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A first principles quantum-mechanical method for estimating intrinsic breakdown strength of

insulating materials has been implemented based on an average electron model which assumes that

the breakdown occurs when the average electron energy gain from the electric field exceeds the

average energy loss to phonons. The approach is based on density functional perturbation theory

and on the direct integration of electronic scattering probabilities over all possible final states, with

no adjustable parameters. The computed intrinsic breakdown field for several prototypical

materials compares favorably with available experimental data. This model also provides physical

insight into the material properties that affect breakdown. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4755841]

The dielectric breakdown of insulating materials has

been a subject of experimental and theoretical investigations

for many decades as a result of its technical importance.1

Breakdown mechanisms are complex as they are dominated

by “extrinsic” factors not inherent to the material such as

imperfections (e.g., chemical impurities at the atomic level,

and cavities at the microscopic and macroscopic scales) as

well as statistical variations in morphology and microstruc-

ture. The subject of the present contribution is the “intrinsic”

breakdown strength of an insulator, a quantity that can be

viewed as an intrinsic material property which provides an

upper bound to the dielectric breakdown field. Experimen-

tally, intrinsic breakdown can be obtained only under ideal

conditions, when all extraneous influences have been elimi-

nated, at which point, the breakdown strength is determined

solely by the physical properties of the material and tempera-

ture. Developing a predictive theory of intrinsic breakdown

is the first step in the path to predicting extrinsic breakdown

strength, as well as achieving an improved understanding of

the fundamental factors that control dielectric breakdown.

Intrinsic breakdown can be explained in terms of

electron-avalanche theory,2 which depends on the presence

and creation of charge carriers capable of migration through

the dielectric. A central tenet of this theory is that the only

relevant scattering mechanism for charge carriers is electron-

phonon interactions. Electrons gain energy from an external

electric field between successive collisions with phonons. At

low electric fields, the electron energy distribution achieves

steady state, as the energy gain from the external electric

field is balanced by energy loss from collisions with pho-

nons. At a sufficiently high electric field, the electron energy

increases indefinitely until a threshold is reached at which a

high-energy electron ionizes the lattice, leading to carrier

multiplication. This process is referred to as impact ioniza-

tion, and the ensuing avalanche of electrons can damage the

material (e.g., through bond breakage). Within this frame-

work, the breakdown criterion can be formulated following

von Hippel1,3 as the lowest field at which the average

electron energy gain from the field is greater than the aver-

age energy loss to phonons for all electron energies less than

that which produces impact ionization.

While quantum mechanical descriptions of intrinsic

breakdown are well over 50 years old,1–5 until recently, the

estimation of the relevant parameters, such as electron-

phonon scattering rates, has relied on approximations or em-

pirical deformation potentials.2,5,6 Here, we present a

parameter-free scheme for estimating intrinsic breakdown

strength by determining the electron energy gain and loss

rates using density functional perturbation theory (DFPT).

This scheme has been applied to a number of prototypical

covalent and ionic materials, and the computed values of

intrinsic breakdown are compared to the best available ex-

perimental data (Fig. 1). As can be seen from Fig. 1, the

favorable agreement between calculations and experiments

spans two orders of magnitude in the breakdown field. A sec-

ond important outcome of this work is the correlation

between the intrinsic breakdown strength and properties

such as the bandgap and the phonon cut-off frequency. Such

correlations provide a rational approach to screen for insula-

tors with large intrinsic breakdown strength.

In the present work, the intrinsic breakdown field, Fbd,

is defined according to the von Hippel low energy crite-

rion.1,3 If we represent the rate of energy gain of an electron

of energy E as A(F,E) at a field F, and the rate of energy loss

as B(E), the above criterion can written as

AðF;EÞ > BðEÞ; for all E 2 fCBM; CBMþ Egg; (1)

where CBM and Eg are the conduction band minimum and

the bandgap of the material, respectively. The reason for

choosing CBM þ Eg as the upper bound is that all electrons

with greater energy will impact ionize the lattice leading to

electron multiplication, i.e., CBM þ Eg is assumed to be the

impact ionization threshold in the present treatment.

