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Abstract— Feature selection is the problem of identifying
a subset of the most relevant features in the context of
model construction. This problem has been well studied and
plays a vital role in machine learning. In this paper we
present a novel randomized algorithm for feature selection.
It is generic in nature and can be applied for any learning
algorithm. This algorithm can be thought of as a random
walk in the space of all possible subsets of the features.
We demonstrate the generality of our approach using three
different applications.
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1. Introduction
Feature Selection is defined as the process of selecting

a subset of the most relevant features from a set of fea-
tures. FS involves discarding the irrelevant, redundant and
noisy features. Feature selection is also known as variable
selection, attribute selection or variable subset selection in
the fields of machine learning and statistics. The concept
of feature selection is different from feature extraction.
Feature extraction creates new features from the set of
original features by employing a variety of methods such as
linear combinations of features, projection of features from
the original space into a transformed space, etc. We can
summarize the usefulness of feature selection as follows:
(1) Shorter training times: When irrelevant and redundant
features are eliminated, the learning time decreases; (2)
Improved model creation: The model built is more accurate
and efficient; and (3) Enhanced generalization: It produces
simpler and more generalized models.

A generic feature selection algorithm employs the follow-
ing steps: (1) Select a subset of features; (2) Evaluate the
selected subset; and (3) Terminate if the stopping condition
is met. The algorithm generates candidate subsets using
different searching strategies depending on the application.
Each of the candidate subsets is then evaluated based on an
objective function. In the context of any learning algorithm,
the objective function could be the accuracy. Note that for
any learning algorithm there are two phases. In the first phase

(known as the training phase), the learner is trained with a
set of known examples. In the second phase (known as the
test phase), the algorithm is tested on unknown examples.
Accuracy refers to the fraction of test examples on which
the learner is able to give correct answers. In the feature
selection algorithm, if the current subset of features yields
a better value for the objective function, the previous best
solution is replaced with the current one. If not, the next
candidate is generated. This process iterates over the search
space until a stopping condition is satisfied. Finally, the best
subset is validated by incorporating prior knowledge.

In this paper we introduce a novel randomized technique
for feature selection. This technique can be used in the
context of any learning algorithm. Consider the space of all
possible subsets of features. We start with a random subset
s of the features and calculate its accuracy. We then choose
a random neighbor1 s′ of s and compute its accuracy. If
the accuracy of s′ is greater than that of s, we move to the
new subset s′ and proceed with the search from this point.
On the other hand, if the accuracy of s′ is smaller than
that of s, we stay with the subset s (with some probability
p) or move to the subset s′ with probability 1 − p. We
proceed with the search from the point we end up with.
This process of searching the space is continued until no
significant improvement in the accuracy can be obtained.
Our randomized search technique is generic in nature. We
have employed it on three different applications and found
that it is indeed scalable, reliable and efficient. Note that our
algorithm resembles many local searching algorithms (such
as Simulated Annealing (SA)). However, our algorithm is
much simpler and differs from the others. For example, we
do not employ the notion of temperature that SA utilizes.

The rest of this paper is organized as follows: Related
works are summarized in Section 2. Some background
information and preliminaries are presented in Section 3.
In this section, from among other things, we provide a brief
introduction to Kernel Ridge Regression, Data Integration,
and Materials Property Prediction. In Section 4 we describe
our proposed algorithm. The performance of the algorithm
and the experimental results are presented in Section 5.

1The notion of a random neighbor is defined precisely in Section 4.



Section 6 concludes the paper.

2. Related Works
In this section we provide a summary of some well-known

feature selection algorithms. These algorithms differ in the
way the candidate subsets are generated and in the evaluation
criterion used.

2.1 Selection of candidate subsets
Subset selection begins with an initial subset that could be

empty, the entire set of features, or some randomly chosen
features. This initial subset can be changed in a number of
ways. In forward selection strategy, features are added one
at a time. In backward selection the least important feature
is removed based on some evaluation criterion. Random
search strategy randomly adds or removes features to avoid
being trapped in a local maximum. If the total number of
features is n, the total number of candidate subsets is 2n.
An exhaustive search strategy searches through all the 2n

feature subsets to find an optimal one. Clearly, this may not
be feasible in practice [1]. A number of heuristic search
strategies have been introduced to overcome this problem.
The branch and bound method [2] exploits exhaustive search
by maintaining and traversing a tree, but stops the search
along a particular branch if a predefined boundary value is
exceeded. The branch and bound method has been shown to
be effective on many problem instances.

