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ABSTRACT: van der Waals (vdW) interactions play a prominent role in
polymer crystallization. However, density functional theory (DFT)
computations that utilize conventional (semi)local exchange−correlation
functionals are unable to account for vdW interactions adequately and hence
lead to poor predictions of equilibrium structures, densities, cohesive energies,
and bulk moduli of polymeric crystals. This study therefore applies two forms
of dispersion corrections to DFT, using either the Grimme (DFT-D3/D2) or
the Tkatchenko and Scheffler (DFT-TS) approaches. We critically evaluate
the relative performance of these two approaches in predicting structural,
energetic, and elastic properties for a wide range of polymer crystals and also
compare it with conventional electron exchange−correlation functionals
(LDA, PBE, and PW91). Our results show that although the conventional
functionals either systematically underestimate (e.g., LDA) or overestimate
(e.g., PBE and PW91) the lattice parameters that control the polymer interchain interactions in a crystal, the dispersion-corrected
functionals consistently provide a better prediction of the structural parameters. In a relative sense, however, the D3 and TS
schemes are superior to the D2 approach owing to the environment-dependent atomic dispersion coefficients implicit in the D3
and TS treatments (we do note though that the D2 scheme already constitutes a significant improvement over the (semi)local
functionals). Our results not only elucidate the importance of dispersion corrections in the accurate determination of the
structural properties of the prototypical polymers considered but also provide a benchmark for comparing other procedures that
might be used for including vdW interactions in such systems.

■ INTRODUCTION
Some of the many pervasive applications of polymeric materials
include their use in low-cost electronic devices1,2 and in
capacitors for electrostatic energy storage.3,4 From a computa-
tional point of view, a reliable description of polymers aimed at
these and other applications require methods that can predict
the structure of polymers with acceptable accuracy. We note
that although the intrachain geometry of polymers are
determined primarily by covalent interactions, the interchain
structural details are dominated by van der Waals (vdW)
forces.5 Examples of such intra- and interchain geometric details
include, respectively, the lattice parameter parallel and
perpendicular to the chain axis of polymer crystals. Needless
to say, inadequacies in the description of intra- and interchain
interactions would lead not only to errors in the predicted
geometry of polymers but also to uncertainties in other
computed properties such as density, cohesive energy, elastic
moduli, band gap, and dielectric constant.6−8

In recent years, density functional theory (DFT) utilizing
local or semilocal exchange−correlation functionals has become
the standard workhorse for atomic-level simulations of
materials systems.9 However, conventional electron ex-
change−correlation functionals, with in the local density
approximation (LDA) and generalized gradient approximation
(GGA), are unable to correctly capture long-range vdW
interactions. The reason for this failure is that both the LDA
and GGA do not adequately capture the truly nonlocal and

subtle electronic interactions across regions of very sparse
electron densities.10 This is clearly exemplified in a recent DFT
study of molecular or layer materials.11 Consequently, a range
of developments has aimed to extend DFT to include such
weak dispersive interactions. Among the most successful ones
are the Langreth−Lundqvist density functionals (vdW-
DF),10,12 which involves a nonlocal correlation functional,
and the class of dispersion-corrected functionals (DFT-D)13,14

based on an additive pairwise summation of dispersion energy
contributions between all pairs of atoms in the system to the
total energy.
The vdW-DF method has been successfully applied to weakly

bound molecular complexes,12 polymer crystals,15 and mole-
cules adsorbed on surfaces.16 Specifically, for polyethylene,
though we note that LDA and GGA predict crystal volumes
that are significantly underestimated and overestimated,
respectively, with respect to experiments,17 the predictions of
the vdW-DF method are much more favorable.15 However, due
to the nonlocal correlation term implicit in the vdW-DF
treatment, this method is inherently more computationally
demanding than the (semi)local functionals of conventional
DFT.
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The alternative DFT-D approach13,14 is computationally just
as demanding as DFT using (semi)local functionals as it
includes the interatomic dispersion energy contributions to the
DFT total energies as simple parametrized pairwise additive
terms. A popular version of such a scheme is due to
Grimme,13,14 referred to here and in the literature as DFT-
D2. It has been demonstrated that the computationally
inexpensive DFT-D2 scheme yields reasonable predictions for
the structure, bulk moduli, and cohesive energies of many
weakly bonded materials for which DFT methods that use
(semi)local functionals are inadequate.18 However, the main
drawback of the DFT-D2 approach is the high level of
empiricism, requiring at least two fitting parameters for every
element in the periodic table. Furthermore, different possible
hybridization/oxidation states of atoms in different chemical or
geometrical environments are not accounted for within the
DFT-D2 scheme (as the same parameters are used for an
element regardless of its environment).
Very recently, several groups have proposed different