The rate of energy gain of an electron of energy E at

field F can be evaluated as2

AðF;EÞ ¼ e2sðEÞF2

3m
; (2)
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where e and m are, respectively, the electronic charge and

mass, and s(E) is the electron relaxation time determined by

scattering due to phonons. The isotropic (and purely energy

dependent) form of the electron relaxation time (whose re-

ciprocal is the scattering rate) is given by7

1

sðEÞ ¼
1

DðEÞ
X

kj

1

sðkjÞ dðekj � EÞ; (3)

where D(E) is the electronic density of states, ekj is the

energy of an electron above the CBM at wave vectors k and

band index j. The explicit k- and j-dependent relaxation

time, s(kj) can be evaluated from Fermi’s golden rule by

direct integration of electronic scattering probabilities over

all possible final states and is given by

1

sðkjÞ ¼
2p
�h

X
qkj0

jgqk
kþqj0;kjj

2 nqk þ
1

2
7

1

2

� �

� dðekj � ekþqj06�hxqkÞ; (4)

where �h is the Planck’s constant and xqk is the frequency of

phonon at wave vector q and band index k. Physically, the

above expression represents the scattering of an electron ini-

tially with energy ekj to a final state with energy ekþq;j0 by a

phonon with frequency xqk. The 6 sign indicates whether a

phonon is absorbed (þ) or emitted (�) during this scattering

process. nqk is the phonon occupation number which is given

by the Bose-Einstein distribution. In the present study, we set

T¼ 300 K for this distribution. The d-function in the equation

above ensures energy conservation during scattering,8 and

gqk
kþqj0; kj is the electron-phonon coupling function7 given by

gqk
kþqj0;kj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Mxqk

s
hwkþqj0 jnqk•rRVqjwkji
�� ��2; (5)

where M is the atomic mass, nqk are the phonon polarization

vectors, $RVq is the gradient of the screened one electron

potential with respect to atomic displacements from their

equilibrium positions R, and wkj is the 1-electron wave

function.

The net rate of energy loss B(E) represents the energy

exchange between an electron of energy E and the distribu-

tion of phonons (in terms of phonon emission or absorption)

and can be calculated similarly to scattering rate as

BðEÞ ¼ 2p
DðEÞ

X
6

X
kj

X
qkj0

6xqk gqk
kþqj0;kj

��� ���2 nqk þ
1

2
7

1

2

� ��

�dðekj � ekþqj06�hxqkÞdðekj � EÞ
�
: (6)

Combining Eqs. (1), (2), and (6) results in

Fbd¼Max

ffiffiffiffiffiffi
3m
p

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sðEÞBðEÞ
s" #

; E2fCBM; CBMþEgg:

(7)

The above approach provides the basis for estimating Fbd,
1–3

provided s(E) and B(E) are available. In the present work,

the relevant quantities are computed using first principles

density functional theory (DFT) based calculations within

the local density approximation (LDA) and norm conserving

pseudopotentials as implemented in Quantum ESPRESSO.9

Phonon frequencies and the electron-phonon coupling func-

tion gqk
kþqj0; kj as defined in Eq. (5) were computed in the lin-

ear response regime using DFPT. Quantum ESPRESSO

directly calculates gqk
kþqj0; kj which was then used to compute

s(E) and B(E) as prescribed by Eqs. (3)–(6). For all the mate-

rials studied, the convergence of the calculations with

respect to plane-wave cut-off energy, and the k-point and q-

point meshes has been checked thoroughly. Accurate evalua-

tion of s(E) and B(E) requires a very dense sampling of both

the electronic (k) and the phononic (q) reciprocal space grids,

significantly more dense than required in standard DFT com-

putations involving the corresponding systems. The defini-

tions of both s(E) and B(E) involve double delta functions,

which, in practice, are replaced by sharp Gaussians. A

Monkhorst-pack k point mesh of 32 � 32 � 32 and q point

mesh of 4 � 4 � 4 with 0.01 Ry Gaussian broadening is

used for all materials to obtain converged results. In polar

materials, macroscopic electric fields are present in the long-

wavelength limit and induce the so called LO-TO splitting as

a result of the longitudinal optical phonons having a much

greater frequency than transverse optical phonons. This

effect can be accommodated in the computation by adding a

non-analytic term to the dynamical matrix. Longitudinal op-

tical phonon frequencies must be computed in order to pro-

vide the correct phonon frequencies for calculation of the

polar electron phonon scattering rate.

