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Magnetic properties of nanoparticle composites, consisting of aligned ferromagnetic nanoparticles
embedded in a nonmagnetic matrix, have been determined using a model based on
phenomenological approaches. Input materials parameters for this model include the saturation
magnetization (Ms), the crystal anisotropy field (Hk), a damping parameter~a! that describes the
magnetic losses in the particles, and the conductivity~s! of the particles; all particles are assumed
to have identical properties. Control of the physical characteristics of the composite system—such
as the particle size, shape, volume fraction, and orientation—is necessary in order to achieve
optimal magnetic properties~e.g., the magnetic permeability! at GHz frequencies. The degree to
which the physical attributes need to be controlled has been determined by analysis of the
ferromagnetic resonance~FMR! and eddy current losses at varying particle volume fractions.
Composites with approximately spherical particles with radii smaller than 100 nm~for the materials
parameters chosen here!, packed to achieve a thin film geometry~with the easy magnetization axes
of all particles aligned parallel to each other and to the surface of the thin film! are expected to have
low eddy current losses, and optimal magnetic permeability and FMR behavior. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1759073#

I. INTRODUCTION

Size reduction and performance increase of on-chip in-
ductors and transformers are believed to be essential for cur-
rent radio frequency/intermediate frequency~RF/IF! tech-
nologies to remain competitive.1–4 While integration of these
devices with high permeability soft magnetic materials
should allow a substantial inductance density increase, ac-
complishing this without introducing additional significant
losses appears to be a challenge. Recent efforts to developing
soft magnetic materials for high frequency applications have
focused on nanostructured materials sputter deposited as thin
films.5–9 Thin films ~;1 mm, or smaller!, or multilayers,
rather than thick films or bulklike realizations, are usually
necessary to decrease ferromagnetic resonance and eddy cur-
rent related losses in the GHz frequency range.

An alternative to the nanostructured thin film approach is
the utilization of soft magnetic nanoparticles embedded in a
nonmagnetic matrix.10–13Such nanoparticle composites have
the added benefits of:~i! lower resistivity~controlled by the
interparticle distance!, and hence, reduced eddy current
losses, and~ii ! the ability to tailor the magnetic properties of
the composite system by control of the physical properties
~such as the size, shape, orientation, volume fraction, etc.! of
the nanoparticles.

This paper will focus on the nanoparticle approach, with
our system of interest being a composite material consisting
of metallic ferromagnetic nanoparticles embedded in a non-
magnetic matrix. Special attention will be paid to the mag-
netic particle volume fraction, ferromagnetic resonance
~FMR! and eddy current losses, via phenomenological ap-
proaches. It will be shown that these three aspects lead to

relationships between the physical attributes of the compos-
ite ~viz, particle size and shape, and type of packing! and its
high frequency~GHz! magnetic properties. Practical high
frequency applications are enabled by large values of the
magnetic permeability and FMR frequency; physical at-
tributes of the composites that lead to such optimal magnetic
behavior will be identified.

This paper is organized a follows. Section II provides
details about the level of theory used here. The impact of the
magnetic particle volume fraction on the effective permeabil-
ity of the composite is discussed in Sec. III. Section IV de-
scribes the FMR losses of magnetic media, and their influ-
ence on the magnetic nanoparticle composite properties.
Eddy current losses of isolated and nonisolated particles are
discussed next in Sec. V. Results and discussion are pre-
sented in Sec. VI. Finally, the conclusions of this work are
summarized in Sec. VII.

II. DETAILS OF THEORETICAL FRAMEWORK

All calculations presented here use phenomenological
theories that use the following four materials properties as
input: the saturation magnetizationMs , the crystal anisot-
ropy field Hk , a damping parametera, and the electrical
conductivity s. The saturation magnetization is defined as
the maximum attainable magnetization per unit volume, and
is related to the number of spin unpaired electrons in the
material. The anisotropy field is a measure of the extent to
which magnetization is preferred along one direction~the
‘‘easy’’ axis! versus others~the ‘‘hard’’ axes!. The damping
parametera is related to magnetic losses in the material.
Damping is practically absent either in insulating materials,
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or in specimens that have attained saturation magnetization
in a single-domain structure.14 Ms , Hk , anda together de-
termine the complex permeability as a function of
frequency,14–16as will be described in Sec. IV. The electrical
conductivity of the particles determines additional losses due
to eddy currents17 induced at the surface of particles by time
dependent magnetic fields~Sec. V!.

Results reported in Sec. VI are for particular choices of
the four input quantities.Ms andHk values were chosen so
that they correspond to a material intermediate between pure
Fe and a FeCo alloy with 20% Co. Table I lists theMs , Hk ,
and the low frequency bulk relative permeabilitymbulk along
directions orthogonal to the~easy! magnetization axis for a
few relevant materials and those chosen here~last row of
Table I!; the relative permeability along the easy axis is as-
sumed to be equal to 1. Hereafter, directions perpendicular to
the easy axis will be referred to as hard axes.18 mbulk at low
frequencies is given asMs /Hk11, as will be shown rigor-
ously in Sec. IV; thus,Ms andHk values chosen here corre-
spond to a bulk hard axis relative permeability of 50. The
origins of the damping parametera are not well understood.
As mentioned above, nonzero conductivity of the particles
and multidomain regions within a particle could contribute to
a of each individual particle. Nonuniformities of the system
such as particle size and shape distributions, particle alloy
composition variations, etc., could contribute to the effective
a of the composite as a whole. These latter factors are not
explicitly considered in the present work; we have assumed
that a is a well defined property of each individual particle,
and that all particles have same value ofa ~in the 0–0.3
range!. The electrical conductivity is assumed to be 1.0
3107 S/m, close to that of Fe.