solutions to the above-mentioned issues.19−22 Grimme et al.’s
refined DFT-D3 method,22 for instance, provides flexible and
environment-dependent dispersion coefficients requiring only
the structural (i.e., bond connectivity) information of the
underlying system. This new D3 correction scheme represents
a substantial improvement (in terms of accuracy, as well as
appeal) over the previous D2 results for molecular systems and
lattice constants of the bulk systems.13 In addition, Tkatchenko

and Scheffler19 have developed an alternative method (DFT-
TS) to obtain the DFT-D parameters directly and self-
consistently from the ground-state electron density, thereby
incorporating the environment-dependence. The success of the
DFT-TS scheme over conventional DFT and DFT-D2 has also
been demonstrated for a variety of systems including
polypeptide helices,23 heterobilayers,24 and adsorption on
graphene.25

Though DFT-D approaches have proven to be accurate and
necessary for a range of molecular systems, their predictive
capability for polymeric crystals with different backbones and
side chains is uncertain. In this paper, we consider 10 polymeric
crystals Figure 1) for which reliable crystallographic data is
available. These include polyethylene (PE), polyacetylene (PA),
poly(glycolic acid) (PGA), poly(phenylene oxide) (PPO),
poly(oxymethylene) (POM), poly(p-phenylene sulfide) (PPS),
two forms of poly(vinyldene fluoride) (β-PVDF and δ-PVDF),
poly(tetrafluoroethylene) (PTFE), and poly(vinyl chloride)
(PVC). For these systems, we present a comparative assess-
ment of the performance of the LDA, GGA, DFT-D2, DFT-D3
and DFT-TS functionals with respect to experiments. We find
that although LDA and GGA lead to uniform and serious errors
in the computed geometry and volume of the polymers
considered (primarily due to the inaccurate determination of
the lattice parameters controlled by interchain interactions),
both the DFT-D3 and DFT-TS functionals provide results that
are in favorable agreement with experiments. This work is
expected to serve as a benchmark for future first-principles
studies of the geometrical properties of polymers.

■ THEORETICAL DETAILS
Methodology and Computational Details. The DFT

calculations were carried out using the Vienna ab initio

simulation package (VASP)26 and the Fritz Haber Institute ab
initio molecular simulations (FHI-aims)27 codes. All VASP
calculations utilized the projector-augmented wave (PAW)
methodology.28,29 The exchange−correlation functional used
was either LDA or GGA [e.g., the Perdew−Burke−Ernzerhof
(PBE) or Perdew−Wang 91 (PW91) functional].30 The
Grimme DFT-D2 or DFT-D3 method implemented in VASP
was used, with the dispersion correction added to the DFT
energy computed using the PBE functional. Henceforth we
refer to this functional as PBE-D2 or PBE-D3, respectively. All
DFT-TS calculations were performed using the FHI-aims code.
PBE calculations were also performed using FHI-aims to ensure
consistency of results between VASP and FHI-aims. For

Figure 1. Top and side views of unit cells for each of the ten polymeric
crystals studied in the present study. These include polyethylene (PE),
polyacetylene (PA), poly(glycolic acid) (PGA), poly(phenylene oxide)
(PPO), poly(oxymethylene) (POM), poly(p-phenylene sulfide)
(PPS), two forms of poly(vinyldene fluoride) (β-PVDF and δ-
PVDF), poly(tetrafluoroethylene) (PTFE), and poly(vinyl chloride)
(PVC). Gray, white, red, yellow, blue, and green spheres represent
carbon, hydrogen, oxygen, sulfur, fluorine, and chlorine atoms,
respectively. All unit cells are oriented such that the c lattice parameter
always lies along the polymer chains.

