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9.1 Introduction

9.1.1 General Background

Throughout human history, every age and every culture has perhaps been
best defined by the materials they used. Prehistoric humans carved tools out
of bone and wood and used them for hunting. The stone age, which started
nearly 3 million years ago and lasted till around 3000 BCE, was characterized
by the use of stone in collecting food and building shelters. While much of
the less advanced parts of the world remained in the stone age for a long
time, the advent of metallurgy kick-started the bronze-age in eastern and
southern Asia around 7000 BCE, before it made its way to Europe. Iron in its
native metallic state was already being used during the bronze age, but the
true iron age is said to have started around 1000 BCE as humans found the
means to smelt iron ore. With metal-working now commonplace, the next
2000 or so years saw marked improvements in production and processing of
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metals and alloys, woodworking, paper, glasses, ceramics and polymers,
ultimately leading to the industrial revolution in Europe in the 18th century.

The pace of progress in the 20th century was more dramatic than ever
before, and for this, scientists had years of documented knowledge and vast
swathes of data pertaining to failed and successful experiments to thank.
The advent of high-powered special purpose machinery and mass factory
production saw stainless steel become mainstream, and incredible advances
in transportation, building and communication. One area where iterative
experiments and past data majorly benefited materials design was alloys: it
was realized that with additions of different amounts of carbon, chromium,
nickel, manganese and molybdenum, the properties of steel can be tailored.1

Solid solutions of aluminium with copper found applications in the aero-
nautical industry,2 and NiTi-based alloys found amazing shape-memory
applications.3 This period also saw the development of some of the most
important phenomenological models in materials science, such as the
Hume–Rothery rules4 and the Hall–Petch relationship,5 which emerged
from experimental documentations on solid solutions and mild steels,
respectively.

In the latter half of the 20th century, materials research was taken over by
a romantic notion: that of designing materials on a computer before a single
laboratory experiment is performed. The accumulation of data via experi-
ments, while invaluable, was seen to be time intensive and prone to human
observational errors. Today, massive parallel supercomputers with thou-
sands of processors are being used the world over in weather forecasting, oil
and gas exploration, and molecular modelling. The advent of super-
computers along with theoretical advancements in classical mechanics6,7

and quantum mechanics,8,9 formulations of force-field simulations and
molecular dynamics,10–12 and the development of quantum mechanics
based methods like density functional theory (DFT)13,14 formally kick-started
the era of computational materials science.15

Quantum mechanics, which provided a fundamental look at the structure
and properties of materials in the smallest available length and time scales,
made for accurate (but computationally expensive) solutions of many ma-
terials science problems. Perhaps the most popular approach in this regard
is DFT, where Schrodinger’s equation is solved for a many electron system by
converting it into an effective one-electron problem. The accuracy of DFT in
investigating the electronic structure of atoms, molecules and condensed
phases has been well demonstrated, and it is being widely used today to
study the mechanical, electronic, dielectric and thermodynamic properties
of metals, inorganic compounds, molecules and polymers.16–22 One sig-
nificant transformation that computational materials science underwent
over the last 50 years was the evolution of methods like DFT from being
merely post hoc (i.e., being applied to study materials and explain obser-
vations post-experiment) to driving rational materials design by eliminating
guesswork from experiments.23 In the literature, many glittering examples
can be found of DFT-driven experiments leading to the accelerated design of

1

5

10

15

20

25

30

35

40

45

294 Chapter 9



new materials, such as the identification

TS:1

of new cathode materials for Li
batteries,24 the design of novel NiTi shape-memory alloys,25,26 and the dis-
covery of previously unknown ABX type thermoelectrics and conductors.27

It must be emphasised that data more than anything has been the great
ally of the scientist in driving innovation and the discovery of physical and
chemical laws. While approximate or phenomenological models enable the
quick screening and design of materials, precise theories facilitate the
generation of robust materials data which can in turn lead to newer, more
reliable phenomenological models. Indeed, data generation, storage, re-
trieval and analysis has been of key importance in the fields of cheminfor-
matics28 and bioinformatics29 over the last century or so, and in the last few
years, in materials informatics.30,31 The latter is a blossoming field in ma-
terials science today, focusing on the development of experimental and
computational databases and on the application of modern machine
learning or data mining methods that help convert the data into easily ac-
cessible models.

Figure 9.1 tries to capture a rough timeline of developments in materials
science and related fields over the years, in the form of experiment-driven
phenomenological models such as the Hume–Rothery rules, computational
theories such as classical and quantum mechanics, and data-driven fields in
chemistry (cheminformatics), biology (bioinformatics) and materials science
(materials informatics). In recent years, there has been further recognition of
the power of computations and databases in guiding the rational experi-
mental design of materials in the form of the Materials Genome Initiative23

(along the same lines as the Human Genome Project32), announced by the
US government ‘‘to discover, manufacture and deploy advanced materials
twice as fast, at a fraction of the cost’’. High-performance computing, effi-
cient computational approaches and machine learning based methods
provide great promise in accelerating the pace of discovery and deployment
of new materials in practice.

