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Abstract 

This paper provides a broad overview of the methods of atomic-level computer simulation. It discusses methods 
of modelling atomic bonding, and computer simulation methods such as energy minimization, molecular dynamics, 
Monte Carlo, and lattice Monte Carlo. 

1. Introduction 

Atomic-level computer simulations of the structure 
and properties of different materials (metals, semicon- 
ductors, polymers, inert gases, etc.) have been carried 
out since the 195Os, and have become more powerful 
with the rapid development in computing facilities and 
efficient numerical algorithms. The purpose of this 
paper is to provide a broad overview of current re- 
search methods in the field, including both a discussion 
of the various models of atomic bonding, and the 
various methods which have been used to carry out 
atomic level computer simulations. 

Atomic bonding can be simulated with either quan- 
tum mechanical or empirical models. The quantum 
mechanical methods involve the solution of 
Schrodinger’s equation within certain approximations 
to determine the electronic structure, and thereby ex- 
tract the forces on the atoms. Empirical methods in- 
volve the use of simpler models of interatomic bonding 
such as pair potentials in which the bond energy is only 
a function of the distance between atoms. The parame- 
ters describing these potentials are determined by fit- 
ting to experimental data, such as bond lengths, bond 
energies, and elastic constants. In the last decade, 
there have been rapid improvements in empirical 
methods for metallic and covalent systems [l]. The 
quantum mechanical methods are generally more reli- 
able than the empirical methods, but are currently 
limited to small systems (less than 50 atoms versus 
millions for empirical methods). 

Using these models of atomic bonding, several sim- 
ulation methods are commonly used for atomic-level 
calculations, including energy minimization, molecular 
dynamics, Monte Carlo, and lattice Monte Carlo. En- 
ergy minimization involves moving atoms to minimize 
the net force acting on them, and thus is useful for 
determining the optimal structure at zero Kelvin. 
Molecular dynamics involves modelling the vibrations 
of atoms by solving force = mass x acceleration (F = 
ma), and can therefore simulate systems at nonzero 
temperatures. Monte Carlo involves random sampling 
of various possible states of a system, to determine 
equilibrium structures and properties at finite temper- 
atures. Finally, Lattice Monte Carlo is useful to model 
systems over long times, by ignoring atomic vibrations 
and only considering events which result in atom mo- 
tion from one lattice site to another. Together, these 
methods provide a wide variety of choices in modelling 
systems at the atomic level. 

A typical example of a computer simulation is a 
molecular dynamics simulation of the interaction of an 
energetic ion with a slab of atoms, resulting in a 
radiation damage cascade. The molecular dynamics 
simulations can determine the motion of all the atoms, 
from the initial trajectory to the final cascade, reveal- 
ing the mechanisms of damage and the final defect 
distribution. However, the molecular dynamics model 
is only as realistic as the potentials used to describe the 
interatomic bonding, because the potentials determine, 
for example, the energy required to create Frenkel 
pairs or to allow atoms to diffuse. 
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In the following sections, we first discuss models of 
atomic bonding, with an emphasis on empirical models. 
Then, we explain the various types of simulation meth- 
ods, and discuss the advantages and disadvantages of 
each. The following papers by other authors in this 
proceeding volume [2,3] describe applications of these 
methods to radiation damage. 

2. Atomic Bonding 

2.1. Electronic Structure Models 

The basic idea of most electronic structure methods 
is to solve the Schriidinger equation in the presence of 
many electrons and ions (the “many-body” problem) 
within a set of simplifying assumptions. The primary 
assumptions are: (1) Born-Oppenheimer approxima- 
tion: since the electrons move much faster than the 
nuclei, assume that the nuclei are fixed and solve for 
the electrons; then move the nuclei in a classical ap- 
proximation (F= ma) and solve again for the elec- 
trons. (2) One-electron approximation: solve for each 
electron separately, assuming that its interactions with 
other electrons can be approximated with an average 
potential. Further assumptions are then made, leading 
to either the Hartree-Fock or density functional ap- 
proaches. Both methods rely on a variational principle 
which states that the electron wave functions which 
yield the lowest total energy of the system are the 
correct ones. Thus, one assumes an initial set of trial 
wave functions for the electrons and, through an itera- 
tive process, determines the true electron wave func- 
tions which yield the lowest energy of the system. This 
also yields the forces acting on every atom. 