Greedy hill climbing strategies modify the current subset
in such a way that results in the maximum improvement
in the objective function (see e.g., [3]). Sequential forward
search (SFS) [4,5], sequential backward search (SBS), and
bidirectional search [6] are some variations to the greedy
hill climbing method. In these methods, the current subset
is modified by adding or deleting features. SFS sequentially
searches the feature space by starting from the empty set
and selects the best single feature to add into the set in
each iteration. On the contrary, SBS starts from the full
feature set and removes the worst single feature from the set
in each iteration. Both approaches add or remove features
one at a time. Algorithms with sequential searches are fast
and have a time complexity of O(n2). Sequential forward
floating search (SFFS) and sequential backward floating
search (SBFS) [7] combine the strategies followed by SFS
and SBS. Some feature selection algorithms randomly pick
subsets of features from the feature space by following
some probabilistic steps and sampling procedures. Examples
include evolutionary algorithms [8,9], and simulated anneal-
ing [10]. The use of randomness helps in the avoidance of
getting trapped in local maxima.

2.2 Evaluation of the generated subset:
After selecting the subsets from the original set of fea-

tures, they are evaluated using an objective function. One
possible objective function is the accuracy of the predictive

model. Feature selection algorithms can be broadly divided
into two categories: (1) wrapper, and (2) filter. In a wrapper
method the classification or prediction accuracy of an in-
ductive learning algorithm of interest is used for evaluation
of the generated subset. For each generated feature subset,
wrappers evaluate its accuracy by applying the learning
algorithm using the features residing in the subset. Although
it is a computationally expensive procedure, wrappers can
find the subsets from the feature space with a high accuracy
because the features match well with the learning algorithm.
Filter methods are computationally more efficient than wrap-
per methods since they evaluate the accuracy of a subset of
features using objective criteria that can be tested quickly.
Common objective criteria include the mutual information,
Pearson product-moment correlation coefficient, and the
inter/intra class distance. Though filters are computationally
more efficient than wrappers, often they produce a feature
subset which is not matched with a specific type of predictive
model and thus can yield worse prediction accuracies.

3. Background Summary
In this paper we offer a novel randomized feature selec-

tion algorithm and demonstrate its applicability using three
different applications. The applications of interest are: 1)
the prediction of materials properties, 2) data integration,
and 3) analysis of biological data. We employ the following
learning algorithms: Kernel Ridge Regression (KRR) and
Support Vector Machine (SVM). In this section we provide a
brief summary on these applications and learning algorithms.

3.1 Kernel Ridge Regression (KRR)
Kernel ridge regression is a data-rich non-linear forecast-

ing technique. It is applicable in many different contexts
ranging from optical character recognition to business fore-
casting. KRR has proven to be better than many well-known
predictors. It is not much different from ridge regression
rather it employs a clever algebraic trick to improve the
computational efficiency. The central idea in kernel ridge
regression is to employ a flexible set of nonlinear prediction
functions and to prevent over-fitting by penalization. It is
done in such a way that the computational complexity
is reduced significantly. This is achieved by mapping the
set of predictors into a high-dimensional (or even infinite-
dimensional) space of nonlinear functions of the predictors.
A linear forecast equation is then estimated in this high
dimensional space. It also employs a penalty (or shrinkage,
or ridge) term to avoid over-fitting. It is called kernel ridge
regression since it uses the kernel trick to map the set of
predictors into a high dimensional space and adds a ridge
term to avoid over-fitting.

Assume that we are given N observations (x1, y1),
(x2, y2), . . . , (xN , yN ) with xi ∈ <d and yi ∈ <, for
1 ≤ i ≤ N . Our goal is to find a function f such that f(xi) is
a good approximation of yi for 1 ≤ i ≤ N . Once we identify



such a function we can use it on any unknown observation
x′ ∈ <d to estimate the corresponding y′ as f(x′). Ridge
regression calculates the parameter vector w ∈ <d of a linear
model f(x) = w.x by minimizing the objective function:

WRR(w) =
1

2
‖ w‖2 +

γ

N

N∑
i=1

(yi − w.xi)2 (1)

The objective function used in ridge regression (1) imple-
ments a form of Tikhonov regularisation [11] of a sum-of-
squares error metric, where γ is a regularization parameter
controlling the bias-variance trade-off [12].