9.1.2 Polymers as Capacitor Dielectrics

In this chapter, we discuss the application of all the ideas described above—
computational modelling, guided experiments and materials informatics—
towards the design of new and advanced polymer dielectrics for energy
storage capacitor applications. Recently, there has been a rising demand for
high energy density capacitors due to the on-going electrification of trans-
portation, communication and military and civilian systems.33–36 A capaci-
tor, consisting of a polarizable dielectric material in between two conductive
metal plates (a schematic is shown in Figure 9.2), can rapidly discharge its
stored energy. The maximum amount of energy that can be stored in the
capacitor is proportional to the dielectric constant of the material, as well as
the (square of) electric field at which it undergoes electrical or mechanical
breakdown. While inorganic compounds like BaTiO3 and TiO2 provide the
benefit of massive dielectric constants, polymers are preferred capacitor
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dielectrics for energy storage because of their easy processability, flexibility,
high resistance to external chemical attacks and most importantly, pro-
pensity for graceful failure.33,37–40

The state-of-the-art polymer that is used as a dielectric in high energy
density metallized film capacitors is biaxially oriented polypropylene (BOPP),
which shows a large breakdown field of 4700 MV m!1, a low dielectric loss
and a small area (B1 cm2), but also a low dielectric constant (B2.2) and low
operating temperature (85 1C).41 While this leads to a respectable energy
density ofB6 J cm!3, the low dielectric constant of BOPP and the dielectric
losses due to electronic conduction that it suffers at higher temperatures
makes it appropriate to search for a desirable alternative. In the past, most of
these efforts were concerned with polyvinylidene fluoride (PVDF) and related
polymers, which provided the immediate advantage of orientational polar-
ization and high dipole density, unlike BOPP. Many derivatives of PVDF such
as defect-modified PVDF, PVDF-HFP (hexafluoropropylene) and PVDF-CTFE
(chlorotrifluoroethylene) have been studied as polymer dielectrics and seen
to possess dielectric constants B10 and energy densities B30 J cm!3.42–46

However, the ferroelectric behaviour of these polymers led to heavy energy
losses. Further, highly polar linear polymers like polyurea and polythiourea
were studied, motivated by the known high dipole moments of the urea and
thiourea groups. Aromatic polyurea thin films showed dielectric constants
44 and breakdown strengthB700 MV m!1, as well as an impressive energy
density of 9 J cm!3 and an efficiency 495%.47,48 An aromatic polythiourea
further improved upon the dielectric constant and breakdown strength,
leading to even better energy density.49,50 Some other efforts to improve
upon BOPP include polar group-modified polycarbonates,51,52 poly-
sulfones,53,54 polyethylene terephthalate (PET)55 and nanocomposites where
inorganic materials like BaTiO3 are embedded into the polymer matrix.56,57

Although various alternatives for BOPP were thus devised, all of them were
seen to suffer from one shortcoming or another. Today, there is a pressing
need to expand the pool of polymer dielectric candidates so that novel
polymers with the optimal mix of relevant properties can be designed and
gradually improved upon. There are significant challenges associated with
this, none bigger than the vastness of the polymer chemical universe, and
how little of it has been experimentally studied to date.58,59 This makes a
computation-driven treatment appropriate here, and a general framework
for rationally designing new polymer dielectrics was laid out as presented in
Figure 9.3. Such a strategy allows the systematic study of selected chemical
subspace(s) of polymers and helps guide experiments in a rational manner.

Figure 9.1 A timeline of major developments in materials science and related fields
over the last couple of centuries. Along the same lines as the Human
Genome Project (initiated in the 1990s to determine the DNA sequence
of the entire human genome), the Materials Genome Initiative was
launched a few years ago to accelerate the design and deployment of
new and advanced materials.
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The dielectric constant and the band gap (known to show correlations with
the dielectric breakdown field60) were chosen as the two properties that
provide an adequate first stage of screening for potential energy storage
capacitor dielectrics, as large values of both properties are likely to lead to

Figure 9.2 Schematic of a capacitor with the metal plates, dielectric material (poly-
mer in this work) and applied electric field labelled.

Figure 9.3 The polymer dielectrics design strategy, involving computational guid-
ance, targeted experiments and machine learning.
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high energy densities.58,59,61 DFT was chosen as the ideal computational
treatment to study the ground state structures, electronic properties and
dielectric behaviour of polymeric materials.