Table 1. Plane Wave Energy Cutoffs (Ecut) and Monkhorst−
Pack k-Point Sampling Grids for Various Polymers Studied
Here

polymer Ecut (eV) k-point mesh

PE 800 4 × 4 × 10
PA 1000 6 × 3 × 10
PPO 800 3 × 5 × 3
POM 1000 5 × 3 × 5
PPS 800 3 × 5 × 3
PGA 1000 3 × 3 × 3
β-PVDF 800 4 × 6 × 8
δ-PVDF 800 5 × 3 × 5
PTFE 1000 3 × 3 × 9
PVC 800 2 × 5 × 5
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instance, the lattice parameters of PE and PA computed with
the PBE functional using FHI-aims varied by less than 0.5%
with respect to the corresponding VASP results. The FHI-aims
calculations employed a basis set of numerical atom-centered
orbitals (NAO). The standard NAO basis set of tier2 for H, C,
O, F and tier1 for S, Cl were used. Again, the dispersion
corrections were added to the DFT energy computed using the
PBE functional, and referred to as PBE-TS henceforth.
Computational details such as plane wave cutoff (Ecut) and
Brillouin zone sampling for each system are summarized in
Table 1.
For the polymeric crystals considered here, the Cartesian

axes are chosen such that the a and b lattice parameters of all
the systems lie along the directions normal to the polymer
chains in a crystal and are thus determined by the interchain
vdW interactions. On the other hand, the c lattice parameter is
always taken along the chain direction, controlled by strong
iono-covalent interactions along the polymer backbone.
Geometry Optimization. It has now become a common

practice to use automated schemes to perform geometry
optimizations, including atomic and unit cell shape/size
relaxations. These algorithms use predefined convergence
criteria based on the magnitude of the energy differences
between successive iterations, forces, or stresses. In the case of
weakly bound systems, such automated approaches may not
necessarily lead to the correct equilibrium ground state as the
predefined convergence criteria may be met for geometries far

from the ground state (we note that further complications due
to Pulay stresses31 may arise in such automated geometry
optimizations). To converge to the correct ground state, one
may have to resort to tight convergence criteria that may not be
practical. We use polyethylene (PE) as an example system to
illustrate these challenges. Figure 2 shows the PBE and PBE-D3
total energies as a function of interchain distance; the latter was
varied by scaling the a and b lattice parameters of this system.
The rather shallow minimum predicted by the PBE functional
(compared to the PBE-D3 case) is indicative of the challenges
an automated optimizer would face in locating this minimum.
Not surprisingly, automatic geometry optimizations starting
from different initial geometries and using even very tight
convergence criteria (10−6 eV for the energy and 10−2 eV/Å for
the atomic forces) lead to wildly different converged final lattice
parameters when the PBE functional was used. The issue was
alleviated in the case of the other functionals as the potential
energy surface close the minimum was not as shallow as for the
PBE functional. Thus, particular care must be taken in
determining the equilibrium geometry using automated
approaches.
An alternative, more reliable way to avoid artifacts related to

the Pulay stresses and shallow potential energy surfaces is to
perform a scan of the potential energy surface (Figure 3). Here,
we performed such a study by varying both a and b lattice
parameters independently over a broad range of values; the c
lattice parameter (along the chain axis) was determined first for
an isolated chain and held fixed at this value while a and b were
varied. For each choice of a, b, and c, the atomic coordinates
were allowed to relax until the total energy and the total force
were converged to better than 10−6 eV and 10−2 eV/Å,
respectively. Although time-intensive, we find that this
approach provides the most reliable determination of the
lattice parameters and geometry (at a given level of theory) for
all systems considered. Thus, our results reported in the next
section were all obtained using this strategy.

■ RESULTS AND DISCUSSIONS
For the ten polymers considered, Figure 3 shows the cohesive
energy contour plots computed at the PBE-TS level of theory
as a function of the lattice parameters a and b. The equilibrium
lattice parameters obtained from LDA, PBE, PBE-D2, and PBE-
D3 functionals as well as the experimental values are also

Figure 2. Cohesive energy versus the distance between polymer chains
for PE computed with the PBE and PBE-D3 functionals.