In the Hartree-Fock approach (HF) [4], one as- 
sumes that the electron wave functions can be de- 
scribed as a combination of antisymmetric orbitals, 
typically Gaussians or atomic orbitals. The antisymme- 
try property ensures that exchange is properly de- 
scribed. It does not necessarily account properly for 
electron correlation effects (due to the many-body in- 
teractions of the electrons) due to the limited nature of 
the basis set. More exact variations of HF, such as 
configuration interaction (CI), can treat the correlation 
effect properly; thus, HF methods can be highly reli- 
able, typically yielding bond lengths to within 1% accu- 
racy and bond energies to within 10% accuracy. How- 
ever, this method scales as N4, where N is the number 
of electrons in the simulation volume, so only small 
systems (less than about 15 atoms) can be treated. 
Also, due to the choice of basis set for the electrons, 
HF methods cannot in general treat periodic systems. 
Thus, HF methods are primarily used for the study of 
small molecules. 

Density functional theory (DFT) [51 is based on the 
theorem that the ground state energy and properties of 
a system are uniquely determined by the electron den- 
sity in the system only, regardless of which orbitals (s, 
p, d, etc.) contribute to it. The electronic equation thus 
contains terms for the electron-ion, kinetic, electron- 
electron repulsion and electron exchange and correla- 
tion energies. The exchange-correlation term contains 
the nonclassical contributions to the total energy and is 
a functional of the electron density but has an un- 
known form. This term can be computed using the 
local density approximation (LDA), in which a system 
with an inhomogeneous electron density is approxi- 
mated as a set of many small regions of uniform 
electron density, since the exchange and correlation 
energy of a uniform electron gas have been deter- 
mined. This approach is analogous to approximating a 
curve with a histogram. As with HF, there is a varia- 
tional principle which says that the energy is minimum 
for the exact ground state. Thus, by assuming an initial 
charge distribution, one can iteratively solve for the 
ground state charge density, and thus determine the 
total energy of the system and the forces on the atoms. 
DFT/LDA bond-lengths are typically reliable to l%, 
and bond energies are generally 10% higher than ex- 
perimental values. However, nonground-state proper- 
ties, such as energy gaps and ionization energies are 
not well described with LDA. LDA methods can treat 
periodic (bulk or surface) systems, and are generally 
limited to systems of 50 atoms or less, since they 
generally scale as N3. 

2.2. Empirical models 

2.2,I. Noble gas models (the Lennard-Jones potential) 
The Lennard-Jones potential (LJP) [6] is a simple 

pair potential that can accurately model noble gases, 
yielding reliable bond energies and bond lengths. It has 
been widely used for modelling covalent and especially 
metallic systems. However, it can be quite inaccurate 
for those systems because the LJP does not include the 
environmental dependence of bonding. For example, a 
bond between two carbon atoms can be a single, dou- 
ble or triple bond depending on the presence of other 
atoms. The LJP derives its popularity from its mathe- 
matical simplicity and computational efficiency. 

When considering the simplest of molecular crys- 
tals, in which the constituent atoms are noble gases, 
the atoms are only slightly distorted from their stable 
closed shell configurations. The attractive interactions 
between atoms are due to a fluctuating-dipole interac- 
tion which varies as the inverse sixth power of the 
inter-atomic distance. This weakly attractive interac- 
tion holds the Van der Waals solids together. However, 
when the atoms are too close to each other, the repul- 
sion of ion cores and especially the repulsion of the 
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Fig. 1. The energy versus distance for a typical LIP. 

filled electron shells (by Pauli’s exclusion principle) 
come into play; this balance of repulsive and attractive 
forces defines the equilibrium interatomic distance. 
The repulsive interaction is strong at short distances, 
but decays rapidly, and is assumed to vary as the 
inverse twelfth power of the interatomic distance. It is 
customary to write the Lennard-Jones potential as 

VU(r) =4e[(o/r)“- ((~/r)~], 
where r is the distance between any two atoms and E 
and c are parameters determined by fitting to known 
properties of the gas. E represents the well depth 
(strength of the attraction) and (+ represents the radius 
of the repulsive core (see Fig. 1). The radial distance 
corresponding to the bottom of the well determines the 
equilibrium bond distance, and the depth of the well 
determines the bond strength. The curvature of the 
minimum determines the “spring constant” in the 
atom-atom interaction. 