The magnetic permeability is in general a tensor, dis-
playing different values in different directions~e.g., the easy
and hard axis permeabilities mentioned above!. Unless oth-
erwise stated, ‘‘permeability’’ in the present work refers to
the diagonal component of the relative permeability tensor
along an appropriate hard axis direction,19 as will be clarified
further in Sec. IV.

As mentioned above, the low frequency bulk relative
permeability is simply related toMs andHk . In the case of
finite systems, such as particles or thin films, the relative
permeability is in general smaller than or equal to its bulk
counterpart~due to a shape anisotropy field that gets added
to theHk); for instance, spherical particles have permeability
identical to that of the bulk, but other types of particles dis-
play smaller permeabilities. When particles are embedded in
a nonmagnetic matrix, there is a further reduction in the rela-

tive permeability. Thus, in general,mbulk>mp.meff, where
mp andmeff are the permeability of the particles and that of
the composite, respectively. It should be noted that while
mbulk is determined byMs , Hk , anda, mp is determined by
Ms , Hk , a, and particle shape, andmeff is determined by
Ms , Hk , a, particle shape, and volume fraction.

In this work, analytical expressions derived elsewhere
that describe the FMR~Refs. 14–16! and eddy current20,21

losses in isolated particles have been used. These formalisms
have been generalized to describe the losses in nonisolated
particle systems~i.e., when the magnetic particle volume
fraction is greater than zero!. Assumptions implicit in this
work are that all particles have identical properties, and are
all aligned so that their easy axes are parallel to each other.

III. VOLUME FRACTION

The effective medium theory~EMT! provides a prescrip-
tion for calculating the effective properties of the composite
system~also called the effective medium!. Many flavors of
EMTs have been discussed in the literature;22,23 these theo-
ries attempt to determine the properties of the effective me-
dium ~such as the effective permeability or the effective per-
mittivity ! in terms of the properties of the components for
given component volume fractions. In the present work, we
are interested in the effective permeabilities of two-
component systems for the most part; leta andb be the two
components, with permeabilitiesma and mb , respectively,
and volume fractionsca and cb , respectively, withca1cb

51.
The microstructure of the composite has been shown to

play a major role in determining the effective properties.23 In
the general case when the microstructure is unknown, rigor-
ous lower and upper bounds for the effective properties have
been derived.24 For instance, the Maxwell-Garnetta ~MG a!
EMT ~Ref. 25! provides the lower bound given by

meff2mb

meff12mb

5ca

ma2mb

ma12mb
, ~1!

which corresponds to a situation when spherical component
a particles are completely embedded inb, and the Maxwell-
Garnettb EMT ~Ref. 25! provides the upper bound given by

meff2ma

meff12ma

5cb

mb2ma

mb12ma

, ~2!

which corresponds to the complementary situation when
spherical componentb particles are completely embedded in
a. Thus, we anticipate the MGa theory to be valid at small
ca ~or largecb), and the MGb theory to be valid at largeca

~or smallcb). Since at intermediate volume fractions, neither
component is entirely embedded in the other, Bruggeman26

proposed that the particles should be considered to be em-
bedded in the effective medium itself, and obtained the fol-
lowing relationship~symmetric with respect toa andb! be-
tween the permeability of the effective medium and that of
the components~for spherical particles!:

TABLE I. Bulk magnetic properties for a few relevant materials.m0 is the
permeability of free space.Ms and Hk parameters chosen in the present
work are listed in the last row, and correspond to a low frequency bulk
relative permeability of 50 along a hard axis direction.

Material m0Ms (T) m0Hk (T) mbulk(v'0)

Co 1.72 0.569 4.02
Fe 2.22 0.057 39.9

FeCo~20% Co! 2.45 0.041 59.8
This work 2.40 0.049 50.0
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ca

ma2meff

ma12meff
1cb

mb2meff

mb12meff
50. ~3!

In the above, particles could be either isotropic~permeability
constant along all directions!, or anisotropic with all their
easy axes aligned parallel to each other. Figure 1 compares
the Maxwell-Garnett and Bruggeman theories for a system
of spherical particles with low frequency particle permeabil-
ity of 50. Since one of our components is composed of mag-
netic particles (ca5c, the magnetic particle volume frac-
tion!, and the other is nonmagnetic (cb512c), ma5mp

550 andmb51. Also, particles are assumed to have all pos-
sible radii, which is the reason the volume fraction spans the
entire 0–1 range. For spherical particles of identical radius,
the maximum attainable volume fraction is 0.74~equal to the
packing density of cubic close packed structures of con-
densed matter systems!.