Figure 3. Cohesive-energy (eV) as a function of the lattice parameters a and b of (a) PE, (b) PA, (c) PPO, (d) POM, (e) PPS, (f) PGA, (g) PVDF
(β), (h) PVDF (δ), (i) PTFE, and (j) PVC, computed at the PBE-TS (blue, solid line) level of theory. The equilibrium lattice parameters obtained
from PBE-D2, PBE-D3, PBE, and LDA functionals in the present study as well as those from experimental studies are also shown for comparison.
For clarity, the PW91 results are not shown as they are, in general, very close to the PBE results.
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shown for comparison in each of the panels. The cohesive
energy (Ec) per monomer unit has been calculated using the
following equation

= −
E

N E E
Nc

chain chain bulk

units (1)

where Ebulk and Echain are the total energies of the bulk unit cell
and of the single isolated polymer chain, respectively, and Nchain
and Nunits are the total number of polymer chains and the
number of monomer units forming the bulk unit cell,
respectively. Echain was calculated for sufficiently large

simulation cells to eliminate spurious interactions between
neighboring chains.
The actual value of the lattice parameters, densities, cohesive

energies, and bulk moduli for the ten polymeric crystals
calculated using different functionals at their respective
optimized geometries are presented in Table 2. The bulk
moduli were computed using a procedure appropriate for
highly anisotropic systems36 such as the polymers considered
here.
Overall, we find that our results are comparable with

previously reported theoretical results in the literature (cf.
Table 2). Barone et al.11 have computed values of (a, b) = (6.67

Table 2. Computed and Experimental Lattice Parameters, Densities, Cohesive Energies (Ec), and Bulk Moduli (B0) for PE, PA,
PPO, POM, PPS, PGA, β-PVDF, δ-PVDF, PTFE, and PVC Crystals

polymer method a (Å) b (Å) c (Å)
density
(g/cm 3)

Ec
(eV)

B0
(GPa) polymer method a (Å) b (Å) c (Å)

density
(g/cm 3)

Ec
(eV)

B0
(GPa)

PE (Pnma) expt17 7.12 4.85 2.55 0.997 0.40 5.6 PGA
(Pcmn)

expt34 5.22 6.19 7.02 1.700

LDA 6.60 4.45 2.52 1.259 0.44 23.9 LDA 5.07 5.58 6.96 1.958 1.73 10.2
PBE 8.20 5.60 2.55 0.796 0.03 16.4 PBE 5.86 6.31 7.06 1.477 0.51 3.2
PW91 8.13 5.64 2.55 0.797 0.04 15.7 PW91 5.91 6.25 7.06 1.479 0.55 3.5
PBE-
D2

6.66 4.56 2.55 1.203 0.44 19.7 PBE-
D2

5.22 5.89 7.04 1.781 1.48 9.2

PBE-
D3

6.95 4.72 2.55 1.114 0.44 19.8 PBE-
D3

5.20 6.06 7.04 1.738 1.45 8.8

PBE-TS 7.01 4.76 2.56 1.091 0.52 21.4 PBE-TS 5.09 6.11 7.03 1.763 1.55 9.4
PA (P21/
n)

expt32 4.24 7.32 2.46 1.130 β-PVDF
(Cm2m)

expt32 8.58 4.91 2.56 1.972

LDA 3.82 7.00 2.45 1.320 0.72 13.1 LDA 7.99 4.49 2.54 2.334 0.74 34.9
PBE 5.00 7.74 2.46 0.908 0.05 2.8 PBE 8.90 5.07 2.58 1.827 0.38 10.5
PW91 5.08 7.69 2.46 0.899 0.06 3.6 PW91 8.97 4.95 2.58 1.857 0.41 9.7
PBE-
D2

3.82 7.02 2.46 1.311 0.53 9.9 PBE-
D2

8.28 4.58 2.57 2.182 0.86 25.1

PBE-
D3

3.96 7.11 2.46 1.248 0.55 10.1 PBE-
D3

8.30 4.68 2.57 2.131 0.83 24.3

PBE-TS 4.01 7.19 2.46 1.219 0.60 10.7 PBE-TS 8.29 4.70 2.57 2.124 0.87 30.6
PPO
(Pbcn)

expt32 8.07 5.54 9.72 1.408 4.1 δ-PVDF
(P21/c)

expt32 9.64 4.96 4.62 1.925

LDA 7.31 5.51 9.78 1.553 1.90 11.6 LDA 9.03 4.56 4.62 2.235 0.32 24.1
PBE 8.42 5.88 9.85 1.254 0.22 4.4 PBE 10.35 5.17 4.64 1.712 0.15 8.3
PW91 8.38 5.78 9.85 1.281 0.25 4.9 PW91 10.37 5.08 4.64 1.739 0.17 8.5
PBE-
D2