Fig. 2 shows the electron-phonon scattering rate (1/s(E))

of Si computed here, along with the electronic density of

states. The scattering rate follows closely the line shape of

the density of states, and both quantities are generally in

good agreement with prior work.7,10

FIG. 1. Comparison of the maximum experimental breakdown field and the

calculated intrinsic breakdown field for a range of covalently bonded and

ionic materials. The data are tabulated in Table I. The filled circles indicate

the computed intrinsic breakdown field when the impact ionization threshold

is defined by the bandgap of the material (as per Eq. (1)). In the case of LiF,

the enthalpy of formation (6.39 eV) is much lower than the bandgap

(14.2 eV). It is thus expected that bond breakage will occur before impact

ionization. The open circle in the case of LiF represents our result when the

enthalpy of formation is used in Eq. (1) instead of the bandgap, as explained

in the text.
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Fig. 3 shows A(F,E) and B(E) (the former for various

values of the electric field, F, as a function of the electron

energy E. As prescribed by Eq. (1), the intrinsic breakdown

field, Fbd, is the electric field at which the A(F,E) curve is

greater than the B(E) curve over the entire energy range of

interest, namely from the CBM to CBM þ Eg. We use the

experimental Eg value of 1.17 eV (for Si), as the LDA under-

estimates significantly the Eg of insulators. While advanced

many-body methods can be used to compute Eg from first

principles, we use available experimental Eg data for Si and

other insulators considered here. The calculated Fbd of Si is

8.39� 107 V/m compared with highest observed breakdown

field of 5� 107 V/m.11

Using the same strategy, we have computed the intrinsic

breakdown strength of other prototypical covalent systems

including C and Ge (all in the diamond cubic structure), as

well as ionic systems, such as LiF, NaCl, KCl, and KBr (all

in the rocksalt structure). Our results, along with the maxi-

mum observed Fbd values, are plotted in Fig. 1 and tabulated

in Table I. The large deviation of the calculated breakdown

field for LiF with respect to experimental value can be

explained by its large bandgap of 14.2 eV relative to its en-

thalpy of formation of 6.39 eV. Our model assumes that the

electron in LiF gains energy from the electric field until it

reaches a kinetic energy of 14.2 eV (the bandgap) at which

point impact ionization leads to breakdown. In practice, an

electron with such a high kinetic energy could break the Li-F

bond (enthalpy of formation of LiF is 6.39 eV) before it

reaches the impact ionization threshold energy. Accordingly,

if the upper bound for electron energy in Eq. (1) is taken to

be CBM þ 6.39 eV (instead of CBM þ 14.2 eV), the calcu-

lated breakdown field is 1.29� 109 V/m which agrees well

with the experimental breakdown field of 1.22� 109 V/m as

can be seen from Fig. 1.

A major difficulty in obtaining agreement between

theory and experiment for the intrinsic breakdown field is

determining whether the experimental data represent intrin-

sic breakdown. Breakdown fields from the literature for a

given material vary substantially as a result of material

defects and the experimental technique employed. The maxi-

mum breakdown field from reported data provides the best

estimate of intrinsic breakdown strength. We note that the

computed Fbd value represents the upper bound for intrinsic

breakdown field. Electrical breakdown data for Si and Ge

were obtained by measuring the current-voltage characteris-

tics.11,14 The best available breakdown data for alkali halides

FIG. 2. The electron-phonon scattering rate (1/s(E)) and the density of states

(D(E)) for Si at room temperature as a function of electron energy. The elec-

tron energy scale is referenced to the CBM.

FIG. 3. The average energy loss (B(E)) and energy gain (A(F,E)) at electric

fields of 5� 107 V/m, 8.39� 107 V/m, and 1.98� 108 V/m for Si as a func-

tion of electron energy. The electron energy scale is referenced to the CBM.

The intrinsic breakdown field of silicon is estimated as the electric field for

which the energy gain curve (black solid line) is greater than energy loss

curve (red dash-dot line) for all electron energies from the CBM to 1.17 eV

above CBM, i.e., from the CBM to the CBM plus the bandgap (Eg) of Si.

TABLE I. For all systems studied here, the calculated highest phonon frequency (in THz), and the breakdown field (in V/m) as per von Hippel’s criterion are

listed. The experimental bandgap (in eV), the highest observed breakdown field (in V/m), and the method adopted in such measurements are also listed.