Details of the derivation of these expressions can be
found elsewhere.23–27 In the present work, we have used the
Bruggeman EMT, which is supported by experimental data.27

In the case of nonspherical particles, the above equation can
be generalized to28

c~mp2meff!

meff1~mp2meff!Nk

1
~12c!~12meff!

meff1~12meff!Nk

50, ~4!

whereNk is the shape factor of the particles along the direc-
tion of the magnetic field~i.e., k5x or y, the hard axes!. We
will have more to say about this factor in the Sec. IV; for
spherical particles,Nx,y51/3.

IV. FMR LOSSES

As mentioned in Sec. II,Ms , Hk , anda determine the
complex permeability as a function of frequency;14–16at low
frequencies, the permeability is a real constant, but in the
vicinity of the FMR frequency, the real part decreases to zero
while the imaginary part displays a peak whose width is

determined bya ~smallera implies a smaller width!. Perme-
ability with a large imaginary part is undesirable as it results
in a decreased material quality factor~defined as the ratio of
the real to the imaginary parts of the permeability!. The FMR
behavior arises due to the precesion of the magnetization
axis about the applied field direction, as described by the
Landau-Lifshitz equation discussed below. In the absence of
damping ~a50!, the magnetization axis precesses indefi-
nitely ~ideal behavior!; damping causes the magnetization
direction to spiral in and align with that of the applied field.
Most of the conclusions in this work were reached by focus-
ing on just the low frequency permeability and the value of
the FMR frequency.

A. Isolated particles with no damping „aÄ0…

The Landau-Lifshitz equation, given by

dMW

dt
52m0gMW 3HW , ~5!

governs the relationship between the total magnetizationMW

and the internal field HW ; here, g is a constant called the
gyromagnetic ratio~the ratio of the electronic spin magnetic
moment to the spin angular momentum!, and is equal to
1.75931011C/Kg. Under the assumption that the easy axis
of the particle coincides with thez axis, HW 5HW ext2AW •MW ,
where the external field is given by HW ext5Hxx̂1Hyŷ
1Hkẑ, the magnetization is given byMW 5Mxx̂1M yŷ
1Msẑ, and AW [(Ax ,Ay ,Az), in case of isolated particles,
are equal to the demagnetization~shape! factors NW

[(Nx ,Ny ,Nz) tabulated widely for isolated particles of vari-
ous shapes.16,29 Thus, it is implicitly assumed that the exter-
nal ~frequency dependent! field is transverse to thez axis.
Solution of the Landau-Lifshitz equation@Eq. ~5!# results in
the frequency dependent permeability tensorm̄ @defined by
MW 5(m̄2Ū)HW ext, whereŪ is the unit matrix#, whose diag-
onal components~which are relevant to the present work! are
given by

mxx5
vm~v01vmAy!

v0
22v21v0vm~Ax1Ay!1vm

2 AxAy

11, ~6!

myy5
vm~v01vmAx!

v0
22v21v0vm~Ax1Ay!1vm

2 AxAy

11, ~7!

mzz51, ~8!

where v05m0g(Hk2AzMs), vm5m0gMs , and v is the
angular frequency of the external RF field.mxx andmyy are
the hard axes permeabilities, andmzz is the easy axis
permeability.19

At low frequencies~v'0!, Eqs.~6! and~7! can be sim-
plified to

mxx~v'0!5
Ms

Hk1Ms~Ax2Az!
11, ~9!

myy~v'0!5
Ms

Hk1Ms~Ay2Az!
11. ~10!

FIG. 1. Predictions by the Maxwell-Garnett and the Bruggeman theories of
the low frequency effective permeability of a composite made up of spheres
~with low frequency particle permeability of 50! embedded in a nonmag-
netic matrix.
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In the case of bulk materials and spherical particles,AW 50
and AW 5( x̂1 ŷ1 ẑ)/3, respectively, and in both these cases,
Eqs.~9! and ~10! simplify to mxx5myy5Ms /Hk11, as was
alluded to earlier.

The FMR frequency is defined by the well known Kittel
expression15,30

v fmr5v0
21v0vm~Ax1Ay!1vm

2 AxAy

5m0gA@Hk1~Ax2Az!Ms#@Hk1~Ay2Az!Ms#,

~11!

whenmxx andmyy go through a singularity~above the FMR
frequency,mxx andmyy approach zero!.

B. Isolated particles with damping „aÅ0…

All real materials display some magnetic loss mecha-
nisms that smooth out the singularity mentioned above at the
FMR frequency. In addition, damping results in a complex
permeability tensor@as opposed to the purely real quantities
of Eqs. ~6! and ~7!#. In the present treatment, damping is
assumed to be contained in thea parameter, and is accounted
for by making the transformation15

v0→v01 iav ~12!

in Eqs. ~6! and ~7!, where i 5A21. The imaginary part of
the permeability, which is close to zero at low frequencies,
displays a maximum at the FMR frequency.

C. Nonisolated particles „volume fraction Ì0…

As the volume fraction of the magnetic nanoparticles
increases from zero, each particle finds itself in an environ-
ment of effective permeabilitymeff ~rather than the nonmag-
netic environment!. In such circumstances, the demagnetiz-
ing factorAW of Eqs.~6!–~11! is given by31,32

AW 5
mp2meff

meff~mp21!
NW . ~13!