A non-linear form of ridge regression [13] can be obtained
by employing kernel trick. Here a linear ridge regression
model is constructed in a higher dimensional feature space
induced by a non-linear kernel function defining the inner
product:

K(xa, xb) = ϕ(xa).ϕ(xb) (2)

The kernel function can be any positive definite kernel.
One of the popular kernels is Gaussian radial basis function
(RBF) kernel:

K(xa, xb) = exp

(
−‖ xa − xb‖

2

2σ2

)
(3)

where σ is a tunable parameter. The objective function
minimized in kernel ridge regression can be written as:

WKRR(w) =
1

2
‖ w‖2 +

γ

N

N∑
i=1

ξ2i (4)

subject to the constraints:
ξi = yi − w.ϕ(xi),∀i ∈ {1, 2, . . . , N}

The output of the KRR model is given by the equation:

f(x) =

N∑
i=1

αiϕ(xi).ϕ(x) =

N∑
i=1

αiK(xi, x) (5)

3.2 Gene Selection
Gene selection is based on SVMs [14-18] and it

takes as input n genes {g1, g2, g3, . . . , gn}, and l vectors
{v1, v2, v3, . . . , vl}. As an example, each vi could be an
outcome of a microarray experiment and each vector could
be of the following form: vi = {x1i , x

2
i , x

3
i , . . . , x

n
i , yi}. Here

xji is the expression level of the jth gene gj in experiment i.
The value of yi is either +1 or -1 based on whether the event
of interest is present in experiment i or not. The problem
is to identify a set of genes {g1i , g

2
i , g

3
i , . . . , g

m
i } sufficient

to predict the value of yi in each experiment. Given a set
of vectors, the gene selection algorithm learns to identify
the minimum set of genes needed to predict the event of
interest and the prediction function. These vectors form the
training set for the algorithm. Once trained, the algorithm is
provided with a new set of data which is called the test set.
The accuracy of gene selection is measured in the test set

as a percentage of microarray data on which the algorithm
correctly predicts the event of interest. The procedure solely
relies on the concept of SVM.

The gene selection algorithm of Song and Rajasekaran
[19] is based on the ideas of combining the mutual informa-
tion among the genes and incorporating correlation informa-
tion to reject the redundant genes. The Greedy Correlation
Incorporated Support Vector Machine (GCI-SVM) algorithm
of [19] can be briefly summarized as follows: The SVM is
trained only once and the genes are sorted according to the
norm of the weight vector corresponding to these genes.
Then the sorted list of genes are examined starting from the
second gene. The correlation of each of these genes with the
first gene is computed until one whose correlation with the
first one is less than a certain predefined threshold is found.
At this stage this gene is moved to the second place. Now
the genes starting from the third gene are examined and the
correlation of each of these genes with the second gene is
computed until a gene whose correlation with the second
gene is less than the threshold is encountered. The above
procedure is repeated until end of the list of the sorted genes
is reached. In the last stage, genes based on this adjusted
sorted genes are selected. GCI-SVM brings the concept of
sort-SVM and RFE-SVM [20] altogether which makes it
more efficient.

3.3 Data Integration
Data integration involves combining data residing in dif-

ferent sources and providing users with a unified view of
these data [21]. As an example, the same person may have
health care records with different providers. It helps to merge
all the records with all the providers and cluster these records
such that each cluster corresponds to one individual. Such
an integration, for instance, could help us avoid performing
the same tests again and hence save money.

Several techniques [22-25] have been proposed to solve
the data integration problem. In [26] the authors have pro-
posed several space and time efficient techniques to integrate
multiple datasets from disparate data sources. They employ
hierarchical clustering techniques to integrate data of similar
types and avoid the computation of cross-products. It can
cope up with some common errors committed in input data
such as typing distance and sound distance. Furthermore, it
can deal with some human-made typing errors e.g., reversal
of the first and last names, nickname usage, and attribute
truncation.