The first step in the computation-guided design strategy was performing
high-throughput DFT computations (‘‘high-throughput’’ implying the use of
computational resources in an automated manner over a long period) to
estimate the relevant properties of polymers belonging to a selected chem-
ical space and screening for promising candidates.58,62 Initial recom-
mendations were made for synthesis, and experimental measurements of
the same properties provided validation for the DFT results.58,59 While the
two steps together constitute rational discovery, the design process went far
beyond to include ‘‘learning’’ from the DFT data: this involved looking for
correlations between properties and crucial attributes of the polymers, as
well as training machine learning models to facilitate property predictions
for newer polymers. This learning was applied to perform chemical space
expansion, i.e., to predict the properties of thousands of new polymers
without the need to perform more expensive computation.62 These predic-
tions provided further recommendations for experiments and fresh com-
putation, paving the way to a successful data-driven design of polymer
dielectrics. In the following sections, the computation-guided design strat-
egy is described in detail, in the form of high-throughput computational
work on organic and organometallic polymer chemical spaces, the synthetic
successes that followed the initial computations, and learning from the
computational data that led to useful design rules and prediction models.

9.2 Organic and Organometallic Polymers as
Dielectrics

The application of high-throughput DFT to a selected polymer chemical
subspace first involved determining the appropriate DFT formalisms for
property computation. Density functional perturbation theory (DFPT)63–65 is
a powerful technique where the dielectric constant of a material is computed
by studying the system responses to external perturbations, in this case,
electric fields. The band gap can be computed using the hybrid Heyd–
Scuseria–Ernzerhof HSE06 electronic exchange-correlation functional,66,67

which corrects for the band gap underestimation associated with standard
DFT. Dielectric constants and band gaps computing using DFPT and the
HSE06 functional respectively have been shown to match up very well with
experimentally measured results for inorganic compounds as well as com-
mon polymers.58,68 Thus, these methods were selected for performing the
high-throughput DFT computations.

While polymers are known to be either amorphous or semi-crystalline in
nature, a crucial assumption made here was to consider a closely packed
crystalline model. Although crystal structural information (lattice par-
ameters and bond lengths) is available for many well-known polymers like
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polyethylene, PVDF and polyacetylene, there isn’t sufficient diversity within
the family of such common polymers to cover a large enough space for
maximum payoff in terms of dielectric properties. To overcome this issue,
new chemical spaces had to be devised using some of the most pervasive
chemical units as polymer building blocks.

9.2.1 High-throughput DFT on an Organic Polymer Chemical
Space

An organic polymer chemical space (shown in Figure 9.4) consisting of seven
basic building blocks—CH2, NH, CO, C6H4, C4H2S, CS and O—was selected
for initial high-throughput computations. Any n-block polymer here was
generated by linearly connecting n blocks with each of them drawn from the
seven possibilities. If n was restricted to be four, there were B400 possible
unique permutations, of whichB300 remained when chemically unfeasible
block pairings (such as CO–CO and NH–NH) were eliminated.58,59,62

The final list of 4-block polymers so obtained contained 284 members, and
DFT calculations were carried out for all these systems. Crystal structure
prediction for so many polymers is no trivial task, especially with scant in-
formation available in the literature given that most of these polymers would
be hypothetical systems (at least at the first stage). However, recipes for
computational prediction of polymeric crystal structures have been well
studied in the past.69,70 In this work, a structure prediction algorithm known
as minima hopping71,72 was applied to determine the lowest energy relative
packing arrangement of polymer chains (with all energies computed using
DFT) in a unit cell, which was then taken to be the ground state crystal
structure for the given polymer and used for property computation.

The DFT computed dielectric constants and band gaps for the 284 poly-
mers are plotted against each other in Figure 9.5. From DFPT, the dielectric
constant is computed as two separate components: the electronic part,
which depends on atomic polarizabilities, and the ionic part, which comes
from the IR-active vibrational modes present in the system. The total di-
electric constant is expressed as a sum of the electronic and the ionic parts.
The casual observer would note right away that the electronic dielectric
constant appears to be constrained by some sort of an inverse relationship

Figure 9.4 The chemical subspace of polymers generated by linear combinations of
seven basic chemical units.
Reproduced from ref. 58 with permission from John Wiley and Sons,
r 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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with the band gap, whereas the ionic dielectric constant shows little or no
correlation with the band gap. This effect translates to an inverse relation-
ship in the plot between total dielectric constant and band gap as well, given
the larger range of values of the electronic part compared to the ionic part.

