveat, in Figure 7, we attempt to
assess the performance of the four models (distinguished using
the background colors) from a practical standpoint. Under-
standably, the CK approach that incorporates additional
information from ylo outperforms traditional ML methods
based on just SF, i.e., the high-fidelity data alone. Moreover,
the greater the amount of ylo data, the better the CK
performancecompare models with varying Nlo for a
particular Nhi. However, the most interesting point in Figure
7 is the comparable (or better) performance of CK models to
both the Δ(GPR) and LFAF(GPR) models, especially for
cases when Nlo is much larger than Nhi. This obviates the need
for making low-fidelity measurements for new cases, which are
essential for both Δ-learning and LFAF approaches, every time
a prediction has to be made for new cases. In regard to the
problem at hand, this would mean that one can estimate the
dopant formation energy of a new dopant in one of the six
hafnia phases at the high-fidelity level using a large Nlo and a
small Nhi values, thereby saving lots of computational time as
will be discussed next.
So far the discussion has been centered around better

accuracy (in comparison to SF) or superior flexibility (in
comparison to other MFIF approaches) of the CK model.
Next, we touch upon another important aspect of any ML
model, i.e., its computational cost.

Figure 7. Comparison of prediction accuracy of four different ML models trained to estimate dopant formation energies in hafnia. Results for three
flavors of GPR models are shown; the SF based on six chemical features x, the Δ(GPR) which maps the difference between low and high fidelity
data, and the LFAF(GPR) that uses the low-fidelity value ylo in addition to x as features. The results for three kinds of CK models, varying in
number (Nlo = 100, 150, or 200) of low-fidelity values ylo, are also included. Cases where Nhi Nlo are omitted for the CK approach. All results are
averaged over 50 runs, with error bars illustrating 1σ deviation.
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3.3. Comparison of Accuracy and Cost. To further
establish the advantage of CK approach we plot the accuracy of
the best ML models obtained (with Nhi = 200) using the
different approaches against the computational cost incurred
while generating the training data in Figure 8a and while
making a new prediction in Figure 8b. It should be noted that
cost here refers to the time spent on relevant DFT
computations (i.e., computation of ylo or yhi data sets), and
not on the ML model evaluation itself, which is relatively much
less. The reported cost for a particular low or high fidelity DFT
computation was estimated by averaging over the respective
cost for the entire data set of 248 points.
An important aspect of any ML model is the time spent to

generate the training data itself. For the best models, i.e., with
Nhi = 200 points, the traditional SF(GPR) model incur DFT
cost only for the high-fidelity yhi data, while the Δ(GPR) and
the LFAF(GPR) models incur an additional DFT cost for Nlo
= 200 low-fidelity ylo computations. Thus, the Δ-learning and
LFAF approaches, although more accurate, have high training
data generation cost. CK models, on other hand, provide a lot
more flexibility as one can control the data generation cost by
varying the value of Nlo and Nhi. Although the best model for
CK approach has similar data generation cost (and accuracy)
to other MFIF approaches with Nlo = Nhi = 200, this cost can
be significantly reduced by choosing large Nlo and small Nhi
values, while only marginally compromising on the model
accuracy, as evident from Figure 8a (e.g. see performance at Nhi
= 100 or 150 and varying Nlo). Further, it should be noted that
the larger the cost difference between the low- and the high-
fidelity measurement, the greater the benefit of using the CK
approach will be. In rare cases, wherein even the low fidelity
measurement is unfeasible (say, a low-fidelity DFT computa-
tion on a million atom system) CK is the only practical MFIF
approach.
In Figure 8b, prediction costs of the different ML

approaches are contrasted with direct computation of the
high-fidelity DFT values, which can be seen to be orders of
magnitude more expensive than all the ML methods. Ideally,
an error (or noise) associated with the high-fidelity DFT
computation should also be incorporated here; however, its
ignored owing to its relatively smaller (and unknown)
magnitude. The most interesting aspect of this figure is the
zero cost associated with the CK model and the SF(GPR)
models when making a new prediction. This is because these
models use only the readily available chemical features x to

make a prediction. Δ(GPR) and LFAF(GPR), on the other
hand, incur substantial data cost as they require additional low-
fidelity DFT computations when making a new prediction.
Thus, the CK approach not only outperforms traditional SF

based ML methods in terms of accuracy but also performs
comparably to both Δ-learning and LFAF approaches at much
lower prediction cost, providing an efficient pathway to utilize
data available at multiple levels of fidelity, while not requiring
additional measurements for new cases. The implication of
these results can be better appreciated in two scenarios: (1)
when the exploration space is too big to be able to perform
many high-fidelity measurements and (2) when some of the
high-fidelity measurements are too expensive or practically
infeasible. Search for A2BB′X6-type double perovskite halides
with optimal band gap (or any other property) is an example of
the former case in which the chemical space of different
combinations of A, B, B′, and X species can be first explored
using many (a modest % of the entire chemical space) low-
fidelity computations to build an initial CK model and then
using it to predict properties for the remaining cases. As
highlighted in the first example of Figure 1, the use of
expensive DFT functionals to compute properties of large
molecules/polymers could be an example of the latter case, in
which again estimation from many cheap low-fidelity func-
tionals can be combined with some high-fidelity measurements
on small molecules to make predictions for new cases using the
CK modelin-line with the work performed in this study.
Thus CK is a flexible and valuable MFIF tool for accurate
property prediction and discovery of superior materials.