In the case of particles considered here~spheres and cylin-
drical rods with the easy axis along the rod axis!, mp[mxx

5myy , andmeff is given by the solution to Eq.~4!. It can be
seen thatAW given by the above equation has the expected
limiting behavior. For instance, at low volume fraction~iso-
lated particle limit!, meff'1, implying AW 'NW ; at high volume
fraction ~bulk limit!, meff'mp, implying AW '0, as one would
expect for bulk materials.

It should be noted that determination ofmp([mxx

5myy) requires a knowledge ofAW , which in turn requires the
knowledge ofmp andmeff. Thus, Eqs.~4!, ~6!, ~7!, and~13!
need to be solved self-consistently for given magnetic par-
ticle volume fraction and particle shape. The solution process
is heuristically depicted in Fig. 2. Once the self-consistent
solution (mp, meff, and AW ) is determined,33 the FMR fre-
quency can be calculated using Eq.~11!.

V. EDDY CURRENT LOSSES

Materials with nonzero conductivity display eddy~sur-
face! current losses in addition to the FMR losses described
above. Eddy currents, set up due to a frequency dependent
external magnetic field, shield the magnetic field from pen-
etrating into the particle, thereby reducing the particle per-
meability at high frequencies.

A. Isolated particles

In the case of isolated spherical particles, the~eddy cur-
rent! reduced particle permeabilitymeddy

p is given by20,21

meddy
p 5e~R,v!mp, ~14!

where the ~complex! eddy current factore(R,v) for a
spherical particle of radiusR, and givens, v, andmp is

e~R,v!52
kRcoskR2sinkR

sinkR2kRcoskR2k2R2 sinkR
, ~15!

where k5A2 isvmp5(12 i )Asvmp/2. The above rela-
tionship follows from well known Mie scattering results20

and analytical solutions to Maxwell equations.21 As kR
→`, e→0, and so, largeR and s will result in large eddy
current induced losses~resulting in smallmeddy

p ).

B. Nonisolated particles „volume fraction Ì0…

One of the important manifestations in composites with
nonzero particle volume fractions is the statitical effect of
clustering—particles physically, or electrically, start touching
each other, resulting in effective particles much larger than
the actual particles at large particle volume fractions. This
could have an adverse effect on the particle pemeability, as
the permeability degradation increases with particle size.

Assuming that identical particles are distributed ran-
domly in the host medium, the relationship between the total
particle volume fractionc and the volume fractioncm of
clusters composed ofm physically ~or electrically! touching
particles is given by

cm5mcm~12c!2. ~16!

Equation~16! is proved rigorously in Appendix A. Equation
~16! was also numerically verified, details of which are pro-
vided in Appendix B.

FIG. 2. Flowchart describing the process of self-consistently determining
the particle and effective permeability at a nonzero particle volume fraction.
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If we make the further assumption that clusters of sizem
behave like effective particles with volume equal tom times
the volume of each individual particles, we will have a com-
posite with a size distribution of particles. Particles with dif-
ferent sizes will display varying degrees of eddy current
losses. The effective permeability of this composite system
can be obtained from the following generalized Bruggeman
equation:

(
i 51

Q

ci

e~Ri ,v!mp2meff

e~Ri ,v!mp12meff
1S 12(

i 51

Q

ci D 12meff

112meff

505 f ~meff!. ~17!

The above equation is for spherical particles, and is the gen-
eralized form of Eq.~3! for a composite with more than two
components. The summation runs over particles of cluster
size uptoQ ~with Q chosen sufficiently large!; the second
term of Eq.~17! represents the contribution due to the non-
magnetic matrix.

Although Eq.~3! can be solved analytically~as it results
in a quadratic equation formeff), Eq. ~17! needs to be solved
numerically. Here, we have used a Newton-Raphson type
algorithm34 to solve for meff, which requires the following
first derivative:

f 8~meff!52(
i 51

Q

ci

3e~Ri ,v!mp

@e~Ri ,v!mp12meff#2

2S 12(
i 51

Q

ci D 3

~112meff!2
. ~18!

VI. RESULTS AND DISCUSSION

We now use the theories outlined above for our magnetic
nanoparticle composite system, with particle material prop-
erties listed in the last row of Table I. We first explore the
impact of eddy current losses alone~in the absence of FMR
losses! on our system, and will find that eddy current losses

are negligible below 10 GHz, if the particle radii are smaller
than 100 nm. We then move on to studying the FMR losses
in such small particle systems~whence eddy current losses
can be ignored!. This latter analysis will help us identify the
dependence of the particle shape and packing type on the
frequency dependent effective permeability. We will con-
clude this section with some comments about effective me-
dium theories.

A. Optimal particle size

Figure 3 displays the relative permeability of spherical
particles of three different sizes, calculated using Eq.~14!,
with mp5Ms /Hk11. Here, we have used the low frequency
value of mp @Eq. ~9!# rather than its frequency dependent
analog@Eq. ~6!#; this helps us focus on just the eddy current
losses in the absence of FMR losses. We do this primarily to
identify those circumstances when eddy current losses can be
neglected. We do mention though that in frequency ranges
where both FMR and eddy current losses are significant, the
frequency dependentmp, given by Eq.~6!, should be used in
Eq. ~14!.