It is also interesting that a wide spectrum of dielectric constant values
(B2 to B12) and band gap values (B1 eV to B9 eV) were covered by this
chemical subspace of polymers, which led to only roughly 10% of the total
points populating the shaded high dielectric constant, large band gap region.
Regardless, this region provided a few promising candidates for initial
experiments as well as leads on the most profitable building block com-
binations for simultaneously enhancing the two properties. For instance,
it was observed that polymers containing urea (–NH–CO–NH–), thiourea
(–NH–CS–NH–) or imide (–CO–NH–CO–) linkages alongside an aromatic ring
such as –C6H4– or –C4H2S– were present in abundance in the shaded re-
gion;58,59 subsequently, a few such polymers were considered for experi-
mental studies.

9.2.2 Initial Guidance to Experiments

Three polymers belonging to three distinct polymer classes—polyurea,
polyimide and polythiourea—were selected out of the shaded region in
Figure 9.5 and synthesized in the laboratory.59 Appropriate monomers and
reaction schemes were adopted here to yield satisfactory quantities of each
polymer, following which ultraviolet-visible spectroscopy (UV–Vis) was per-
formed to estimate the band gaps and time domain dielectric spectroscopy
(TDDS) to measure the dielectric constants. As seen from Table 9.1, the ex-
perimental results matched quite well with the computational results, pro-
viding not only a validation for the high-throughput DFT scheme, but also

Figure 9.5 The dielectric constants (divided into electronic and ionic parts) and
band gaps of 284 polymers computed using DFT.
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three novel promising polymer dielectric candidates for energy storage
capacitor applications. However, it was seen that these initial polymers had
solubility issues and could not be processed into thin films, which is an
important capacitor dielectric requirement. To overcome these issues,
newer, longer chain polymers belonging to the same and related polymer
classes were pursued; this is discussed more in Section 9.3.

9.2.3 Moving Beyond Pure Organics: An Organometallic
Polymer Chemical Space

While interesting new organic polymer motifs were identified as potential
capacitor dielectrics, the low ionic dielectric constants seen throughout for
the pure organics hinted at a missed opportunity. The lack of correlation
between the ionic dielectric constant and the band gap suggested that the
former could perhaps be enhanced without adversely affecting the latter.58

Studies carried out for the oxides and halides of group 14 elements showed
that Pb, Sn and Ge based compounds have much higher dielectric constants
than their C or Si counterparts, as well as band gap values around or greater
than 4 eV.73,74 This led to the following thought experiment: if metal based
units were inserted in the backbone of an otherwise organic polymer (for
instance, polyethylene, –(CH2)n–), there could potentially be an increase in
the dielectric constant compared to the pure organic, while maintaining a
large band gap. Metal–organic frameworks (MOFs), which are compounds
containing metal clusters surrounded by organic ligands, are commonly
used for gas storage, catalysis and supercapacitors.75 Along similar lines, a
metal–organic polymer framework was proposed wherein the organic poly-
mer chain would be interrupted by a metal containing unit. For initial study,
Sn was chosen as the metal atom over the poisonous Pb or expensive Ge.
Polymer repeat units were generated by introducing tin difluoride (–SnF2–),
tin dichloride (–SnCl2–) and dimethyltin-ester (–COO–Sn(CH3)2–COO–) units
in polyethylene chains in varying amounts.76–79 DFT calculations showed
that these systems indeed display superior dielectric constants compared to
organics for a given band gap value; this caused much excitement in terms of
prospective experiments, and the Sn–ester based polymers were duly syn-
thesized and tested, as described in detail in the next section.

Table 9.1 Experimentally measured properties for initial recommendations (listed
using the polymer repeat units) from high-throughput DFT, and a com-
parison with DFT computed values.

Polymer
DFT band
gap (eV)

Expt. band
gap (eV)

DFT
dielectric
constant

Expt. dielectric
constant

–[NH–CO–NH–C6H4]n– B3.5 B3.9 B4.9 B5.6
–[CO–NH–CO–C6H4]n– B4.1 B4.0 B5.7 BX.5
–[NH–CS–NH–C6H4]n– B2.7 B3.1 B5.8 B6.2
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The computation-driven discovery of novel Sn-based organometallic
polymers paved the way for a sweeping exploration of polymers containing
different metals chosen from the periodic table. In Figure 9.6, DFT com-
puted results are presented for organometallic polymers constituted of (re-
spectively) 10 different metal atoms;60,80 also, shown for comparison are all
the organics discussed in Section 9.2.1. The metal-based systems clearly
surpass the pure organics in terms of high dielectric constants for given
values of band gap. The primary reason behind this increase is the enhanced
polarity of chemical bonds in the organometallics because of bonding be-
tween electropositive metal atoms and highly electronegative atoms such as
O, F and Cl. The swinging and stretching of these polar bonds at low fre-
quencies cause fluctuations in polarization under electric fields, which
means they will contribute more to ionic or dipolar parts of the dielectric
constant.60,68,74 As seen from Figure 9.6, this effect is more pronounced in
some organometallics than others: it was observed that the higher the
amount of metal in the system, the higher is the dielectric constant. The
identity of the metal atom itself and its coordination environment were
other crucial factors at play here.80