Although the parameters are developed by fitting to 
gas phase data, they are found to accurately describe 
the bond energies and bond lengths of the solid state 
of the noble “gases”. 

2.2.2. Ionic models 
Inorganic compounds combining alkali, alkali-earth 

and several transition metals with group VI and VII 
elements, show a strong tendency towards ionic bond- 
ing. This means that the compounds have low energy, 
filled-shell electronic orbitals which results in heavily- 
localized charge configurations. For many practical 
purposes, the interaction between ions can be de- 
scribed with a Born-Mayer potential, which is com- 
posed of a short range repulsive term, which acts only 

between nearest neighbors, and a Coulomb term, which 
prevails over larger distances. The Coulomb term is 
treated as an electrostatic interaction between point 
charges, and can be described by Coulomb’s law. Ac- 
cordingly, the potential energy of a point charge qi = zie 
(where z is the electronic charge in units of e, the 
charge of an electron) located at a distance 1 rij 1 = 1 rj 
_ ri 1 from a point charge qj = zje is 

where E is the dielectric constant. The force that acts 
between the point charges is the negative derivative of 
4 with respect to rij. 

In condensed matter, however, each ion interacts 
with many neighbors, and the total potential energy of 
the particle j is obtained by the summation 

z. e2 N z. 
l+LC’. 

47rc jzi I'ijI 

(3) 

Accordingly, the potential decreases as l/rij but the 
number of particles that can be found at a distance rij 
increases as r$ This makes the summation in Eq. (3) 
converge very slowly. That it converges at all is only 
due to the fact that coordination shells with oppositely 
charged ions follow in close proximity of each other, 
when rij becomes large. This slow convergence repre- 
sents a central problem in the framework of computa- 
tions that involve Coulomb interactions, since typical 
simulation ensembles do not contain a sufficient num- 
ber of particles to attain convergence. Coulomb inter- 
actions are significant even over distances of several 
tens of interatomic spacings. An arbitrary truncation at 
a distance of about half of the side of the simulation 
box not only introduces an error in the evaluation of 
the total energy of the system, but it causes spurious 
effects with particles that cross this cutoff radius. These 
atoms tend to oscillate back and forth because when 
outside of the interaction sphere a repulsive compo- 
nent suddenly vanishes. Such behavior distorts the 
dynamics of the system. 

Fortunately, this situation can be remedied. Per- 
haps the most widely used construct for this purpose is 
the Ewald summation method. The principal idea be- 
hind this method is to enhance each point charge with 
two mutually compensating Gaussian charge distribu- 
tions, centered at the same position. Each point charge 
is now shielded by an oppositely charged Gaussian, 
and the combination is summed in real space, where it 
rapidly converges. The compensating Gaussian charge 
distributions are transformed into reciprocal space and 
the summation is carried out over periodic images. 
Finally, the reciprocal space part is transformed back 
into real space and both are added. Since this recipe 
includes the interaction of each particle with its own 
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periodic image, an important correction is the subtrac- 
tion of this self term at the end. The final result then 
becomes, 

1 N N zizj e* erfc(arij) 
Gt=,,c c 

r=l j=l t 
I rij I 

+ C zizj e2 
e-T=q=/a=L= 27 

q+a 141= cos L4’ij 
( 11 

- 2 zf e2aa-1/2. 
i=l 

The adaptation of this formalism for molecular dy- 
namic computer simulations took place in the early 
seventies. The Born-Mayer potential also includes a 
repulsive term, which mimics the increase of energy 
upon overlap of filled orbitals, i.e., 

49&r) = &+Aij(l+;+~) e~u~+o;-r~/p,, 
47relrJ 

(5) 
where ni is the number of electrons in the outer shell 
of ion i, wi a parameter commensurate with the size of 
the ion, and pij an empirical parameter describing the 
“softness” of the electron cloud. 

Initial work was carried out on crystalline and liquid 
salts (alkali halides), for which this approach proved to 
be very accurate. Thermodynamic, structural, and ki- 
netic properties of these systems have been studied in 
great detail [7-lo]. Another class of materials where 
this approach was fruitful are oxide glasses, in particu- 
lar silicates. Using only central force interactions, te- 
trahedral coordination of silicon by oxygen could be 
achieved. This provided a powerful new technique for 
the investigation of amorphous structures [ll]. Further- 
more, it was possible to study thermodynamic and 
transport properties [12-141. 

