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Abstract Bulk isotactic polypropylene in the a form was

studied using density functional theory-based computa-

tions. The computed physical structure of this system is in

excellent agreement with available experimental data. The

electronic band structure, ionization potential, and electron

affinity were also determined. The impact of various types

of chemical imperfections (including double bond, hydro-

xyl, and carbonyl defects) on the electronic structure of

bulk isotactic polypropylene was considered. The carbonyl

defect was found to cause the most significant impact,

resulting in the deepest electron and hole traps.

Introduction

Polypropylene, being one of the fastest growing engineer-

ing plastics, has wide industrial and everyday applications

due to attractive properties such as low density, high

melting point, high tensile strength, and a high resistance to

chemical attack [1]. A major application area where

(biaxially oriented) polypropylene has already found a

niche is in electrical cable and capacitor dielectric systems

[2–6]. Demands for further improvements in the electrical

performance of the polypropylene dielectric continues, in

terms of higher dielectric breakdown strength and lower

high-field electrical conduction. Such a need provides the

motivation for the present ab initio study of the electronic

properties of defect-free and defective polypropylene.

Crystalline polypropylene can occur in two forms: iso-

tactic, in which the methyl group of the –[CH2CH(CH3)]–

mer units are along the same side of the polymer backbone,

and syndiotactic, in which the methyl units are on opposite

sides. An atactic variety, in which adjacent methyl units are

randomly arranged on either sides of the polymer back-

bone, is also possible, but this form is not crystalline as a

periodically repeating unit cell cannot be formally defined.

This study focuses primarily on isotactic polypropylene

(iPP), which occurs in three different bulk polymorphs

depending on how the isotactic chains are packed: mono-

clinic a, hexagonal b, and triclinic c. Among these three

polymorphs, a-isotactic polypropylene (a-iPP) is the most

stable and commonly observed. While extensive experi-

mental work has been aimed at the physical characteriza-

tion of the different bulk phases [7–17], only isolated

chains of iPP have been studied before computationally

[18–20].

In this paper, we present ab initio density functional

theory (DFT) based calculations aimed at a basic under-

standing of the physical and electronic structure of a-iPP.

We begin by providing details concerning our DFT cal-

culations in ‘‘Methodology’’ section. Results related to the

physical structure of a single chain of iPP and bulk a-iPP

are provided in ‘‘Physical structure of isotactic polypro-

pylene’’ section, followed by a discussion of their band

structure in ‘‘Electronic structure of defect-free iPP.’’ We

then report on the computation of the ionization potential

and electron affinity using slab supercells in ‘‘Ionization

potential and electron affinity’’ section. In ‘‘Chemical

imperfections and electronic structure’’ section, we con-

sider chemical imperfections, including hydroxyl, car-

bonyl, and double bond defects, in bulk a-iPP, and explore

the impact of these defects on the electronic structure. We

find that the carbonyl defect results in deep electron and
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hole trap states. Finally, we summarize our findings

‘‘Summary’’ section.

Methodology

Our DFT calculations were performed using the Vienna

ab initio simulation package (VASP) [21] with the PW91

generalized gradient approximation [22], projector-augu-

mented wave (PAW) pseudopotentials [23, 24] and a cutoff

energy of 400 eV for the plane wave expansion of the wave-

functions. Monkhorst-Pack k-point sampling meshes of

(1 9 1 9 4) and (1 9 2 9 2) were used to treat the isolated

iPP chain and the bulk a-iPP systems, respectively. Bond

lengths, bond angles, and unit cell vectors were all optimized

such that the energy changes in successive geometry optimi-

zation iterations were smaller than 10-4 eV.

Results and discussion

Physical structure of isotactic polypropylene

The a-iPP monoclinic unit cell consists of four (3/1) helical

chains (see Fig. 1). Each (3/1) helical chain is composed of

three –[CH2CH(CH3)]– units forming the ‘‘pitch’’ of the

helix. Before discussing crystalline a-iPP, we first consider

an isolated (3/1) helical chain. For comparison, we also

consider a non-helical isotactic zig-zag chain in which a

single –[CH2CH(CH3)]– mer forms a periodic unit with all

the methyl groups aligned. Both isolated chains were

separated from their adjacent periodic images along

directions perpendicular to the chain axis by about 10 Å to

minimize spurious interchain interactions. The structural

parameters of the chains were optimized with respect to the

atomic positions as well as the periodic distance along the

chain axis. We found that the energy of the helical con-

formation is 1.038 eV per –[CH2CH(CH3)]– unit lower

than the straight zig-zag form, denoting that the ionic

interaction between adjacent methyl groups does not favor

the formation of a straight zig-zag chain and is, thus,

responsible for the formation of a (3/1) helix. Table 1 lists

the optimized structural details of the (3/1) helical chain as

determined here, and compares these with available prior

computational determinations [18].