The next section describes all the parallel experimental efforts that
brought the computer-modelled, potentially game-changing materials to
life. These include the second generation of computation-guided organic

Figure 9.6 DFT computed band gaps and dielectric constants for all organic and
organometallic polymers. The organometallics show higher dielectric
constants than the organics for a given band gap.
Reproduced from ref. 58 with permission from John Wiley and Sons,
r 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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polymers that followed from those first described in Section 9.2.2, as well as
an entire series of Sn–ester based polymers.

9.3 Synthetic Successes
Without the knowledge attained from modelling polymers on a computer,
the polymer chemist might end up lost in a sea of possibilities, much like an
explorer setting sail on a rudderless ship. The computational models may be
viewed as the GPS to the experimentalist, telling him or her about potentially
promising directions to take. The study of organic polymers as described in
Section 9.2.1 revealed that NH–CO–NH, NH–CS–NH or CO–NH–CO linkages
accompanied by aromatic rings were particularly useful in boosting the di-
electric constants and band gaps. This led to the initial synthesis and
characterization of three new polymers as described in Section 9.2.2, which
helped validate the DFT computations.58,59 However, the processability
and solubility concerns inspired a foray into a second generation of
organic polymer motifs: several new polymers belonging to generic polymer
classes—polyureas, polythioureas, polyurethanes and polyimides—were
thus synthesized and tested,81–84 as pictured in Figure 9.7. Free-standing
films were made from most of these polymers, and their dielectric constants,
band gaps, dielectric breakdown strengths and loss characteristics, among
other properties, were experimentally measured.

Table 9.2 provides a glimpse of three newly designed organic polymers
with the best characteristics and compares their (experimentally measured)
properties with the state-of-the-art polymer dielectric, BOPP. The three
polymers are a polythiourea named PDTC-HDA, a polyimide named BTDA-
HDA and another polyimide named BTDA-HK511, where PDTC stands for
para-phenylene diisothiocyanate, HDA stands for hexane diamine, BTDA
stands for benzophenone tetracarboxylic dianhydride and HK511 is a
jeffamine-containing ether. Apart from the properties listed earlier, the re-
coverable energy densities were also estimated for all the polymers using
electric displacement–electric field (D–E) loop measurements. Apart from
forming free-standing films, each polymer displayed an energy density two
to three times higher than BOPP. In this fashion, (at least) three new organic
polymers were successfully designed that can potentially replace BOPP in
capacitor applications.58 The rationale for pursuing these kinds of polymers
came from computational guidance; however, the choice of the specific
polymer repeat units was determined by the polymer chemists using their
experience and knowledge of chemical feasibility, solvent considerations
and film formability. The experimental data thus obtained further bolsters
the polymer dataset and even provides vital leads on newer chemical blocks
to introduce in polymers for future computational studies.

Following the fruits yielded by the computation-driven work on organic
polymers, attention was diverted to the exciting new field of organometallic
polymers. Synthesis of the organo–Sn polyesters proved to be challenging,
but the polymer chemists were able to make 12 such polymers containing a
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Figure 9.7 The second generation of organic polymers (belonging to different generic polymer classes) that were synthesized based on
guidance from computations and the first-generation organics discussed in Section 9.2.2.
Reproduced from ref. 58 with permission from John Wiley and Sons, r 2016 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim.
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varying number of linker –CH2– units placed between the Sn-based units,
yielding the repeat unit –[Sn(CH3)2(COO)2–(CH2)n]–, where n changes from
0 to 11. Dielectric constants and band gaps were measured for all these
polymers; DFT computations on these systems (this data is part of the or-
ganometallic polymers plotted in Figure 9.6) revealed three kinds of low
energy crystal structural motifs, and properties were computed for each
motif of each polymer. The computed and experimentally measured prop-
erties of the entire series of organo–Sn polyesters are shown in Figure 9.8.

To ensure the band gaps are sufficiently large (which could lead to a high
breakdown field), both the PBE and HSE band gaps66,67 are presented, and
seen to be around or above 4 eV and 6 eV respectively for all the polymers. On
the other hand, the dielectric constant displayed a general decrease with
increasing number of linker –CH2– units in the polymer; however, high di-
electric constants of 46 were observed for systems with an intermediate
number of linker –CH2– units (five, six or seven).77,79 The remarkable com-
bination of high dielectric constant and large band gap put the organo–Sn

Table 9.2 Measured properties for PDTC–HDA, BTDA–HDA and BTDA–HK511,
three of the best novel organic polymer dielectrics designed using
computational guidance and targeted experiments. Also, shown for com-
parison are properties for BOPP (bi-axially oriented polypropylene).