4. CONCLUSIONS

Using the example of dopant formation energies in hafnia, we
investigated how different multifidelity information fusion
(MFIF) schemes can be utilized to solve common materials
science problems that involve availability of data at multiple
levels of fidelity (or accuracy). In particular, we studied how
low- and high-fidelity hafnia dopant energy data can be
combined to create a machine learning model that makes
inexpensive but accurate predictions at the high-fidelity level.
We compared the performance (both accuracy and data cost)
of three MFIF approaches, namely, Δ-learning, low fidelity as
feature (LFAF) and cokriging model, along with a commonly
used single fidelity approach. A hafnia dopant formation energy
data set, consisting of 42 substitutional dopants in 6 different
hafnia phases, was chosen to perform this comparative study

Figure 8. Comparison of prediction accuracy versus computational costin terms of training set generation (left) and cost of making a new
prediction (right)for different ML models developed in this work. In part a, the data for SF(GPR) and LFAF(GPR) models corresponds to the
scenario with Nlo = Nhi = 200, while for CK multiple cases with varying Nlo and Nhi are shown. See text for details.
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and illustrate merits and limitations of each approach. The data
set was constructed at two levels of fidelity by modifying DFT
computational parameters, such as k-point sampling and plane
wave cutoff energy. Further, the choice of this data set was
made because of its modest size (∼250 cases) to allow
conclusive comparisons of the different ML approaches and
the timeliness of the study of dopants in hafnia due to their
potential use in ferroelectric and other electronic applications.
Our results clearly suggest that all three MFIF approaches

are more accurate than traditional single fidelity based ML
methods, such as Gaussian process regression or kernel ridge
regression, owing to utilization of additional relevant
information contained in the low-fidelity estimates. Further,
among the three MFIF approaches, cokriging was found to be
most efficient and flexible. While the Δ-learning and LFAF
models displayed similar accuracy to that of cokriging models,
the former two approaches suffer from a major limitation in the
requirement of availability of low-fidelity data when a
prediction for a new case has to be made. This increases the
prediction cost associated with Δ-learning and LFAF models as
time/resources have to be spent to measure the low-fidelity
data. The cokriging approach, on the other hand, makes a
prediction for a new case at the high-fidelity level using just the
features and independent of the knowledge of the correspond-
ing low-fidelity estimate. Moreover, it provides a pathway to
combine different numbers of low- and high-fidelity data points
during model training, which cannot be achieved using Δ-
learning and LFAF approaches. This is particularly useful in
problems involving exploration of large chemical spaces or in
which its impractical to obtain high-fidelity measurement for a
few special cases, as in such scenarios learning models can be
built using large number of available low-fidelity and a few
high-fidelity data points. As validated in our study, the accuracy
for the cokriging model can be significantly better than other
MFIF approaches in such cases.
Thus, our work suggests that the multifidelity cokriging

approach is particularly useful for searching new materials with
superior properties, given that materials science is filled with
examples of hierarchical data from high-throughput DFT

computations and/or experiments with varying levels of
accuracy. Further, instead of just one property, as presented
in this work, this approach can easily be extended to
simultaneously account for multiple properties, allowing for
the search of materials with multiple enhanced functionalities
using multiobjective optimization.

5. APPENDIX

5.1. Feature Set Correlations. Different panels in Figure
A.1 present a pairwise correlation between each of the
aforementioned six features and the high-fidelity dopant
formation energies. Although a clear feature−property
correlation is missing, a weak trend of lower formation
energies for dopants with chemical attributes similar to that of
hafnia (marked by vertical dashed lines) is evident from the
figure. This is expected as the substitutional dopants with
chemical attributes similar to that of Hf should be easily
accommodated in the host lattice of hafnia, in-line with the
essence of Hume−Rothery rules.72 At the same time, a strong
correlation is unlikely as no single dopant attribute is expected
to clearly explain the resulting formation energies.

