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Scalability of phononic crystal heterostructures
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Phononic �or acoustic� band structure calculations have been performed for a nanoscale HfO2–ZrO2

multilayer stack using first-principles methods at the atomistic level and by solving the acoustic
wave equation at the continuum level, as a first step toward determining the length scales when
conventional continuum acoustic band-gap treatments become inadequate. Transverse acoustic
waves are the focus of this study. The material parameters that continuum acoustic band gap
methods require, such as the mass density and transverse wave velocity of the components of the
acoustic crystal �i.e., for HfO2 and ZrO2�, were determined using separate phonon calculations of
the corresponding bulk materials. Comparison of the phononic band structure for a nanoscale
HfO2–ZrO2 multilayer stack calculated using first-principles and continuum methods indicates the
need for careful treatments of wave propagation properties at these length scales. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2043242�
Acoustic band-gap �ABG� materials1,2—the acoustic
analogs of photonic band-gap �PBG� systems3,4—are artifi-
cially engineered materials with a spatially periodic variation
in the material properties �such as the mass density, elastic
moduli, etc.� that determine the propagation of acoustic
waves in the medium. Acoustic waves with a half-
wavelength of the order of the lattice constant of the ABG
crystal undergo Bragg-type wave scattering, and so are for-
bidden from propagating through such periodic media.

The classical wave equations for both ABG and PBG
crystals allow for scaling in the following manner: uniformly
expanding or shrinking the physical sizes by a factor � re-
sults in the frequency spectrum being scaled by 1/�.1,4 This
feature has allowed researchers to indirectly test the proper-
ties of ABG and PBG materials at high frequencies �where
length scales are small� by studying their scaled analogs at
lower frequencies �where the larger length scales allow for
easy fabrication�.

ABG materials have so far been designed under the as-
sumptions that the properties of each constituent of the crys-
tal are identical to their bulk counterparts, and abruptly
change at the interface between the components. It is, how-
ever, unclear whether these assumption are valid when sys-
tem sizes reach nanoscale dimensions, making the applica-
bility of the scaling laws up to nanoscale dimensions rather
moot.

In this letter, we address the above questions for the
specific case of a one-dimensional heterostructure, composed
of ultrathin alternating layers of HfO2 and ZrO2, each with a
thickness of 5.015 Å. We have computed the phononic band
structure of this system using both conventional classical
continuum techniques, and using atomistic density functional
phonon calculations. The rather extreme choice of thickness
of the layers is motivated by the fact that first-principles
phonon calculations are very computationally intensive.

The transverse acoustic wave equation in the continuum
limit for a solid inhomogeneous along the z direction �but
homogeneous along the x and y directions� is given by5
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where ��z� and ct�z� are the position�z component� dependent
mass density and transverse wave velocity, respectively, and
u is the displacement along the xy plane corresponding to a
transverse acoustic wave. Note that for a homogeneous me-
dium for which � and ct are position independent, � cancels
out, and one is left with the usual wave equation �with a
dispersion relation given by �=ctk, where k is the wave
vector�.

Expanding u, �, and ��=�ct� in a Fourier series, and im-
posing the Bloch condition on u due to the periodicity along
the z direction, one is left with the following eigenvalue
problem:

�
G�

���G − G�� · �k + G��k + G�� − �2��G − G���uk�G�� = 0,

�2�

which can be solved using standard numerical techniques,6

yielding the desired � versus k relationship �also called the
acoustic or phononic band structure�. In Eq. �2�, G and G�
are the one-dimensional reciprocal lattice vectors given by
2n� /d, with n being an integer and d being the lattice spac-
ing of the multilayer structure along the z direction, and k is
the wave vector with in the first Brillouin zone. Note that
d=dHfO2

+dZrO2
, the sum of the thicknesses of the HfO2 and

ZrO2 layers within a repeating unit. Also,

��G� = �HfO2
f + �ZrO2

�1 − f�, G = 0 �3�

=��HfO2
− �ZrO2

�F�G�, G � 0, �4�
where f = �dHfO2
/d� is the volume fraction of HfO2, and
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with i=�−1. An analogous set of expressions hold for ��G�
as well.

The values of � and ct in HfO2 and ZrO2 are needed to
solve for the acoustic band structure of HfO2–ZrO2
multilayer stacks �Eq. �2��. In the present work, both of these
quantities were determined from separate HfO2 and ZrO2
phonon calculations using first-principles density functional
theory �DFT�, within the local density approximation7 as
implemented in the local orbital SIESTA code.8 Phonon cal-
culations were also performed for a HfO2–ZrO2 multilayer
stack using this first principles method, to aid in the direct
comparison of the phononic band structure calculated using
the atomistic and continuum treatments. Norm-conserving
nonlocal pseudopotentials of the Troullier–Martins type were
used to describe all the elements. The atomic configuration
�Xe 4f14�5d26s2 was used for the Hf pseudopotential,
�Kr�4d25s2 for the Zr pseudopotential, and �He�2s22p4 for
the O pseudopotential. A double-zeta plus polarization basis
set was used for all calculations. 75 and 38 special k points,
respectively, yielded well converged bulk �HfO2 and ZrO2�
and HfO2–ZrO2 multilayer stack results, respectively. The
equilibrium positions of the atoms were determined by re-
quiring the forces on each atom to be smaller than
0.04 eV/Å.