Polymer name Polymer class
Dielectric
constant

Breakdown
field (MV m!1)

Energy density
(J cm!3)

BOPP Polypropylene B2.2 B700 B5
PDTC–HDA Polythiourea B3.7 B685 B9
BTDA–HDA Polyimide B3.6 B812 B10
BTDA–HK511 Polyimide B7.8 B676 B16

Figure 9.8 Computational and experimental dielectric constants and band gaps
for a series of organo–Sn polyesters as a function of the number of linker
–CH2– units.
Reproduced from ref. 58 with permission from John Wiley and Sons,
r 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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polymers a notch above all the organic polymers studied so far. However,
issues of solubility and film formability brought them a notch down again.
Co-polymerizing the Sn–ester based polymers with one another (as well as
with attractive polyimide or polythiourea based units) led to cast films,78,85

for which the measured energy densities were roughly the same as BOPP.
Regardless, the work on organo–Sn polymers revealed the true promise of
the organometallic chemical space, providing motivation for ongoing efforts
to further optimize the polymers and obtain next generation capabilities.

Data on all the polymers studied computationally and experimentally
(structural information and computed/measured properties) so far was
collected in the form of an online ‘‘materials knowledgebase’’ known as
Khazana,86 which will be discussed further in Section 9.6. Archiving of data in
this manner is imperative for the following reasons: (a) to facilitate easy
storage and retrieval of information, (b) to avoid duplication of efforts in future
studies, (c) to guide any synthetic polymer chemist in the study of dielectrics,
and (d) to learn from the data and unearth important factors contributing to
the properties. The prospects of learning from the data to further accelerate
polymer dielectrics design are explored in the following section.

9.4 Learning From Computational Data
First principles computations undoubtedly accelerate the materials design
process, but are quite time intensive and could benefit from statistical
learning approaches. The substantial computational dataset of polymers
created in this work can be mined to learn about how the important physical
and chemical attributes of a polymer contribute to its properties, and thus
make qualitative or quantitative forecasts on the behaviour of newer poly-
mers. This section explains the utility of machine learning—the ability of a
computer to learn rules from data—in opening avenues that lead to hitherto
unexplored areas of the chemical space without resorting to repeated high-
throughput DFT.

The field of materials science that deals with using machine learning (ML)
to accelerate materials design is often referred to as materials inform-
atics.62,87–92 In recent years, informatics approaches have been used for the
prediction and classification of crystal structure types,93–95 stability of pha-
ses,96,97 band gaps,89,98,99 elastic moduli,100 dielectric breakdown101,102 and
instant atomic forces.103–105 The most crucial aspect of materials informatics
is fingerprinting, or the numerical representation of a material in terms of its
most important attributes.95,106,107 For instance, if one were to fingerprint
the polymers belonging to the chemical subspace shown in Figure 9.4 using
their band gap values, one could qualitatively predict a new polymer’s
dielectric constant based on the magnitude of its band gap. However,
the purpose of fingerprinting materials is to have easily attainable, general
and unique vectors that can be mapped to the properties of interest.87,95

Materials scientists have used elemental properties such as electronegativity
and ionization energy,89,101,108 oxidation states,109 HOMO–LUMO
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levels,89,110 shape and structural parameters,27,111 chemical com-
position,108,112 radial distribution functions104,105,113 and Coulomb matri-
ces114,115 for fingerprinting materials. What kind of a fingerprint would be
ideal for the polymers studied here?

9.4.1 Polymer Fingerprinting

With the idea that the electronic and dielectric properties of a polymer
would be dictated by ‘‘group contributions’’ from its basic building elem-
ents,116 fingerprinting was performed by quantifying the chemical com-
position in terms of the basic chemical units (CH2, C6H4 etc., fingerprint
type I), and in terms of the basic atomic units (4-fold C atoms, 2-fold O atoms
etc., fingerprint type II). Within each type, three fingerprints were defined in
a hierarchical manner, as pictorially depicted in Figure 9.9: (a) the singles,
counting the number of times each unit appeared in the polymer, (b) the
doubles, counting the number of times each pair of units appeared in the
polymer, and (c) the triples, counting the number of times each triplet of
units appeared in the polymer.62,87 While these fingerprints are easy to ob-
tain, and can be generalized for all n-block polymers (by normalization of the
counts with respect to n), they are not necessarily always unique (for in-
stance, the singles are not unique for 4-block polymers and the doubles are
not unique for 8-block polymers) and may not possess sufficient information.
However, the simplicity of the singles and doubles presented the oppor-
tunity to make qualitative assessments of how any given block (atom type) or
pair of blocks (atom types) affects the properties.