5.2. Details on Gaussian Process Regression and
Multifidelity Cokriging Model. GPR is a Bayesian analogue
for the frequentist-based kernel ridge regression.73 In this, one
is interested in finding a probabilistic representation y of a true
function f(x), generally accompanied with a measurement-
caused white noise ϵ ( i .e . , y = f(x) + ϵ , with

σ δ[ϵ ϵ ′ = − ′ ]x x x x( ) ( ) ( )n
2 ), using the available data and a

Bayesian prior expressing beliefs about the target function.
Given N training data points, with input and output pairs (X,
y), and a test input x*, the joint training and test marginal
likelihood can be represented as *

=y yp y K( , ) ( , ). Here,
the covariance matrix K can be expanded as follows, explicitly
distinguishing between the training and test data blocks:

σ
=

+ *
* **

K
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Figure A.1. Correlation between the high-fidelity formation energy (yhi) and the six different features employed in this study. The vertical dashed
lines in the first five panels indicate the respective value for Hf.
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Note that the individual elements of the covariance matrix are
given by

σ
σ

δ σ= ′ = − ∥ − ′∥ +x x x xkK ( , ) exp
1
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ij

f
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ij n2
2 2

i
k
jjjjj
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zzzzz (4)

where σf, σl, and σn are the hyper-parameters controlling the
characteristics of the covariance function (thus the prior
information) and are determined by maximizing their log
marginal likelihood. After the model hyperparameters have
been estimated, the predictive mean (μ*) and variance (Σ*) for
a test point with feature x* is obtained by maximizing the
conditional likelihood, leading to the expression:

μ σ* = * [ + ]− yK K IN N n
2 1

(5)

σ σΣ* = ** − * [ + ] * +−K K K I K IN N n N n
2 1 2

(6)

The mathematical framework for the CK approach was first
established by Kennedy and O’Hagan,39 and it has been
actively used in the domain of computer experiments and
engineering design.74 Below we briefly describe a few details on
formulation of the two-level CK approach, while the details of
a general n-level CK scheme can be found elsewhere.75,76 Say
we have Nlo and Nhi number of low-fidelity and high-fidelity
points with feature vectors xlo and xhi and property values ylo
and yhi, respectively. The different data sets can be
cumulatively written as
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where xlo
(i) and xhi

(i) are d-dimensional feature vector for the ith
data point. As stated in the main article, we will consider the
nature of our problem such that Xhi ⊆ Xlo. Now, in analogy to
GPR, the property value at X can be assumed to be a
realization of a Gaussian random variable, such that
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where Zlo(.) and Zhi(.) are Gaussian processes resembling the
low- and the high-fidelity data, respectively. Using the
autoregressive model introduced in ref 39, the high-fidelity
process Zhi(.) can be assumed to be an outcome of a low-

fidelity process Zlo(.) and an independent Gaussian process
Zd(.) (i.e., Zlo(x) ⊥ Zd(x)), such that

ρ= +x x xZ Z Z( ) ( ) ( )dhi lo (9)

Further, this model is based on the Markov property that
cov{Zhi(x), Zlo(x′)|Zlo(x)} = 0,∀ x ≠ x′, meaning that nothing
more can be learned about the high-fidelity data from the low-
fidelity data, if the high-fidelity function at x is known.
Now to describe the Gaussian processes, we consider a

squared exponential kernel of the form:
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where χj is the jth component of feature vector x. Using this
kernel definition, the complete covariance matrix for the 2-level
CK model reduces to
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Next, the involved hyperparameters, i.e., ρ, σlo, σd, θlo, and θd
are solved using maximum likelihood estimate (MLE). Since
the low-fidelity data is assumed to be independent of the high-
fidelity data, first μlo (mean), σlo (variance), and θlo are
estimated by maximizing the log-likelihood function of just the
low-fidelity data. Then, the parameters (ρ, μd, σd, and θd)
associated with the difference model are estimated, again using
the MLE. Finally, the CK predictions for a new data x* is given
by

μ μ μ* = ̂ + − ̂−x k yK I( ) ( )hi
T 1

(12a)

σ ρ σ σ* = ̂ ̂ + ̂ − −x k kK( ) dhi
2 2

lo
2 T 1

(12b)

where μ̂ = IK−1y/ITK−1I and I is the identity vector. Also, the
column vector k is given by

ρσ

ρ σ σ
=

̂ ̂ Γ *
̂ ̂ Γ * + ̂ Γ *

k
x

x x

X

X X

( , )

( , ) ( , )d d

lo
2

lo lo

2
lo
2

lo hi
2

hi

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (13)

The overall workflow of the CK model is illustrated in
Figure A.2. We make a note that the first step in the CK model
is dependent on learning just the low-fidelity data. Thus, if Nlo
is a large number, it allows the overall CK model to gain some
idea (at the level of accuracy of the low-fidelity data) about the
different regions of the feature space spanned by the low-
fidelity data. In the regions where the high-fidelity data is

Figure A.2. Different steps involved in the construction of the CK model. First, a low-fidelity model is built by fitting Zlo Gaussian process on the
low-fidelity data. Second, for the available high-fidelity data, a difference model is built after applying a scaling factor (ρ) to the low-fidelity data.
Lastly, for a new case, prediction is made using the fitted low-fidelity model, the scaling coefficient, and the difference model.
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available, a correction in form of the difference model is
introduced as part of the second step in Figure A.2. Finally, for
a new case prediction is made as sum of the low-fidelity
estimate and the corrections terms (i.e., scaling and difference).
5.3. Generalization to Other Regression Models.