Phonon cutoff (THz) Calculated intrinsic Fbd (V/m) Expt. Eg (eV) Expt. Fbd (V/m)

Ge 8.73 5.64� 107 0.74 (Ref. 12) a3.2� 107 (Ref. 14)

Si 15.3 8.39� 107 1.17 (Ref. 12) a5� 107 (Ref. 11)

C 37.9 2.37� 109 5.48 (Ref. 12) b2.15� 109 (Ref. 15)

KBr 5.23 9.75� 107 7.8 (Ref. 13) c9.4� 107 (Ref. 16)

KCl 6.88 2.53� 108 8.5 (Ref. 13) c1.39� 108 (Ref. 16)

NaCl 8.13 3.86� 108 8.6 (Ref. 13) c2.5� 108 (Ref. 2)

LiF 19.8 5.2� 109 14.2 (Ref. 12) b1.22� 109 (Ref. 17)

aElectrical breakdown.
b1.06 lm laser breakdown.
c10.6 lm laser breakdown.
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are generated by optical breakdown measurements which

eliminate the influence of many extraneous factors such as

electrode interfaces. Most such optical measurements of

breakdown field have been carried out at 10.6 lm or

1.06 lm. The experimental data suggest that within experi-

mental error, laser-induced breakdown and DC dielectric

breakdown in insulators are identical processes.18 At

10.6 lm, the frequency of the optical field is sufficiently low

to be considered quasi-static in the context of phonon-

induced electron energy relaxation. For high breakdown

strength materials C and LiF, only 1.06 lm laser breakdown

data are available in literature because of the greater power

required to breakdown these materials. The characteristic

electron relaxation time (which is the relaxation time used to

determined Fbd in Eq. (7)) of C and LiF are calculated as

0.066 � 10�14 s and 0.014� 10�14 s, respectively, which is

comparable or much smaller to the period of the electric field

at 1.06 lm (0.056� 10�14 s), which justifies the quasi-static

limit for these two materials at 1.06 lm.

In order to develop an intuition for the fundamental

chemical and physical factors that control intrinsic break-

down, we examined the correlation of several easily comput-

able attributes of the parent system with the computed Fbd

values. Our results indicate that a clear correlation exists

between Fbd and two fundamental properties, namely the

bandgap and the highest phonon frequency (i.e., the phonon

cutoff frequency). Attempts have been made in the past to

correlate the bandgap with the maximum observed break-

down fields based on empirical data.19 This expectation is in-

tuitive, as a material with a larger bandgap will display a

higher threshold for impact ionization. Fig. 4 plots the com-

puted Fbd and the experimental Eg (listed in Table I). As can

be seen, a correlation between these two properties is evi-

dent, although the power law dependence appears to differ in

exponent for the covalent and ionic systems. Nevertheless,

the existence of such a correlation brings a measure of

redemption to the qualitative notions proposed earlier.

Fig. 5 shows the dependence of Fbd on the phonon cutoff

frequency (both of which are listed in Table I as well). Once

again, a power law correlation is observed, although the

ionic and covalent materials fall within differing groups.

This dependence is also intuitively understandable. Materials

with greater phonon cutoff frequency tend to have greater

average energy loss during each electron-phonon scattering

event, leading to larger Fbd values. Thus, the intrinsic break-

down field is large for materials with large bandgap and/or

large phonon cutoff frequencies. In the case of purely cova-

lent systems, the bandgap is the more important factor,

whereas in the case of highly ionic systems, the phonon cut-

off frequency appears to be the more pertinent property.

Finally, we note that the computed electron relaxation

times, s(E), as defined in Eq. (3) (or the corresponding scat-

tering rates, 1/s(E)) has practical value. This quantity can be

used in stochastic Monte Carlo based simulations of charge

transport through the corresponding material (this has been

attempted in the past, but such attempts have been based

largely on empirical scattering rates20,21). Such a Monte

Carlo scheme can include effects due to defects (whose scat-

tering rates need to be computed independently) and voids

(within which no scattering occurs), thereby providing a first

principles pathway to go beyond intrinsic breakdown.

In conclusion, a highly predictive parameter-free first

principles method for estimating the intrinsic breakdown

strength of insulators has been developed. This approach is

based on the criterion that breakdown occurs when the aver-

age electron energy gain from the electric field exceeds aver-

age energy loss to phonon collisions. Density functional

perturbation theory and the direct integration of electronic

scattering probabilities (due to phonons) over all possible

final states are used to arrive at an estimate of intrinsic break-

down for a range of prototypical covalent and ionic systems.

The computed intrinsic breakdown fields compare favorably

with available experimental data. This work also establishes

correlations between the breakdown strength on the one

hand and the bandgap and phonon cut-off frequencies on the

other for the chosen material systems. These correlations,

and the availability of first principles scattering rates provide

a logical basis for the guidance of designing materials more

resistant to damage from large electric fields.
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FIG. 4. Correlation between the calculated intrinsic breakdown field (Fbd)

and the experimental bandgap (Eg).
FIG. 5. Correlation between the calculated intrinsic breakdown field (Fbd)

and the phonon cutoff frequency.
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