More recently the Born-Meyer formalism has been 
expanded to include noncentrosymmetric charge distri- 
butions or polarized ions [15]. The enhancement in- 
cludes charge-dipole and dipole-dipole interactions, 
where the dipoles are located at the positions of atoms, 
ions or molecules. The potential energy of between a 
charge and a dipole, separated by rij is 

4c_d _ ‘i e PLj’ij 
4Te (rij13 

and that between two dipoles is 

(6) 

1 

i 

3 PiPj 

+d-d = G (Pirij)(Pjrij)- - - 

I rij I ’ I rij I 3 1 ’ 
(7) 

A dipole vector is defined as p = C:=Irizi e, and 
describes the asymmetry of a charge distribution. The 

large group VI and VII anions are likely to be polar- 
ized, and ionic molecules are even more likely to be 
strongly polarized. Note that these interactions not 
only depend on the distance between charges and 
dipoles, but also on the orientation of the dipoles. As 
for point charges, the charge-dipole and dipole-dipole 
interactions are long-ranged, and require special treat- 
ment within limited size simulation configurations. The 
Ewald summation procedures for these interactions 
have been described [15]. 

Applications of this more detailed treatment of 
Coulomb interactions include the study of the structure 
and dynamics of simple crystalline salts [16], complex- 
ing binary molten salts [17], and liquid water [18]. 
Although the effects of polarization on the energy and 
forces are only of the order of a few percent of the 
nonpolarization energy, the vibrational properties of 
the substances can be affected quite drastically. 

The parameters involved in describing the poten- 
tials are generally determined by fitting to experimen- 
tal data, but there has been recent work on developing 
the parameters from quantum mechanics models [19]. 
This work is very promising, due to the rich variety of 
structures that can be simulated, providing a much 
richer database than available from experiment. 

2.2.3. Covalent models 
Determination of the energy of covalently bonded 

systems is much more difficult than for metals because 
the total energy of the system can be dominated by 
either changes in chemical bonding or by elastic strain 
effects. These two contributions are best simulated by 
fundamentally different methods. Chemical effects can 
only be modeled adequately by explicit solution of the 
Schrodinger equation to determine the molecular or- 
bitals, resulting from the chemical interactions. Elastic 
strain effects can only be treated with very large simu- 
lation cells since strain effects decay very slowly around 
lattice defects. When developing a simulation of a 
covalent material it is critical to determine which of the 
two contributions dominates the energy before select- 
ing a simulation technique. 

Empirical potentials provide simple mathematical 
relationships between bold energies and the coordi- 
nates of atoms. They are generally unable to respond 
to changes in bonding, for example changes in inter- 
atomic electron transfer and orbital hybridization. 
However, because they can effectively model small 
deformation elastic behaviors and can handle very large 
simulation cells, empirical potentials simulate strain 
fields relatively effectively. 

Empirical potentials can be subdivided into valence 
force potentials and many-body potentials. Several re- 
views have been published comparing the most popular 
empirical potentials for semiconductors [20]. The class 
of empirical methods known as valence-force poten- 
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tials are Taylor expansions of the system potential 
energy around the equilibrium structure and are de- 
signed to fit the phonon dispersion relations and small 
elastic deformation behaviors of the simulated struc- 
ture. Such potentials are successful in limited applica- 
tions but cannot be applied to systems which have 
large atomic displacements such as occur at disloca- 
tions, grain boundaries, and surfaces. 

Many-body potentials expand the interatomic force 
terms in increasingly collective interactions (binary, 
three body,. . . ). This approach emphasizes long-range 
bonding effects. However, it is difficult to determine 
the relative contributions of each of the many-body 
interactions to the total bonding force between atoms 
from either first principles arguments or from mea- 
surements. Typical many-body semiconductor poten- 
tials are terminated at the three-body terms. Examples 
of three-body models for Si include the Stillinger- 
Weber (SW) [21] and Tersoff (TS) potentials [22]. The 
SW potential was fit to the bulk melting point of Si and 
is well-suited to modelling liquid-solid interfaces in Si. 
Because the SW potential does not allow any changes 
in its angular dependence, it does not adapt to under- 
coordinated configurations such as surfaces. The TS 
potential allows some modification of the effective 
bond hybridization in undercoordinated structures (see 
below) and as such should represent a better simula- 
tion of surfaces. The TS potential has been shown to 
fit bulk elastic properties, high pressure metastable 
amorphous states, some features of the surface recon- 
struction of Si (001) and polytypes of Si relatively well. 
The cohesive energies and bond lengths of these struc- 
tures are also well reproduced. There are many other 
empirical potentials similar to the SW and TS models. 
Applications, critical evaluations, and descriptions of 
these potentials may be found in Ref. [20] and refer- 
ences therein. 