7.55 5.51 9.79 1.502 1.75 10.6 PBE-
D2

9.33 4.72 4.63 2.085 0.55 15.1

PBE-
D3

8.00 5.50 9.77 1.423 1.72 10.3 PBE-
D3

9.46 4.82 4.63 2.013 0.52 15.4

PBE-TS 8.04 5.37 9.75 1.453 1.82 11.8 PBE-TS 9.48 4.87 4.63 1.989 0.58 21.6
POM
(P212121)

expt33 4.77 7.65 3.56 0.922 PTFE
(Pnma)

expt35 8.73 5.69 2.62 2.552

LDA 4.50 7.04 3.50 1.080 0.75 20.2 LDA 8.63 5.64 2.59 2.635 0.24 15.5
PBE 5.40 8.37 3.63 0.730 0.17 3.9 PBE 8.98 6.16 2.65 2.266 0.12 4.2
PW91 5.36 8.26 3.63 0.745 0.19 5.1 PW91 8.92 6.18 2.65 2.274 0.16 4.9
PBE-
D2

4.57 7.36 3.58 0.994 0.70 15.6 PBE-
D2

8.42 5.91 2.65 2.519 0.40 9.0

PBE-
D3

4.60 7.53 3.58 0.966 0.70 15.9 PBE-
D3

8.55 5.85 2.64 2.516 0.42 9.2

PBE-TS 4.59 7.72 3.57 0.947 0.76 16.6 PBE-TS 8.53 5.97 2.63 2.480 0.44 11.2
PPS (Pbcn) expt32 8.67 5.61 10.26 1.440 PVC

(Pbcm)
expt32 10.24 5.24 5.08 1.523 6.0

LDA 7.80 5.44 10.23 1.655 1.80 12.5 LDA 9.42 5.00 5.04 1.749 1.00 14.9
PBE 8.85 5.73 10.26 1.381 0.12 3.4 PBE 10.45 5.50 5.05 1.430 0.21 2.5
PW91 8.92 5.76 10.26 1.363 0.16 4.3 PW91 10.52 5.56 5.05 1.405 0.25 3.1
PBE-
D2

8.20 5.51 10.25 1.551 1.55 9.7 PBE-
D2

10.05 5.07 5.10 1.598 0.90 7.9

PBE-
D3

8.42 5.52 10.25 1.508 1.52 10.0 PBE-
D3

10.13 5.12 5.08 1.575 0.87 8.2

PBE-TS 8.48 5.54 10.25 1.492 1.69 10.7 PBE-TS 10.11 5.15 5.08 1.570 0.95 8.8
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Å, 4.55 Å), and Ec = 0.41 eV for PE using the PBE-D2 method.
We note though that the PBE-D3 method yields more accurate
predictions of the geometry for PE. Recently, nonlocal vdW-
DF15 has also been used to determine the crystal structure and
the cohesive energy of PE. The computed values (a, b) = (7.30
Å, 5.22 Å), are larger than those obtained from the PBE-D3
scheme and experiments. For PA, Zicovich-Wilson et al.37 have
reported that the B3LYP hybrid functional strongly over-
estimates the lattice parameters (a, b) = (6.521 Å, 8.555 Å),
whereas B3LYP-D with Grimme’s correction improves the
agreement with the experimental values (a, b) = (3.982 Å,
7.408 Å).
From Figure 3 and Table 2, we find that conventional

electron exchange−correlation functionals (e.g., LDA, PBE,
PW91) are, in general, unable to correctly capture the structural
parameters governed by secondary bonding. The calculated
structural results are compared against the respective
experimental values as parity plots in Figure 4. As shown in
panels a and b, whereas all the functionals show a very good
agreement for the c lattice parameters for different polymers,
the calculated a and b lattice parameters show a significant
scatter with respect to the corresponding experimental values.
As a general feature, we find that the LDA and PBE (or PW91)
functionals, respectively, underestimate and overestimate both
the a and b lattice parameters and consequently result in errors

in the computed volume and density, as depicted in Figures 4c
and 4d.
The dispersion-corrected functionals, on the other hand,