3.4 Materials Property Prediction
If one wants to determine properties of a given unknown

material, the traditional approaches are lab measurements
or computationally intensive simulations (for example using
the Density Functional Theory). An attractive alternative
is to employ learning algorithms. The idea is to learn the
desired properties from easily obtainable information about



the material. In this paper we consider an infinite polymeric
chain composed of XY2 building blocks, with X = C, Si, Ge,
or Sn, and Y = H, F, Cl, or Br. We are interested in estimat-
ing different properties of such chains including dielectric
constant and band gap. We assume that an infinite polymer
chain with a repeat unit containing 4 distinct building blocks,
with each of these 4 blocks being any of CH2, SiF2, SiCl2,
GeF2, GeCl2, SnF2, or SnCl2. By plotting the total dielectric
constant (composed of the electronic and ionic contributions)
and the electronic part of the dielectric constant against the
computed band gap, we find some correlations between these
three properties. While some correlations are self-evident
(and expected)—such as the inverse relationship between the
band gap and the electronic part of the dielectric constant,
and the large dielectric constant of those systems that contain
contiguous SnF2 units—it is not immediately apparent if
these observations may be formalized in order to allow for
quantitative property predictions for systems (within this
sub-class, of course) not originally considered. For example,
can we predict the properties of a chain with a repeat unit
containing 8 building blocks (with each of the blocks being
any of the aforementioned units)? In Section 5, we show
that this can indeed be done with high-fidelity using our
randomized search method.

We use specific sub-structures, or motifs or scaffolds,
within the main structure to create the attribute vector. Let
us illustrate this using the specific example of the polymeric
dielectrics created using XY2 building blocks. Say there are
7 possible choices (or motifs) for each XY2 unit: CH2, SiF2,
SiCl2, GeF2, GeCl2, SnF2, and SnCl2. The attribute vector
may be defined in terms of 6 fractions, |f1, f2, f3, f4, f5, f6〉,
where fi is the fraction of XY2 type or motif i (note that
f7 = 1 − Σ6

i=1fi). One can extend the components of the
attribute vector to include clusters of 2 or 3 XY2 units of the
same type occurring together; such an attribute vector could
be represented as |f1, . . . , f6, g1, . . . , g7, h1, . . . , h7〉, where
gi and hi are, respectively, the fraction of XY2 pairs of type
i and the fraction of XY2 triplets of type i. In Section 5, we
demonstrate that such a motif-based attribute vector does a
remarkable job of codifying and capturing the information
content of the XY2 polymeric class of systems, allowing us
to train our machines and make high-fidelity predictions.

4. Our Algorithm
If we can identify a subset of the features that are the

most important in determining a property, it will lead to
computational efficiency as well as a better accuracy. It
is conceivable that some of the features might be hurtful
rather than helpful in predictions. Let ~A = |a1, a2, . . . , an〉
be the set of features under consideration. One could use
the following simple strategy, in the context of any learning
algorithm, to identify a subset of ~A that yields a better
accuracy in predictions than ~A itself. For some small value
of k (for example 2), we identify all the

(
n
k

)
subsets of ~A.

For each such subset we train the learner, figure out the
accuracy we can get, and pick that subset ~S that yields the
best accuracy. Now, from the remaining features, we add
one feature at a time to ~S and for each resultant subset, we
compute the accuracy obtainable from the learner. Let ~S′

be the set (of size k + 1) of attributes that yields the best
accuracy. Next, from the remaining attributes, we add one
feature at a time to ~S′ and identify a set of size k + 2 with
the best accuracy, and so on. Finally, from out of all of the
above accuracies, we pick the best one.

We can think of the above simple technique as a greedy
algorithm that tries to find an optimal subset of attributes
and it may not always yield optimal results. On the other
hand, it will be infeasible to try every subset of attributes
(since there are 2n such subsets). We propose the following
novel approach instead: Consider the space of all possible
subsets of attributes. We start with a random point p (i.e.,
a random subset of the features) in this space and calculate
the accuracy q corresponding to this subset. We then flip
an unbiased three sided coin with sides 1, 2, and 3. If the
outcome of the coin flip is 1, we choose a random neighbor
p′ of this point by removing one feature from p and adding a
new feature to p. After choosing p′, we compute its accuracy
q′. If q′ > q then we move to the point p′ and proceed with
the search from p′. On the other hand, if q′ < q, then we stay
with point p (with some probability u) or move to point p′