Next, we consider the a-iPP crystal (space group Cc),

whose structure was first proposed by Natta and Corradini

[7] (see Fig. 1). As mentioned above, each unit cell con-

tains four separate (3/1) helical chains, with each chain

composed of three –CH2CH(CH3)– units (totalling 108

atoms per unit cell). Two of the chains are right-handed

helices whereas the other two are left-handed helices, with

the two pairs related to each other by mirror and transla-

tional symmetry. Table 1 also shows the final optimized

geometric details of a-iPP, along with a comparison with

available experimental data [7, 17]. As can be seen, the

agreement with experiment is quite reasonable.

Electronic structure of defect-free iPP

For the case of the (3/1) helical chain, the band structure

was computed in the ð0� p
cÞ region of reciprocal space,

with c = 6.49 Å being the periodic length along the chain

axis, whereas for bulk a-iPP it was calculated along the

symmetric lines in the Brillouin zone corresponding to the

monoclinic unit cell [25]. These results together with

the corresponding density of states (DOS) plots are pre-

sented in Figs. 2 and 3, for the chain and bulk cases,

respectively. In both cases the band gap is direct, with values

of 5.8 and 6.3 eV for the isolated helical chain and bulk

a-iPP, respectively. The chain band gap is in good accor-

dance with prior computational calculations [19], whereas

the bulk band gap value is underestimated with respect to the

corresponding experimental value of 8.2 eV [26] by 23%, a

discrepancy typical of approximations within DFT.

In order to explore the character of the valence and

conduction band edge states, and to draw parallels between

polypropelene and polyethylene, the valence and conduc-

tion band edge wavefunctions were visualized. We note

that in the case of polyethylene, the valence and conduction

band wavefunctions displayed interchain and intrachain

character [27], consistent with its negative electron affinity

[28]. However, no such clear correlations were drawn in

the case of iPP, with the valence and conduction band

Fig. 1 Atomic model of monoclinic a-iPP, projected in planes

normal to the c (top) and a (bottom) axes of the monoclinic unit cell.

C and H atoms are shown as dark (blue) and light (yellow) spheres,

respectively. (Color figure online)
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wavefunctions being more or less uniformly distributed in

interchain and intrachain regions. This behavior is consis-

tent with the electron affinity of iPP being positive (as

described below).

Ionization potential and electron affinity

In analogy to the definition of the work function [29], the

ionization potential IP, and the electron affinity, EA, are

formally defined as

IP ¼ Evacuum � EVBM ð1Þ
EA ¼ Evacuum � ECBM ð2Þ

where Evacuum is the vacuum energy level (in our case, the

electrostatic potential in the vacuum region away from a

surface), and EVBM and ECBM are, respectively, the ener-

gies of the valence band maximum (VBM) and the con-

duction band minimum (CBM), measured with respect to

the average electrostatic potential in the bulk region suf-

ficiently far away from the surface.

The IP and EA can be computed using standard slab

supercell approaches, as has been done in the past for poly-

ethylene [28]. Here, we specifically consider the (010)

surface of a-iPP, modeled using a 40.88 Å slab (containing

two unit cells along the b- axis, and a total of 216 atoms). The

(010) surface allowed us to define a slab without the need to

cleave any of the iPP chains. An alternative choice satisfying

this requirement would have been the (100) surface, but this

would have resulted in a slab containing almost seven times

as many atoms for the same thickness as the (010) slab, and

hence was not considered. With the decision on the particular

surface to be considered made, two separate calculations had

to be performed to determine the EA: (1) a bulk calculation

that yielded the electrostatic potential (averaged along the

(100) plane, so that it could be plotted along the [010]

direction), and the energetic positions of the CBM and the

VBM with respect to the averaged electrostatic potential, and

(2) a slab calculation (with all the atomic coordinate opti-

mized) from which the electrostatic potential, again aver-

aged along the (010) plane.

Fig. 2 Band structure and DOS of the isolated (3/1) helical iPP chain.