significantly improve the description of the lattice parameters
with respect to the LDA, PBE and PW91 functionals, as is
evident from Figure 3, Figure 4, and Table 2. To further
quantify the performance of the considered functionals in
predicting the structural parameters (a and b) and equilibrium
crystal volume, we calculated the root-mean-square error
(RMSE) with respect to the available experimental values.
Our results are presented in Table 3. We find that the PBE-D2
scheme, despite the usage of fixed dispersion coefficients
already constitutes a significant improvement over the (semi)-
local functionals. The more flexible and environment-depend-
ent dispersion coefficients afforded by the PBE-D3 and PBE-TS
schemes lead to further improvements in the fidelity of the
structural predictions, with these two schemes being roughly
equivalent in terms of the quality of their predictions. The
residual differences between the PBE-D3 and PBE-TS results
may be accounted for by the differences in the two schemes,
and also, partly due to small basis set superposition errors
inherent in the FHI-aims implementation used in the PBE-TS
calculations.
The calculated cohesive energies and bulk moduli at various

levels of theory for the ten polymers are also reported in Table
2. As a general trend, LDA (PBE or PW91) cohesive energies
and bulk moduli are always on the higher (lower) side of the
spectrum of the calculated values for a given polymer. These
predictions are consistent with the well-known notions of the
tendency of LDA (PBE or PW91) to overbind (underbind),
also reflected in our predicted lattice parameters. In general, the
PBE-TS functional always predicts slightly higher cohesive
energies and bulk moduli as compared to those predicted by
the PBE-D3. These findings are consistent with the previously
known overestimation of the interlayer binding energy in
graphite by the PBE-TS functional.38

Figure 4. Comparison between the computed and the corresponding experimental values of lattice parameters (panels a and b) and volumes (c) and
densities (d) for the ten polymers studied here using different functionals.

Table 3. Root-Mean-Square Error of the Lattice Parameters
(a and b) and Volume of the Ten Polymeric Crystals Studied
for Various Levels of Theory

functional a, b (Å) volume (Å3)

LDA 0.47 25.75
PBE 0.52 30.84
PW91 0.50 27.03
PBE-D2 0.29 13.77
PBE-D3 0.23 9.53
PBE-TS 0.19 8.93
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■ SUMMARY
We have systematically tested the performance of conventional
(semi)local electron exchange−correlation functionals (e.g.,
LDA, PBE, and PW91) and dispersion-corrected functionals
(e.g., PBE-D2, PBE-D3, and PBE-TS) for a variety of
representative polymer systems. Our calculations show that
the (semi)local functionals do not provide an adequate
description of the polymer interchain interactions which are
dominated by van der Waals interactions, and consequently
lead to inaccuracies in the computed geometries and cohesive
properties. The dispersion-corrected functionals, on the other
hand, especially PBE-D3 and PBE-TS (which contain environ-
ment-dependent dispersion coefficients), result in improved
predictions of the structural and energetic properties, and
possibly, the elastic properties as well. We do note though that
the PBE-D2 scheme, which includes fixed (environment-
independent) dispersion coefficients already leads to significant
improvements in the predictions of structural properties of
polymers with respect to the purely (semi)local functionals.
The present work is expected to serve as a benchmark for
future first-principles studies of the structural properties of
polymers.
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Correction to “How Critical Are the van der Waals Interactions in
Polymer Crystals?”
Chun-Sheng Liu, Ghanshyam Pilania, Chenchen Wang, and Ramamurthy Ramprasad*
J. Phys. Chem. A 2012, 116 (37), 9347−9352. DOI: 10.1021/jp3005844
In Figure 1, PVDF(δ) should be PVDF(α). In Table 1 and the
text, δ-PVDF should be α-PVDF. In Table 2, the LDA
calculated lattice parameters (a and b) and density are incorrect
for PE. The correct results should be a = 6.68 Å, b = 4.59 Å,
and density =1.206 g/cm3. Also in Table 2, δ-PVDF should be
α-PVDF. The cohesive energy in Table 2 is per unit cell, not
per monomer as shown in eq 1. Therefore, the text on p 9350
should read “The cohesive energy (Ec) per unit cell has been
calculated using the following equation”

= −E N E Ec chain chain bulk (1)
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