with probability (1−u). This step is done to ensure that we
do not get stuck in a local maximum. If the outcome of the
coin flip is 2, we choose a random neighbor p′ by removing
one feature from p and compute its accuracy q′. The next
steps are the same as stated in the case of 1. Consider the last
case where the outcome of the coin flip is 3. We choose a
random neighbor p′ by adding one feature to p and compute
its accuracy q′. The rest of the steps are the same as above.
If q′ > q then we move to the point p′ and proceed with the
search from p′. On the other hand, if q′ < q, then we stay
with point p (with some probability u) or move to point p′

with probability (1−u). We proceed with the search from the
point we end up with. This process of searching the space is
continued until no significant improvement in the accuracy
can be obtained. A relevant choice for u is exp(−c(q− q′))
for some constant c. In fact, the above algorithm resembles
the simulated annealing (SA) algorithm of [30]. Note that
our algorithm is very different from SA. In particular, our
algorithm is much simpler than SA. Details of our algorithm
can be found in Algorithm 1.

5. Results and Discussions
We have employed our randomized feature selection algo-

rithm on three different application domains. These applica-
tions include but not limited to the prediction of properties
of materials, data integration, and processing of biological
data. Our algorithm is generic and can be used in conjunction
with any learning algorithm.



Algorithm 1: Randomized Feature Selection
Input: The set F of all possible features and an Inductive Learning Algorithm L
Output: A near optimal subset F ′ of features
begin

1 Randomly sample a subset F ′ of features from F .

2 Run the inductive learning algorithm L using the features in F ′.

3 Compute the accuracy A of the concept C learnt by L.

4 repeat
5 Flip an unbiased three sided coin with sides 1, 2, and 3.

6 if (the outcome of the coin flip is 1){

7 Choose a random feature f from F − F ′ and add it to F ′.

8 Remove a random feature f ′ from F ′ to get F ′′.

9 } else if (the outcome of the coin flip is 2){

10 Choose a random feature f from F − F ′ and add it to F ′ to get F ′′.

11 } else if (the outcome of the coin flip is 3){

12 Remove a random feature f from F ′ to get F ′′.
13 }

14 Run the inductive learning algorithm L using the features in F ′′.

15 Compute the accuracy A′ of the concept C ′ learnt by L.

16 if (A′ > A ){

17 F ′ := F ′′ and A := A′; Perform the search from F ′.

18 } else{

19 With probability u perform the search from F ′ and
with probability 1− u perform the search from F ′′ with A := A′.

20 }

until no significant improvement in the accuracy can be obtained;
21 Output F ′.

5.1 Gene Selection

We have used the gene selection algorithm to identify
some of the best features that can together identify two
groups. The gene selection algorithm has two phases. In the
first phase, the algorithm is trained with a training dataset.
In this phase the algorithm comes up with a model of
concept. In the second phase of the algorithm a test dataset
is presented. The model learned in the first phase is used
to classify the elements residing in the test dataset. As a
result, the accuracy of the model learned can be computed.
At first, we generated 4 datasets each having 200 subjects
with 15, 20, 25, and 30 features, respectively. Each of the
features has been given a random value in the range [0, 99].
We then randomly assigned a class label to each of the
subjects residing in each dataset. Specifically, each subject
is assigned to group 1 with probability 1

2 and it is assigned

to group 2 with probability 1
2 . We trained the classifier using

a training set which consists of 50 percent of data from each
of group 1 and group 2 (data being chosen randomly). The
test set is formed using the other 50 percent from group 1
and group 2, respectively. GSA is trained with the training
set and it builds a model of concept using SVMs. We have
used LINEAR, and GAUSSIAN RBF to build the model
of concept. The result is a n × m matrix where n is the
number of subjects and m is the most influential features of
the training dataset. Using the test data we have measured the
accuracy. After employing our randomized search technique
in conjunction with gene selection algorithm, the accuracy
is greatly improved and at the same time the number of
features is decreased significantly (please, see TABLE 1).