The zero of energy is set to the valence band maximum. The shaded

(unshaded) area in the DOS plot corresponds to the occupied

(unoccupied) states

Fig. 3 Band structure and DOS of the crystalline a-iPP. The zero of

energy is set to the valence band maximum. The shaded (unshaded)

area in the DOS plot corresponds to the occupied (unoccupied) states

Table 1 The optimized

geometrical parameters of iPP

compared with previous DFT,

and experimental works

All bond lengths and lattice

parameters are in Å and all the

angles are in degrees

This work Previous DFT

work (chain) [18]

Experimental work (bulk)

Chain Bulk NMR [17] X ray [7]

Bond length

rC–C 1.535 1.540 1.540 1.540 1.540

rC–H 1.100 1.090 1.090 1.100 –

Bond angles

CCC 109.05 111.15 – 110.00 110.00

HCH 107.56 107.64 – 109.50 –

Lattice constants

a – 6.39 – – 6.65 ± 0.05

b – 20.44 – – 20.78 ± 0.15

c 6.49 6.47 6.49 – 6.50 ± 0.05

Unit cell angles

b – 99.2 – – 99.2
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Figure 4 shows a plot of the planar-averaged electro-

static potential of the (010) slab. The periodic variation of

the electrostatic potential within the slab, and a constant

value in the vacuum region away from the slab (chosen to

be the zero of energy) can be seen. Overlaid on this plot is

the corresponding potential from the bulk calculation,

shifted to match the slab potential profile. The perfect

match between the bulk and slab results indicates that the

slab is thick enough and contains a ‘‘bulk’’ region in its

interior. The CBM and VBM are also indicated in Fig. 4

(whose positions are determined with respect to the shifted

bulk electrostatic potential). From these results, IP and EA

for a-iPP were determined to be 6.6 and 0.3 eV,

respectively.

Chemical imperfections and electronic structure

Degradation products of polypropylene, containing car-

bonyl, hydroxyl and, double bond defects, have been

shown to be responsible for the deterioration of the elec-

tronic properties and dielectric breakdown strength of

polypropylene [30–32]. Here, we consider the impact of

these impurities on the electronic structure of a-iPP. The

top panel of Fig. 5 shows the location where the three types

of chemical defects were successively placed. Geometry

optimization was performed after placement of each defect,

followed by the determination of the DOS, displayed in the

bottom panel of Fig. 5. In all cases considered, a doubly

occupied state and an unoccupied state were created in the

band gap of a-iPP (constituting hole and electron traps,

respectively). We note that in the case of the hydroxyl

Fig. 4 Planar average potential along the [010] direction of the a-iPP

bulk and a (010) slab. The zero of energy has been made to coincide

with the vacuum level. The energetic positions of the CBM and VBM

are fixed with respect to the bulk electrostatic potential (through a

separate bulk calculation), and the CBM, VBM and the bulk

electrostatic potential profile are shifted such that the bulk and slab

electrostatic potentials match. The vertical dashed line represents the

boundary between a-iPP on the left and the vacuum on the right

Fig. 5 Top: The unit cell (viewed along the a-axis) of a-iPP, with the

location of the chemical defects (double bond, hydroxyl, or carbonyl)

indicated by the circle. Bottom: The DOS corresponding to each

impurity type. For the case of double bond impurity the occupied and

unoccupied defect state orbitals are shown as insets. The shaded

(unshaded) areas correspond to the occupied (unoccupied) states
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defect, the unoccupied state is ‘‘mixed’’ with the aiPP

conduction band.

In order to explore the character of the defect state

orbitals, the highest occupied and lowest unoccupied state

partial charge densities for the double bond defect case

were visualized. These are shown as insets in the corre-

sponding DOS plot in the bottom panel of Fig. 5. As can be

seen, and as expected, the occupied defect state constitutes

a r-type interaction between the double-bonded C atoms,

and the unoccupied defect state is mostly composed of a

p-type interaction between the double-bonded C atoms.

Similar behavior was seen for the other cases.

Of the three types of impurities considered, it is clear that the

carbonyl defect results in the most well defined (and deepest)

occupied and unoccupied states. These states can thus trap

itinerant electrons and holes with ease, and are consistent with

the results found earlier for polyethylene [33, 34].

Summary

We have performed DFT calculations to study the physical

and electronic properties of defect-free and defective a-iPP.

Our results can be summarized as follows:

• The physical structure of defect-free a-iPP is in

excellent agreement with available experimental data.

• The band structure of defect-free a-iPP was computed,

which yields a direct band gap of 6.3 eV, underestimated

by 23% with respect to the corresponding experimental

value of 8.2 eV (a discrepancy typical of approximations

within DFT). The band gap of a single isolated iPP chain,

although direct, was determined to be smaller than the

corresponding bulk value by 0.5 eV.

• The ionization potential and electron affinity of defect-

free a-iPP were calculated to be 6.6 and 0.3 eV.

• Chemical defects, such as double bond, hydroxyl, and

carbonyl species in a-iPP create occupied and unoccu-

pied states in the band gap, constituting hole and

electron traps, respectively. The carbonyl defects cause

the most significant impact to the band structure

resulting in the deepest electron and hole trap states.
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