We now present a brief description of the TS model 
as an illustration of the approach used in three-body 
potentials, how this potential can adapt to different 
coordination environments, and how the TS form is 
related to the semiconductors to be simulated. The TS 
model includes attractive and repulsive components 
which decay exponentially with distance from the cen- 
tral atom. This is justified on the basis of the radial 
exponential decay of wave functions in isolated atoms. 
As such it seems appropriate to treat the relatively 
large bond distances between Si atoms. The range of 
the attractive part of the potential is slightly larger 
than that of the repulsive part, yielding a net bonding 
energy at a fixed range. The attractive term includes an 
angular dependence which seeks to maintain an angle 
0 m 120” between any two bonds while the repulsive 
part has spherical symmetry (angular dependent terms 
have also been considered). The potential includes a 
cutoff function which reduces all interactions to zero at 

a distance of 0.285 nm from the atom for which the 
energy contribution is being determined. This cutoff 
eliminates second nearest neighbor interactions in bulk 
Si and consequently reduces computation time in 
molecular-dynamics simulations. Unfortunately, the 
cutoff function introduces substantial errors for surface 
calculations because surface atomic diffusion events 
may move atoms through the range where the potential 
is being cut off. This results in a large gradient in the 
system energy and consequently a large force on the 
atom. 

The angle dependent attractive term is quadratic in 
cos 8 (where 0 is the angle between bonds), with a 
form fit to the energies of metastable Si structures of 
different coordination number. This approximates re- 
hybridization of bonds as a function of lattice geome- 
try. An exponential screening term simulating the elec- 
tron density of the intervening lattice prevents atom 
“i” from influencing atom “j” when other atoms “k” 
lie closer to i than does j. The relative energy of a 
bond with respect to angle is adjusted such that three 
optimal bonds (angle 120”) are less favorable than four 
bonds with an angle of _ 109”, stabilizing the tetrahe- 
dral diamond structure. Because the angular depen- 
dence of the potential is asymmetric with respect to 
distortions around the tetrahedral value the potential 
favors distortions increasing the bond angle while it is 
relatively stiff as the bond angle decreases. 

The TS model has been shown to provide excellent 
results for many bulk properties of Si and has been 
adapted to simulate Ge and C as well. While simula- 
tion of surface phenomena is hampered by the cutoff 
function, the general behavior of the energy of an 
adatom as a function of position on the Si(100) 2 x 1 
surface agrees reasonably well with density functional 
theory results. 

Overall, the most general conclusions which can be 
reached about modeling covalent materials are that 
relatively sophisticated methods such as density func- 
tional theories are probably necessary for problems 
involving changes in electron density or bonding. For 
problems concerned with long time scales (several 
atomic vibrations) or large systems (more than a few 
hundred atoms) it is necessary to use an empirical 
method. The best results will be obtained only with an 
empirical potential specifically optimized to handle the 
task at hand. Hence, the TS potential is best for 
generic bulk Si problems, while the SW potential is 
preferred for any system involving liquid-like proper- 
ties. New potentials will probably be necessary to simu- 
late surface processes. 

2.2.4. Metallic models 
From the 1950s to the 1980s metals were primarily 

modelled with simple pair potentials, such as the 
Lennard-Jones, Morse, and empirical pair potentials 
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[23] constructed from cubic (or other) splines. These 
potentials were used because they could be fit to 
several physical properties. A review of these poten- 
tials can be found in Ref. [23]. Many studies of point 
defects, dislocations, grain boundaries and other sys- 
tems were carried out with these potentials. Although 
this was acceptable for modelling small elastic distor- 
tions, it was unacceptable for major changes in the 
bonding environment, so that potentials that describe 
bulk bonds could not reliably describe surface bonds, 
and vice versa. The basic problem is that the loss of 
some bonds is partially compensated by increasing the 
strength of remaining bonds. In other words, a metallic 
bond between two atoms depends on the surrounding 
atoms. 