Table 1: GSA and modified GSA (GSA and mo-GSA) schemes
GSA Modified GSA

System Method Accuracy # of Features Accuracy # of Features

Dataset 1 GAUSSIAN 50% 15 54% 10
LINEAR 49% 15 62% 12

Dataset 2 GAUSSIAN 52% 20 60% 13
LINEAR 53% 20 65% 13

Dataset 3 GAUSSIAN 49% 25 58% 9
LINEAR 50% 25 58% 11

Dataset 4 GAUSSIAN 50% 30 59% 13
LINEAR 56% 30 62% 13

5.2 Data Integration
Data integration technique of [26] is used to detect similar

types of data from a set of databases. To test the performance
of our approach, we generated 4 datasets each having 10,000
subjects where each subject has 5 features. The features
consist of a person’s first name, last name, date of birth,
sex, and zip code. In general, each person has multiple
records. Since errors are introduced randomly in the features,
instances of the same individual may differ from each other.
Accuracy of any data integration method is calculated as
the fraction of persons for whom all the instances have been
correctly identified to be belonging to the same person.

We have employed our randomized feature selection algo-
rithm on the data integration technique of [26]. The accuracy
has been greatly improved and at the same time the number
of features has also decreased (please, see TABLE 2).

5.3 Materials Property Prediction
We consider polymeric dielectrics created using the XY2

blocks as described in Section 3. If we assume that our repeat
unit consists of 4 building blocks, and that each building
block can be any of 7 distinct units (namely, CH2, SiF2,
SiCl2, GeF2, GeCl2, SnF2, and SnCl2), we have a total
of 175 distinct polymer chains (accounting for translational
symmetry). Of these, we set 130 to be in the training set,
and the remainder in the test set to allow for validation of
the machine learning model.

Attribute vectors may be chosen in different ways. Con-
sider the motif-based one as described in Section 3, i.e., our
attribute vector, ~Ai = |f i1, . . . , f i6, gi1, . . . , gi7, hi1, . . . , hi7〉,
where f ij , gij and hij are, respectively, the fraction of XY2

units of type j, the fraction of pair clusters of XY2 units of
type j and the fraction of triplet clusters of XY2 units of
type j. Once our machine has learned how to map between
the attribute vectors and the properties using the training set,
we make predictions on the test set (as well as the training
set). Furthermore, we considered several 8-block repeat units
(in addition to the 175 4-block systems), and performed our
machine learning scheme.

We have tested the above techniques on the KRR scheme
presented in Section 3 with the systems represented using
the motif-based attribute vectors. We refer to the greedy
extension as the modified greedy KRR (mg-KRR) approach
and the modified optimization version as mo-KRR. An
assessment of the improvement in the predictive power when
mg-KRR and mo-KRR are used for the three properties
of interest (namely, the band gap, the electronic part of
the dielectric constant and the total dielectric constant) is
presented in Table 3. As can be seen, the level of accuracy of
the machine learning schemes is uniformly good for all three
properties across the 4-block training and test set, as well
as the 8-block test set, indicative of the high-fidelity nature
of this approach. In particular, note that the mg-KRR and
mo-KRR methods, in general, lead to better accuracy. More
importantly, typically, the number of attribute components
decreases significantly. This means a significant reduction in
the run times of the algorithms while predicting parameter
values for an unknown material.

6. Conclusions
We have presented a novel randomized search technique

which is generic in nature and can be applied to any
inductive learning algorithm for selecting a subset of the
most relevant features from the set of all possible features.
The proposed scheme falls into the class of wrapper methods
where the prediction accuracy in each step is determined
by the learning algorithm of interest. To demonstrate the
validity of our approach, we have applied it in three dif-
ferent applications, namely, biological data processing, data
integration, and materials property prediction. It is evident
from the simulation results shown above that our proposed
technique is indeed reliable, scalable, and efficient.
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Table 2: DI and modified DI (DI and mo-DI) schemes
Data Integration Modified Data Integration

System Accuracy # of Features Accuracy # of Features
Dataset 1 46.72% 5 89.71% 2
Dataset 2 85.50% 5 90.31% 3
Dataset 3 85.51% 5 90.32% 4
Dataset 4 85.50% 5 86.61% 3

Table 3: KRR and modified KRR (mg-KRR and mo-KRR) schemes
Bandgap Electric DC Total DC

System Method Accuracy # of Features Accuracy # of Features Accuracy # of Features

4-Block
KRR 92.98% 20 93.75% 20 96.49% 20

mg-KRR 93.07% 19 94.22% 11 97.23% 14
mo-KRR 93.43% 16 94.23% 18 97.63% 14

8-Block
KRR 96.95% 20 90.58% 20 95.81% 20

mg-KRR 96.95% 20 90.64% 15 95.99% 19
mo-KRR 97.45% 17 95.17% 12 97.68% 13
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