As can be seen in Fig. 3, the real part of the permeability
decreases to zero~with a concomitant peaking of the imagi-
nary part! at lower frequencies for larger particles. In the
0.1–10 GHz frequency range, the trend seen in Fig. 3 indi-
cates that particles with radii smaller than 100 nm are ex-
pected to encounter negligible eddy current losses.

The effective permeabilitymeff of a composite at a given
frequency will depend on the size of the particles, and
whether the particles are allowed to physically touch each
other ~thereby creating larger effective particles!. The effec-
tive permeability when physical touching of particles is al-
lowed is given by the solution to Eq.~17!. Some nanoparticle
synthesis techniques result in particles with a coating of or-
ganic ligands;10 in such cases, particles are prevented from

FIG. 3. Relative permeability degradation due to eddy current losses in
spherical particles of three different sizes; solid and dot-dashed lines indi-
cate the real and imaginary parts, respectively, of the particle permeability.

FIG. 4. Influence of eddy current losses on the effective permeability of
composites at 10 GHz as a function of the volume fraction for three different
spherical particle radii; particles are either allowed to physically or electri-
cally touch each other~indicated as ‘‘no ligand’’! or not ~indicated as
‘‘ligand’’ !.
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touching each other, and the effective permeability is given
by the solution to Eq.~17! with only the first term in the first
summation retained~here, it is assumed that the ligand shell
thickness is much smaller than the particle radius, when the
Bruggeman EMT is still valid; see Sec. VI C below!. Figure
4 delineatesmeff as a function of the magnetic particle vol-
ume fractionc, at 10 GHz for the three particle radii of Fig.
3 both when the particles are allowed and not allowed to
touch each other. Understandably, physical touching of par-
ticles has an adverse effect at large volume fractions, due to
larger number of large clusters~as can be inferred from Fig.
11!. Even when physical touching of particles is allowed, we
see that composites with particles of radius 100 nm~or
smaller! do not suffer from eddy current losses at 10 GHz,
while composites with larger particles display significantmeff

degradation. Under the assumption that our nanoparticles
have radii smaller than 100 nm,35 we can ignore effects due
to eddy current losses~below 10 GHz!, as we will in the rest
of this paper.

B. Optimal particle shape and packing type

1. aÄ0

The shape factors (Nx ,Ny ,Nz), the low frequency per-
meability @determined using Eqs.~9! and~10!#, and the FMR
frequency@determined using Eq.~11!# for a few representa-
tive cases are listed in Tables II and III. The FMR frequency
is smallest for the bulk~and the sphere! configuration. The
‘‘thin film 1’’ configuration ~with the easy axis coincident
with the film surface normal! has very high FMR frequency,
but negligible permeability, while the ‘‘thin film 2’’ configu-
ration ~with the easy axis along the surface of the film! has

very reasonable low frequency permeability~albeit along
only one direction! and FMR frequency. It is for this reason
that magnetic thin film approaches involve thin films grown
to achieve the thin film 2 type of configuration.8,9 Infinite or
finite rods or cylinders~with the eazy axis parallel to the
cylinder axis! have even higher FMR frequencies than the
thin film 2 case, but low permeabilities. Spheres have prop-
erties identical to that of the bulk. Rods or cylinders with the
easy axis along the radial direction are not considered here,
as practical growth of such structures are not expected to be
easy. From Tables II and III, it is clear that approximately
spherical particles~between spherical and rod with aspect
ratio 2! are desired, in order to have optimal particle perme-
ability and FMR frequency.

Another important factor to consider is the manner in
which the particles are packed to achieve a final desired geo-
metric structure: assuming that the particles are all aligned so
that their magnetization~easy! axes are parallel to each other,
particles could be packed to acheive either the bulk or the
thin film final geometry limits. Here, the ‘‘bulk limit’’ is
defined as the situation whenonly the interior of the com-
posite system occupies the space with appreciable magnetic
field, i.e., the surfaces or boundaries, of the composite sys-
tem are located in regions of negligible magnetic field,
thereby generating negligible demagnetizing fields in any di-
rection. The ‘‘thin film limit’’ is defined as the situation when
the thin film surfaces~but not the edges! are located in re-
gions of appreciable magnetic field, thereby generating de-
magnetizing fieldsonly along the film normal.29 Clearly,~ap-
proximately spherical! particles packed to achieve the thin
film 2 limit ~hereafter referred to simply as the thin film

TABLE II. Analytical expressions for the low frequency relative permeability along the two hard axes, and the
FMR frequency for particles with different geometries; the easy axis is assumed to be parallel to thez axis, and
Ms@Hk .