In recent years, new many-body empirical models 
have been developed to overcome the limitations of 
simple pair potentials by including a many-body depen- 
dence [24-291. One of the most commonly-used many- 
body methods, the embedded atom method (EAM) will 
be presented as a typical example. Many similar mod- 
els have been developed from different starting as- 
sumptions. The effective medium theory [30-321 of 
Norskov and coworkers, the corrective effective 
medium theory [33] of DePristo and Kress, the “glue 
model” [29] of Ercolessi, Tosatti and Parrinello, the 
Finnis-Sinclair models [27], and the equivalent crystal 
theory [34,35] of Smith and Banerjea are quite similar 
to the EAM, and have also been applied to a number 
of bulk and surface studies. 

Daw and Baskes developed the embedded atom 
method (EAM) [24] to describe atomic interactions in 
metals. The EAM is a semiempirical method based on 
local electron density theory. In the EAM, a metal is 
thought of as a set of positively-charged nuclei embed- 
ded in an electron “sea.” Thus, the total energy of a 
system is assumed to be due to two sources: the total 
electronic energy and the electrostatic energy of core- 
core interactions. According to density-functional the- 
ory, the total electronic energy for an arbitrary ar- 
rangement of nuclei can be written as a unique func- 
tional of the total electron density. The electron den- 
sity in a metal can be reasonably approximated by the 
linear superposition of contributions from the individ- 
ual atoms. This leads to an approximation for the total 
energy in the EAM: 

EtOt = CF(Pi) + i C @( Ri,j), 
I i,j(itj) 

where F(p) is the embedding energy that is required to 
embed atom i into the background electron density pi, 
G(R) is the short-range electrostatic interaction be- 
tween nuclei, and R is the distance between atoms. 
The sums in Eq. (8) are over all atoms. The back- 
ground electron density p, is approximated by the 

linear superposition of atomic electron densities of 
nearby atoms, 

Pi= C p,“(Rij), (9) 
j(Zi) 

where pjYRlj) is the electron density contribution by 
atom j. 

In order to compute the total energy according to 
Eq. (8), pair interactions, the embedding functions, and 
atomic densities must be known. These are generally 
determined for pure metals by fitting to experimental 
data, such as the equilibrium lattice constant, sublima- 
tion energy, bulk modulus, elastic constants, and va- 
cancy-formation energy. These properties are generally 
fit to 5-10% accuracy. 

The EAM has been shown to reliably describe FCC 
transition metals with filled or nearly filled d-bands 
(especially Ni and Cu column elements). Limited suc- 
cess has been obtained for BCC transition metals with 
partially-filled d-bands because the electron density is 
assumed to be spherically symmetric, so that the angu- 
lar dependence of the partly-full d-orbitals is not ade- 
quately described [26,36,47]. Even though the EAM 
functions are typically fit only to perfect crystal proper- 
ties, they are generally reliable for modelling crystal 
thermodynamics, crystal defects, surfaces and even liq- 
uids [37-401. 

For alloys, the expression for the total energy also 
includes a term 4AB, the pair potential describing the 
interactions between different types of atoms A and B. 
Unfortunately, there is usually little useful experimen- 
tal data available to use for fitting this potential (often 
only the mixing enthalpies). Thus, alloys are often not 
as well described as the pure elements, although simu- 
lations of metallic alloys are still relatively-widely used. 
This is not necessarily an intrinsic flaw in the EAM, 
but rather primarily due to a lack of data. One promis- 
ing approach to overcome this problem is to fit to a 
large set of quantum mechanical calculations [41]. 
However, mixtures of metallic and nonmetallic ele- 
ments are not expected to be reliably described by the 
EAM, and new models need to be developed to handle 
such complex systems. 

For the bee transition metals with partially-filled 
d-bands, three and four body interactions contributing 
to the total energy are essential to more accurately 
describe the properties of materials. Recently Carlsson 
[42] developed a semiempirical model including angu- 
lar force terms based on tight-binding theory. This 
model included both second and fourth moments of 
the electron density of states (the EAM is essentially a 
second moment model). This model and similar ones 
[43,44] have been shown to reliably model bulk and 
surface properties of bee metals, albeit at a computa- 
tional cost of about 200 times that of the simpler EAM. 
Moriarty has also developed a many-body model which 
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includes angular forces, and is quite reliable for many 
bulk properties 145,461. 