9.4.2 ML Models Trained using DFT Data

ML techniques were applied to the polymer data within the frameworks of
fingerprint types I and II independently.62,87 As an example, the results ob-
tained (presented in Figure 9.10) when applying fingerprint type I on the
dataset of organic polymers described in Section 9.2.1 are explained here.
A linear correlation analysis was performed between the components of
singles and doubles respectively and four properties: band gap, electronic
dielectric constant, ionic dielectric constant and total dielectric constant.
Pearson correlation coefficients for each property with each component of
the fingerprints shown in Figure 9.10(a) revealed that while CH2 and O
blocks, and CH2–CH2 and CH2–O pairs lead to the highest band gaps, C4H2S
and CS blocks and their pairs with each other decrease the band gap the
most. The effects on the dielectric constant followed quite the opposite
trend, thanks to the inverse relationship between the electronic dielectric
constant and the band gap. The ionic dielectric constant, meanwhile, is
positively contributed to by NH and CO groups, and NH–CO pairs. Thus, the
influence of specific blocks and block pairs on the polymer properties was
identified, and a similar analysis using fingerprint type II would reveal the
atom types and pairs of atom types that are influential.
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Figure 9.9 Examples of the basic building blocks, building block pairs and building block triplets that help define fingerprint types I
(where chemical units such as CH2 and C6H4 are building blocks) and II (where atoms like 4-fold C (C4) and 2-fold O (O2) are
building blocks).
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Figure 9.10 Results of machine learning applied on the DFT data. (a) Correlations between different components of singles and doubles
of fingerprint type I with the different properties, and (b) performances of property prediction models trained using kernel
ridge regression.
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Next, a regression algorithm was used to train a model that converts a
fingerprint input to its property, within a statistical accuracy. The benefit of
having such a prediction model as opposed to mere correlations is being
able to make a quantitative prediction of the dielectric constant and band
gap of any new polymer, and consequently enhance the initial computa-
tional dataset to include hundreds and thousands of new polymers. Kernel
ridge regression (KRR117) was applied to the dataset and predictive models
were obtained whose performances are shown in Figure 9.10(b). The triples
fingerprint, given its uniqueness for 4- to 8-block polymers and the degree of
information it contains, was used for this purpose. KRR is a popular non-
linear regression technique where the data points are transformed from the
fingerprint space to a kernel space, and the property of interest is defined as
a function of the similarity (defined in terms of the Euclidean distance) of a
given fingerprint with every other fingerprint in the dataset. The necessary
parameters for this functional form are obtained by training the KRR model
on a subset of the dataset known as the training set, while testing of the
model for generality and performance evaluation is done on the test set.
Here, the training set comprisedB90% of the total data points, upon which
5-fold cross-validation was performed to ensure there is no overfitting in the
predictions. The latter involves dividing the training data into five further
subsets, making predictions for the points in every subset by training
models on the remaining four, and obtaining the final optimal parameters
as an average over the five cases. More details of the KRR formalism can be
obtained from ref. 117 and 118, while details of applying KRR to a polymer
dataset can be obtained from ref. 88 and 99.

9.4.3 Validation and Utility of ML Framework

With statistically satisfactory relative errors of less than 10% seen between
the ML predictions and the DFT results as shown in Figure 9.10(b), the stage
was set for the prediction models to be tested on newer, longer-chain poly-
mers. Nearly 40 random polymers containing six to ten blocks in their repeat
units were selected for this purpose; some of them had been studied ex-
perimentally, while crystal structure prediction and DFT computation of
properties was performed for each polymer. Impressive agreement was seen
between the ML, DFT and experimental results as shown in Figure 9.11; the
qualitative trends were generally captured, even if a 100% quantitative
match did not always occur. It should be noted that having been trained on
purely 4-block polymers, the ML models make surprisingly good predictions
even for higher-block polymers.62

With ‘‘on-demand’’ predictions now possible for any n-block polymer be-
longing to the chemical space shown in Figure 9.4, the ML models were
collected in the form of user-friendly design and prediction tools in the
online materials knowledgebase Khazana,86 as discussed in Section 9.6.
However, one needs to be guarded against the limitations of the ML ap-
proach. The trained models shown and tested in Figures 9.10 and 9.11 are
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valid only for polymers containing the same seven basic chemical units.
Fingerprint type II provides a more general ML framework by taking atom
types, chemical bonds and chemical conjugation into account: similar ML
models when trained with this fingerprint (the subject of our work in ref. 87)
will be applicable to all polymers containing C, H, O, N or S atoms in their
standard coordination environments. Furthermore, it should be noted that
both fingerprint types I and II quantify the chemical build-up of the polymer
in terms of chemical units or atoms and their respective neighbours, but
lack information regarding their crystal structures or conformations. For two
polymers with the same repeat unit but different structural arrangements,
the fingerprints, and therefore the predicted properties, would be the same,
although structural differences could have very realistic consequences.