Shape Nx Ny Nz mxx myy v fmr

Bulk 0 0 0 (Ms /Hk)11 (Ms /Hk)11 m0gHk

Thin film 1a 0 0 1 ;0 ;0 ;m0gMs

Thin film 2b 1 0 0 ;2 (Ms /Hk)11 ;m0gAMsHk

Infinite rodc 0.5 0.5 0 ;3 ;3 ;m0gMs/2
Sphere 1/3 1/3 1/3 (Ms /Hk)11 (Ms /Hk)11 m0gHk

aFilm normal parallel toz axis.
bFilm normal parallel tox axis.
cRod axis parallel toz axis.

TABLE III. Same as Table II, except that the numerical values listed in the last row of Table I were used forMs

andHk ; an additional entry for a finite rod with aspect ratio 2 has also been included.f fmr5v fmr/2p.

Shape Nx Ny Nz mxx myy f fmr ~GHz)

Bulk 0 0 0 50 50 1.4
Thin film 1a 0 0 1 ;0 ;0 67.2
Thin film 2b 1 0 0 2 50 9.7
Infinite rodc 0.5 0.5 0 2.9 2.9 33.6
Finite rodd 0.43 0.43 0.14 4.2 4.2 20.9

Sphere 1/3 1/3 1/3 50 50 1.4

aFilm normal parallel toz axis.
bFilm normal parallel tox axis.
cRod axis parallel toz axis.
dRod axis parallel toz axis; aspect ratio52.
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limit !, with the particle easy axes oriented along the film
surface, is a desired configuration, a schematic of which is
shown in Fig. 5~a!. Another realization of this limit is shown
schematically in Fig. 5~b!, for the case of a coaxial circular
sleeve around a current carrying conductor. Each short piece
of the sleeve approximates a thin film, with demagnetizing
fields set up only along the radial direction~and not along the
tangential direction! of the circular sleeve. Thus, the perme-
ability is small along the radial direction and maximum
along the tangential direction. The latter direction in the case
of the circular sleeve of Fig. 5~b! coincides with the direction
of the magnetic field, which will result in the desired induc-
tance enhancement; in the case of the thin film type packing
of Fig. 5~a!, inductors can be suitably designed so that most
of the generated magnetic field is directed along they axis, in
order to achieve enhanced inductance.

It should be mentioned that the properties listed in
Tables II and III for the rods and sphere are for isolated
particles (Nx , Ny , Nz are the demagnetizing shape factors
for isolatedparticles in a nonmagnetic environment!, corre-
sponding to low magnetic particle volume fractions. Increase
in particle volume fraction implies that particles are no
longer in a nonmagnetic environment but embedded in an
effective medium with permeabilitymeff, and so the self-
consistent procedure described in Sec. IV C should be
adopted to determinemeff and AW as a function of volume
fraction. It should be noted that the bulk and thin film limits
are characterized by the demagnetizing factors~and low fre-
quency permeability andf fmr) listed in the first and third
rows of Tables II and III, and so, these results must be re-
covered asc→1. Adopting the solution procedure outlined in
Sec. IV C automatically ensures achieving the bulk limit~as
theAW →0 asc→1). The thin film limit is achieved by using
Eq. ~13! for calculatingAy andAz ~both of which go to zero
as c→1), and requiring thatAx512(Ay1Az), so that the
thin film demagnetizing factors are recovered asc→1.

Figures 6 and 7 display the low frequency effective per-
meability and the FMR frequency as functions of the particle
volume fraction for spherical and finite rod~aspect ratio 2!

particles packed to achieve the bulk and the thin film 2 lim-
its, calculated using the procedure described in Sec. IV C
with the modification identified above for the thin film limit.
The impact of the packing limit is felt in the FMR frequency
but not in meff. Consistent with expectations,meff of the
spherical particle composite is higher than that of the finite
rod composite. The FMR frequency, for the bulk limit pack-
ing, does not change with volume fraction for the spherical
particle composite~as isolated spherical particles already
have properties identical to that of the bulk!, but falls for the
finite rod particle composite. For the thin film packing,f fmr

rises very fast for the spherical particle composite, and
reaches the saturation value of about 10 GHz at a volume
fraction of ;0.4, whereas for the finite rod particle compos-
ite it falls relatively slowly to the 10 GHz value. Assuming
that achievablethin film packing densities ofapproximately
sphericalparticles are in the 0.45–0.55 range,meff values in
the 3–18 range, andf fmr values in the 18–10 GHz range can
be expected~for the materials parameters chosen here!.

2. aÅ0

Thus far, we have focused our attention on the low fre-
quency permeability. The complex effective permeability as
a function of frequency can also be calculated for various
choices of the damping parameter,a, as described in Sec.
IV B. Figure 8 shows the complexmeff calculated using the
self-consistent procedure of Sec. IV C as a function of fre-
quency for a spherical particle~thin film packed! composite
at a volume fraction of 0.45. As the value ofa increases, the
peaking of the imaginary part ofmeff broadens, as expected.
For smalla, f fmr that can be determined from Fig. 8~'10
GHz! is consistent with that from Fig. 7. Largea tends to
shift f fmr to lower frequencies, as can be seen in Fig. 8.