3. Simulation Methods 

There are four widely-used methods for carrying 
out atomic-level computer simulations based on the 
above bonding models. Energy minimization is used to 
study systems at 0 K, molecular dynamics is used to 
model atomic vibrations, Monte Carlo is used to sam- 
ple equilibrium states, and lattice Monte Carlo is used 
to study long-time dynamics. 

3.1. Energy minimization 

Energy minimization is a method for finding the 
stable structures of materials at 0 K. It is based on the 
fact that a particle is in equilibrium when the forces 
acting on it are zero. The generalization of this result 
for N particles in three dimensions (3N degrees of 
freedom) is that the equilibrium structure can be found 
by all the forces on all the atoms. Unfortunately, it can 
be very difficult to find the true minimum of a 3N 
dimensional function. 

One simple method of minimizing a 3N dimen- 
sional function is the steepest decent algorithm [48]. It 
involves moving an atom in the direction of the force 
acting on it, until a minimum in that direction is 
reached. This process is repeated until every atom has 
been moved. Unfortunately, the movement of subse- 
quent atoms changes the forces acting on each atom, 
so that the process must be repeated many times. Due 
to its lack of “memory” of previous steps, this algo- 
rithm has a tendecy to zig-zag inefficiently through 
parameter space and may require many iterations to 
converge on a minimum. The widely-accepted alterna- 
tive to steepest-descent is the conjugate-gradient 
method [48], which retains a limited memory of previ- 
ous moves, and therefore executes a more efficient 
search. 

The most obvious problem of any energy minimiza- 
tion method is the lack of any guarantee that the 
minimum located is the global minimum corresponding 
to the true lowest-energy structure. It is possible to 
become trapped in a local minimum which corresponds 
to some metastable state and as a result predict an 
incorrect structure. For example, if an interstitial atom 
is placed in an octahedral site, it will not move to a 
tetrahedral site (which may be lower energy) if there is 
an activation energy barrier to that motion. 

An additional set of more subtle problems involves 
the treatment of the boundary conditions and cell 
volume. Most atomic simulations employ periodic 
boundary conditions. This simply means that the simu- 
lation cell is treated as if surrounded in all directions 

by infinitely many copies of itself. Thus, an atom on 
the edge of the right side of a cell could interact with 
an atom on the left side. If the cell volume is too small, 
long-range interactions may not be properly computed. 
A general rule is that the length of a cell edge should 
be at least twice as large as the longest interaction, so 
that only neighboring cells need to be considered. (For 
ionic systems, this is not possible, and an Ewald sum- 
mation method is used instead.) 

The boundary conditions also determine whether 
the simulation models a system at constant volume 
(fixed boundaries) or at constant pressure (movable 
boundaries). A simulation of radiation damage, for 
example, is generally most useful if carried out at 
constant pressure. Not only are most experiments per- 
formed at constant pressure, but the process of radia- 
tion damage usually produces numerous interstitial and 
vacancy defects which add to the volume of the sample 
- a fact the simulation should reflect. 

Energy minimization is widely used to study the 
structure of surfaces, bulk defects, and many other 
systems at 0 K. It can also be used to study dynamic 
processes, such as vacancy diffusion, by searching for 
the lowest energy pathway as an atom is forced from 
an initial state to a final state. This method can yield 
the activation energy for the process, and the attempt 
frequency for that event [49]. 

3.2. Molecular dynamics 

The basic idea of molecular dynamics is to simulate 
the thermal vibrations of atoms in a classical manner, 
following Newton’s laws. It involves the following steps: 
(1) assign an initial thermal velocity to each atom 

(usually according to a Boltzman distribution); 
(2) calculate the force on each atom, and hence deter- 

mine the acceleration; 
(3) move all atoms according to their velocity and 

acceleration for a short time t; 
(4) repeat steps 2 and 3. 
There are several algorithms that can be used to solve 
the equations of motion, ranging from the simple Ver- 
let algorithm to the complex predictor-corrector meth- 
ods [50]. 