Although the learning algorithm in the SF, Δ-learning, and
LFAF approaches involved the GPR scheme, their comparative
performance is expected to be independent of the learning (or
regression) framework employed. Thus, in Figure A.3 we show
the relative performance of these approaches using KRR
scheme. Clearly, the results for both KRR and GPR schemes
are similar.
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U. Ferroelectricity in Hafnium Oxide Thin Films. Appl. Phys. Lett.
2011, 99, 102903.
(50) Schroeder, U.; Yurchuk, E.; Müller, J.; Martin, D.; Schenk, T.;
Polakowski, P.; Adelmann, C.; Popovici, M. I.; Kalinin, S. V.;
Mikolajick, T. Impact of Different Dopants on the Switching
Properties of Ferroelectric Hafnium Oxide. Jpn. J. Appl. Phys. 2014,
53, 08LE02.
(51) Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim,
K. D.; Muller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T.; Hwang, C.
S. Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-based
Films. Adv. Mater. 2015, 27, 1811−1831.
(52) Starschich, S. Ferroelectric, Pyroelectric and Piezoelectric
Effects of Hafnia and Zirconia based Thin Films. Ph.D. thesis, RWTH
Aachen University, 2017.
(53) Park, M. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Do Kim, K.;
Hwang, C. S. Toward a Multifunctional Monolithic Device based on
Pyroelectricity and the Electrocaloric Effect of Thin Antiferroelectric
HfxZr1-xO2 Films. Nano Energy 2015, 12, 131−140.
(54) Ohtaka, O.; Fukui, H.; Kunisada, T.; Fujisawa, T.; Funakoshi,
K.; Utsumi, W.; Irifune, T.; Kuroda, K.; Kikegawa, T. Phase Relations
and Volume Changes of Hafnia under High Pressure and High
Temperature. J. Am. Ceram. Soc. 2001, 84, 1369−1373.
(55) Sang, X.; Grimley, E. D.; Schenk, T.; Schroeder, U.; Lebeau, J.
M. On the structural origins of ferroelectricity in HfO2 thin films.
Appl. Phys. Lett. 2015, 106, 162905.
(56) Huan, T. D.; Sharma, V.; Rossetti, G. A.; Ramprasad, R.
Pathways towards ferroelectricity in hafnia. Phys. Rev. B: Condens.
Matter Mater. Phys. 2014, 90, 1−5.
(57) Batra, R.; Huan, T. D.; Jones, J. L.; Rossetti, G.; Ramprasad, R.
Factors Favoring Ferroelectricity in Hafnia: A First-Principles
Computational Study. J. Phys. Chem. C 2017, 121, 4139−4145.
(58) Barabash, S. V. Prediction of New Metastable HfO2 phases:
Toward Understanding Ferro- and Antiferroelectric Films. J. Comput.
Electron. 2017, 16, 1227.
(59) Starschich, S.; Boettger, U. An Extensive Study of the Influence
of Dopants on the Ferroelectric Properties of HfO2. J. Mater. Chem. C
2017, 5, 333−338.
(60) Schroeder, U.; Yurchuk, E.; Müller, J.; Martin, D.; Schenk, T.;
Polakowski, P.; Adelmann, C.; Popovici, M. I.; Kalinin, S. V.;
Mikolajick, T. Impact of Different Dopants on the Switching
Properties of Ferroelectric Hafnium Oxide. Jpn. J. Appl. Phys. 2014,
53, 08LE02.
(61) Batra, R.; Huan, T. D.; Rossetti, G. A.; Ramprasad, R. Dopants
Promoting Ferroelectricity in Hafnia: Insights from a Comprehensive
Chemical Space Exploration. Chem. Mater. 2017, 29, 9102−9109.
(62) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab
Initio Total-energy Calculations using a Plane-wave Basis Set. Phys.
Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169−11186.
(63) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.

ACS Applied Materials & Interfaces Forum Article

DOI: 10.1021/acsami.9b02174
ACS Appl. Mater. Interfaces XXXX, XXX, XXX−XXX

L

http://dx.doi.org/10.1021/acsami.9b02174
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