FIG. 5. Arrangement of short rods to achieve thin film 2~a!, or circular
sleeve~b! packing. The easy magnetization axes of rods are assumed to
coincide with thez ~or rod! axis. If a current carrying conductor is present at
the core of the circular sleeve, the magnetic field direction coincides with
the direction~indicated by the arrow! of maximum permeability. FIG. 6. Effective low frequency permeabilitymeff vs magnetic particle vol-

ume fraction for spherical and finite rod~aspect ratio 2! particle composites
determined by self-consistently solving Eqs.~4!, ~6!, and~13!; the packing
type does not have an effect on themeff.
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C. Comments on EMTs

Some comments regarding the effective medium theories
are in order. As was mentioned in Sec. VI A, some nanopar-
ticle synthesis techniques could result in particles with a
ligand shell coating.10 It was also alluded to in Sec. III that
the microstructure of the composites could play a major role
in determining the effective properties of the system, and that
the lower bound formeff is provided by the MGa theory.
Here, we show that these considerations may become rel-
evant when the ligand shell thickness is very large compared
to the particle radius.

Let L be the ligand shell thickness, andR be the radius
of the particles. Assuming that the ligand is nonmagnetic, the
ligand coated particle has a permeabilitym l given in terms of
the particle permeabilitymp by23

m l21

m l12
5S R

R1L D 3 mp21

mp12
, ~19!

which is essentially the Maxwell-Garnett equation@Eq. ~1!#
with the appropriate substitutions.m l can now be used in the
Bruggeman EMT equation@Eq. ~3!# to yield the dependence
of the effective permeability of the composite system as a
function of volume fraction for various choices ofL/R. This
results in curves of the type shown in Fig. 9. As before, it is
assumed that particles of various radii~but with the same
L/R ratio! are present in the system in order to completely
fill up the volume. The maximum achievable particle volume
fraction is given byR3/(R1L)3. This is the reason the
curves for variousL/R ratios in Fig. 9 do not go all the way
to volume fractions of 1. As can be seen from Fig. 9, at the
maximum allowed particle volume fractions, all curves ter-
minate at the MGa curve, and as theL/R ratio increases, the
behavior is increasingly like the MGa behavior.

Small L/R ratios are thus generally preferred. We also
wish to emphasize that there is no single unique curve that
describes the dependence of the effective permeability on the
volume fraction, but arange of allowed values of effective

FIG. 7. The FMR frequencyf fmr vs magnetic particle
volume fraction for sperical and finite rod~aspect ratio
2! particle composites determined by self-consistently
solving Eqs. ~4!, ~6!, and ~13!. ‘‘Thin film 2’’ and
‘‘bulk’’ limit final geometry cases are both shown.

FIG. 8. The complex effective permeabilitymeff vs frequency for a few
choices of the damping parametera; thin film packing of spherical particles
with volume fraction 0.45 is assumed.

FIG. 9. The effective medium theory~EMT! predictions ofmeff for various
ligand shell thickness~L! to particle radius~R! ratios.
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permeabilities, depending on the details of the microstructure
of the composite.

VII. SUMMARY

A phenomenological model that helps us understand the
properties of magnetic nanoparticle composites, consisting of
particles with identical properties embedded in a nonmag-
netic matrix, has been developed. The input parameters for
this model include the saturation magnetizationMs , the an-
isotropy fieldHk , a damping parametera that describes the
magnetic losses in the particles, and the conductivitys of the
particles. Three aspects that have been investigated include
the effects due to the volume fraction, ferromagnetic reso-
nance ~FMR!, and eddy current losses. Relationships be-
tween key magnetic properties such as the effective perme-
ability and the FMR frequency, and the physical attributes of
the particles~such as size, shape, and packing type! have
been identified. The Bruggeman effective medium theory has
been used to relate the particle permeability to the effective
permeability of the composite for a given magnetic particle
volume fraction. The conclusions of this work can be sum-
marized as follows.

~1! Particles with radius smaller than 100 nm experience
negligible permeability degradation due to eddy current
losses below 10 GHz~for the present choices ofMs , Hk ,
and s!. This is true even at high particle volume fraction,
when clustering of particles could result in effective particles
much larger than the actual particles.

~2! The particle shape plays a dominant role in deter-
mining the ferromagnetic resonance behavior. Spherical par-
ticles display the highest low frequency permeability but low
FMR frequency~equal to the intrinsic bulk values!, whereas
cylindrical rods with the easy magnetization axis parallel to
the rod axis display low particle permeability but high FMR
frequency. Approximately spherical particles, between a
sphere and a rod with aspect ratio 2, are expected to have
optimal low frequency particle permeability and FMR fre-
quency.

~3! The manner in which particles are packed to achieve
a certain final geometry will determine the properties of the
composite. Two examples of packing types are the bulk limit
and thin film limit packing, and in each case the properties
are determined by the demagnetizing factors characteristic of
the final geometry.

~4! Assuming particles are arranged so that their easy
axes are all parallel to each other, bulk type packing will
result in a composite with properties identical to that of the
bulk—low frequency permeability given byMs /Hk11
along directions normal to the easy axis, and a low FMR
frequency proportional toHk . On the other hand, thin film
type packing with the particle easy axis aligned parallel to
the film surface will result in thin film like properties—low
frequency permeability given byMs /Hk11 only along the
direction normal to both the easy axis and the film normal,
and a high FMR frequency proportional toAMsHk. Thin
film type packing is thus preferred.