HfO2 and ZrO2 occur in cubic, tetragonal, and mono-
clinic crystal structures,9–11 the simplest of which is the cubic
form considered here. Figure 1 shows a schematic of the
cubic unit cell. The equilibrium lattice constant of this struc-
ture was calculated here to be 5.015 Å for HfO2, which
agrees well with prior DFT calculations �5.04 Å� �Refs. 12
and 13� and experiments �5.08 Å�.9 The equilibrium lattice
constant for cubic ZrO2 was calculated here to be 5.02 Å
which too agrees well with prior DFT calculations �5.04 Å�
�Ref. 14� and experiments �5.09 Å�.11

Figure 2 shows the phonon spectra for the cubic bulk
phases of HfO2 and ZrO2, both with a lattice constant of

FIG. 1. Structure of the cubic MO2 �M=Hf or Zr� unit cell, with a being the
lattice constant. White and dark circles represent O and M atoms, respec-
tively. M atoms are at the face center sites of an external cube and O atoms
at the simple cubic sites of an internal cube.
5.015 Å. The lattice constant of ZrO2 was constrained at that
Downloaded 13 Sep 2006 to 137.99.20.141. Redistribution subject to 
of HfO2 as ZrO2 in the multilayer stack was assumed to be
lattice matched to HfO2. For clarity, only the two lowest-
order transverse modes propagating along the z direction are
shown. As can be seen, the phonon spectra for the two sys-
tems are qualitatively similar. The bulk acoustic velocities of
transverse waves in the two systems are given by the slope of
the frequency versus wave vector curves at small wave vec-
tors �the continuum limit, where the dispersion relationship
is linear, given by �=ctk�; these are calculated to be
779 m/s and 1,030 m/s, respectively, for HfO2 and ZrO2.
The dispersion �or slowing down� of the transverse modes
for large wave vectors �which continues after the zone fold-
ing of the transverse modes at the Brillouin zone boundaries�
are atomistic effects that cannot be obtained by standard con-
tinuum treatments.

The densities for the two systems can also be determined
from their lattice constants and the atomic weights of the
constituent atoms; these are determined to be 10 873 kg/m3

and 6488 kg/m3, respectively, for HfO2 and ZrO2. The den-
sities, transverse wave velocities, and the thickness of each
layer of the multilayer stacks are the only parameters re-
quired to solve for the acoustic band structure of HfO2–ZrO2
multilayer stacks using Eq. �2�.

The HfO2–ZrO2 multilayer stack considered here con-
sists of alternating HfO2 and ZrO2 layers each one cubic unit
cell thick, stacked along the z direction, i.e., with dHfO2
=dZrO2

=5.015 Å. As mentioned earlier, it was assumed that
ZrO2 is lattice matched to HfO2. The acoustic band structure
for this multilayer heterostructure stack calculated using
first-principles methods as well as by using the continuum
wave equation �Eq. �2�� is shown in Fig. 3. An acoustic band
gap at the Brillouin zone boundary due to Bragg scattering
can be seen.

While the spectra calculated using the two approaches
are qualitatively the same predicting phononic band gaps that
are in reasonable agreement, two important quantitative de-
viations can be seen: �1� Below the phononic band gap, the
slopes of the dispersion relations are different indicating dif-
ferent effective wave velocities. This is presumably because
of the extreme situation considered here, namely that each
layer of the multilayer stack is just one atomic unit cell thick.
In such circumstances, using the bulk properties of each con-

FIG. 2. Phonon spectra along the �0,0 ,kz� direction for cubic HfO2 �solid
circles� and cubic ZrO2 �solid triangles�, with dMO2

=5.015 Å �M=Hf or Zr�.
stituent system �that abruptly changes at interfaces� in a con-
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tinuum description of the multilayer is questionable. Also, at
the length scales considered here, interface effects due to
atom rearrangements become dominant; �2� At frequencies
above the phononic band gap, a slowing down of acoustic
waves can be seen. This effect was seen in the one-
component systems �Fig. 2�, and persists in the multilayer
stacks as well. Nevertheless, it is expected that as the thick-
ness of each individual layer in HfO2–ZrO2 heterostructures
increases to 10 Å or more, we expect the continuum descrip-
tion to be increasingly valid. This belief is motivated by the
fact that atomic rearrangements at interfaces, at least in het-
erostructures of components with similar crystal structures
and lattice constants, is not expected to persist significantly
beyond the first atomic layer adjacent to the interface; in fact,
ZrO2 surfaces are known to undergo relatively minor surface
relaxations.15 However, in the case of heterostructures with
dissimilar materials, the correspondence between the atomis-
tic and continuum approaches is expected to occur at much

FIG. 3. The phononic band structure of a HfO2–ZrO2 multilayer stack, with
d=2dHfO2

=2dZrO2
=10.030 Å, calculated using first-principles DFT �solid

circles� and by solving the acoustic wave equation �Eq. �2�� in the con-
tinuum limit using parameters obtained from first-principles calculations
�solid line�.
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larger thicknesses. In such cases, the interfacial layer can
itself be viewed as a third component of the heterostructure,
which can in principle allow for realistic continuum treat-
ments of heterostructures even with very thin individual lay-
ers.

These results highlight the limits of the continuum de-
scription of wave propagation in ordered media, especially
the scaling properties, when dimensions approach
nanometer-length scales. As ABG devices enter the age of
THz frequencies, explicit atomistic treatments using first-
principles or semi-empirical methods may become necessary.
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