9.5 Exporing the Polymer Genome
The importance of data in driving discovery and innovation puts the onus on
scientists to catalogue their computational and experimental results, and
whatever insights they may have gained from them, for the benefit of the
entire scientific community. This aligns well with the goals and objectives of
the Materials Genome Initiative,23 and efforts towards the same are evidenced

Figure 9.11 Validation of machine learning predictions for nearly 40 polymers with
arbitrarily long chain lengths, against their DFT computed and experi-
mentally measured properties.
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by the rise of many materials databases over the last few years.119–123 All the
polymer data (including computationally obtained ground state structures,
and the DFT estimated and experimentally measured properties) and ma-
chine learning models presented in this chapter may be found within the
‘‘Polymer Genome’’ search feature within the Khazana platform.86 Any user
searching for a polymer by its repeat unit, chemical name or desired prop-
erties will be able to access the relevant experimental or computational data,
as well as ML predicted properties, and can utilize this information to make
an instant go/no-go decision on whether to pursue it for applications of
interest. Fingerprinting a polymer in terms of its basic building block (the
chemical unit or atom) is like tracking the polymer ‘‘genetic material’’ or
‘‘gene’’, which is then utilized for explaining trends in the properties; hence
the terminology ‘‘the polymer genome’’. This knowledgebase is an attempt
to unravel the polymer genome, and through the medium of past data and
machine learning tools, provide ready access to meaningful spaces of the
polymer chemical universe to the community.

An important limitation of the ML approach is that the trained models are
always only as good as the training data used. For instance, using the models
presented in Section 9.4.2, which were trained on the polymer chemical
space shown inAQ:1 Figure 9.4, predictions on polymers containing side chains,
fresh chemical units or newer coordination environments may not stand up
to a stricter quantum mechanical test. Thus, there would be a requirement
of constant data infusion and model retraining to obtain systematic and
progressive improvement. Indeed, an adaptive learning approach is im-
perative, wherein fresh computational data on systems sufficiently distinct
from previous data (i.e., polymers containing new chemical units and en-
vironments) would be added when available and the ML models would be
retrained to make fresh, more accurate predictions on newer regions of the
chemical space. This process could be repeated in an iterative manner as
follows: ‘‘ML model-predictions-fresh computations-retrained ML
model’’, thus establishing a strategy of slowly but surely pushing the
boundaries of the polymer chemical space and progressively expanding the
predictive regions via an adaptive learning framework.

9.6 Conclusions and Outlook
In this chapter, the importance of computation-guided and data-driven
strategies for the rational design of materials was highlighted with the
example of advanced polymer dielectrics for energy storage capacitor
applications. A design strategy involving high-throughput DFT, guided
experiments and ML based insights was executed here, culminating in the
successful discovery of several novel organic and organometallic polymer
dielectric candidates. DFT was used to compute two crucial properties—
dielectric constant and band gap—for a few hundred organic polymers,
followed by several organometallic polymers. After a first stage of screening
yielded promising candidates that were synthesized and tested to provide
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validation for the DFT computations, subsequent generations of polymers
were experimentally studied to overcome the issues posed by the initial
polymers. Further, ML methods were applied on the DFT data to obtain
design rules based on correlation analysis and regression-based prediction
models, which facilitate quick and easy estimation of the properties of new
polymers. All the computational and experimental data generated as part of
this work, along with the ML models, were collected in the form of an
‘‘online materials knowledgebase’’. Such data repositories and design tools
are critical to the future of materials design, providing ready guidance to
future experiments and computations, consequently leading to faster, more
efficient design and discovery.

The synergistic use of computations and experiments in a rational co-
design formulation enabled the design of new polymer dielectrics much
faster than implementing standalone experiments. Any computations are
incomplete without accompanying experiments, which provide validation as
well as realization of modelled materials; experiments, on the other hand,
suffer from a lack of direction without computational insights. A marriage
between the two is truly a recipe for success in the modern materials re-
search environment. Further, the ability to learn from uniform, curated
(experimental or computational) data, and apply this learning to new ma-
terials, is truly transformative in terms of accelerating materials design. This
is the rapidly progressing field of materials informatics, which deals with
developing phenomenological theories, design rules and predictive models
based on learning from data, as well as logically determining next compu-
tation or experiments that should be performed to improve the models and
expand the pool of promising materials. Regular improvements in com-
puting power and the increasing use of machine learning based approaches
presents endless possibilities in materials research in the coming years.
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