~5! For the materials parameters chosen here for the
magnetic nanoparticles~corresponding to a bulk permeabil-

ity of 50!, composites consisting of approximately spherical
particles packed to achieve the thin film limit with a volume
fraction in the 0.45–0.55 range are expected to display a low
frequencymeff and f fmr values in the 3–18 and 18–10 GHz
ranges, respectively.
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APPENDIX A: PROOF OF EQ. „16…

We first give a rigorous proof of Eq.~16! in one dimen-
sion ~1D!, in the spirit of Statistical Mechanics,36 followed
by a much simpler heuristic proof, that helps us generalize
the 1D solution to any number of dimensions.

1. Proof 1

Consider a set of 1D particles, all of the same unit
length, distributed randomly in a 1D grid of unit periodicity.
Particles are free to touch each other, but do not overlap, and
the center of each particle coincides with some gridpoint.
The unoccupied portions are assumed to be occupied by
‘‘host’’ elements. At any given situation, we thus haveNp

particles andNh host elements, with the particle volume frac-
tion c5Np /(Np1Nh).

If m particles are contiguous~physically touching!, we
have a particle cluster of sizem, with nm

p representing the
number of particle clusters of sizem; likewise,nm

h represents
the number of host clusters of sizem. Let Sp andSh denote
the total number of particle and host clusters, respectively.
We then have the following four constitutive relations:

Np5 (
m51

Np

nm
p m, ~A1!

Sp5 (
m51

Np

nm
p , ~A2!

Nh5 (
m51

Nh

nm
h m, ~A3!

Sh5 (
m51

Nh

nm
h . ~A4!

The total number of ways,V, of arranging this system is
given by

V5
Sp!

Pm51
Np nm

p !

Sh!

Pm51
Np nm

h !
. ~A5!

The system will gravitate towards that arrangement that
maximizesV.36 Recognizing that in the case of 1D systems,
Sp5Sh([S), we attempt to determine the maximum of the
objective function defined as

F5 ln V2aS (
m51

Np

nm
p m2NpD
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2bS (
m51

Nh

nm
h m2NhD ~A6!

2lS (
m51

Np

nm
p 2 (

m51

Nh

nm
h D ,

wherea, b, andl are Lagrangian multipliers, by requiring
that ]F/]nk

p5]F/]nk
h50. This results in

nk
p5Sele2ka, ~A7!

nk
h5Se2le2kb. ~A8!

The four unknowns in Eqs.~A7! and~A8! ~viz, S, a, b, and
l! can be obtained using Eqs.~A1!–~A4!. After some alge-
braic manipulations, we have

S5Np~12c!, ~A9!

nk
p5Npck21~12c!2, ~A10!

from which the volume fraction of particle clusters of sizek
can be calculated as:ck5knk

p/(Np1Nh)5kck(12c)2, prov-
ing Eq. ~16! for the 1D case. Needless to say,ck should sum
to c, and it does, as can be easily verified. h

2. Proof 2

We now proceed to provide a heuristic proof of Eq.~16!,
which is valid for any dimensionality. Again, letSdenote the
total number of particle clusters~the particles themselves can
be of any shape and dimensionality!. The number of clusters
with atleast1 particle is obviouslyS; the number of clusters
with atleast2 particles isSc, the number of particles with
atleast3 particles isSc2, the number of clusters withatleast
4 particles isSc3, and so on. This is diagramatically repre-
sented in Fig. 10. It can be reasoned that the sumS1Sc
1Sc21¯ should equal the total number of particlesNp .
Thus,S/(12c)5Np⇒S5Np(12c), identical to Eq.~A9!.

Now, the number of clusters withexactly1 particle,n1
p ,

is S2Sc5S(12c), the number of clusters withexactly 2
particles,n2

p , is Sc2Sc25Sc(12c), the number of clusters
with exactly3 particles,n3

p , is Sc22Sc35Sc2(12c), and
the number of clusters withexactly m particles, nm

p , is
Scm21(12c)5Npcm21(12c)2. This expression is identical
to Eq. ~A10!.

Equations~A9! and ~A10! have thus been proved with
no particular reference to the dimensionality of the system;

hence, we conclude that these and Eq.~16! are general re-
sults. h

APPENDIX B: NUMERICAL VERIFICATION OF EQ.
„16…

We have also verified the validity of Eq.~16! by using a
1D numerical model, based on ensemble averaging. A total
of 10 000 ensembles, each with 100 gridpoints of the type
described in Appendix A Proof 1, were considered. For a
given volume fraction, the occupancy of each grid point with
a particle was determined stochastically using a Monte Carlo
procedure.37 The number of clusters of a particular size was
then determined for each ensemble, and its average over all
ensembles calculated to yield the cluster volume fractioncm .
Figure 11 shows a plot ofcm as a function of cluster sizem
for four different particle volume fractions, and is compared
with that predicted using the analytical result. The agreement
is quite good for smaller particle volume fractions; for larger
c, the small discrepancies between numerical and analytical
results can be attributed to the finiteness of the number of
ensembles and the system size.
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