One problem is that as atoms move, forces change, 
so the time step t has to be very small, typically around 
lo-l5 s, as compared to atomic vibrational frequencies 
of lo-l3 s. Typical workstations (such as an IBM 
RS6000) can simulate 10000 atoms for 10-‘” s in a 
day, using empirical models of interatomic bonding. 
For density functional methods, typical simulations of 
50 atoms for lo-l3 s would require a day or longer. 
Thus, with empirical or especially with quantum me- 
chanical methods, one is limited to very short simula- 
tions. This is sufficient to model many atomic vibra- 
tions, but insufficient to model most thermally acti- 
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vated processes. Thus, observing the diffusion of atoms 
in a crystal by a vacancy mechanism would be impossi- 
ble, but a short radiation damage event occurring over 
lo-” s could easily be simulated with empirical meth- 
ods. 

A second problem of molecular dynamics is that it 
is classical, hence phonons are not quantized. This is 
particularly important below the Debye temperature, 
when certain phonon modes would be frozen out, and 
zero-point motion would not be accounted for. Thus, 
thermal expansion and other thermodynamic proper- 
ties will be slightly incorrect. Above the Debye temper- 
ature, this is a negligible effect. 

trapped in local minima as well if the simulation time 
is too short or the temperature is too low, as is often 
the case. Monte Carlo methods offer an alternative to 
sample the possible states of a system. In some cases 
Monte Carlo is a more efficient method for finding the 
true minima, particularly if the simulation involves 
phase separation. 

Molecular dynamics may either be carried out at 
constant energy or constant temperature. In constant 
energy molecular dynamics, one solves F = ma directly, 
and energy is conserved throughout the simulation. 
This is the method used for computing thermodynamic 
averages, such as the enthalpy of a crystal with a 
vacancy. It is also the correct method to use for mod- 
elling dynamic processes, such as energetic collisions, 
so that energy is transferred between atoms in a realis- 
tic manner. 

The Monte Carlo (MC) method was developed by 
Von Neumann, Ulam, and Metropolis [51] in the 1940s. 
The term “Monte Carlo methods” refers to any of the 
multitudes of approaches to solving problems involving 
the use of random numbers to sample the ensemble. 
Many good review articles and books are available 
about the MC method [50,52-541. The purpose of 
atomistic MC simulations is usually to determine ther- 
modynamic equilibrium properties by generating nu- 
merous “typical” atomic configurations. 

A normal procedure for MC simulations is to: 
(1) generate an initial arrangement of atoms; 
(2) change the system in one of several ways (discussed 

Constant temperature molecular dynamics is gener- 
ally used only to bring systems to a desired tempera- 
ture. It involves periodically computing the kinetic en- 
ergy of the system, and then modifying the acceleration 
or velocity in an artificial manner to maintain a con- 
stant temperature throughout the simulation. It is an 
unphysical way of simulating a classical system, but 
useful to move the system to a desired temperature. It 
cannot be used to correctly calculate thermodynamic 
averages, because the Boltzman distribution of energy 
is periodically altered in an unphysical manner. This 
also means that dynamic processes will be incorrectly 
modelled, because activation energy barriers will be 
overcome incorrectly. 

below); 
(3) calculate the change in total energy AE; 
(4) retain the change if AE is negative; if A E is 

positive, then possibly accept the change with a 
probability proportional to expf -A E/kT); 

(5) repeat steps 2-4. 
The above procedure is guaranteed to properly sample 
the thermodynamic states of the system in the limit 
that the number of steps is infinite. 

During the MC simulations, each atom is typically 
moved 104-lo5 times. Typical types of atom moves 
are: (1) move an atom (usually u 0.2 A); (2) swap 
atoms (A to B, or B to A); (3) change cell size (for 
constant pressure simulations); (4) remove or add an 
atom. Thus, although the instantaneous changes are 
approximate, the typical structures generated are ther- 
modynamically correct. 

One special application of molecular dynamics is The advantage of MC over MD is that it can simu- 
“simulated annealing”. In this case the MD simula- late systems which do not equilibrate on MD time 
tions begins with the material at a high temperature scales, such as segregation to a dislocation, phase sepa- 
and slowly cools the system by steadily removing ki- ration, and rearrangement of a grain boundary struc- 
netic energy. As the atoms vibrate, they can jump from ture by diffusion. The Monte Carlo method is particu- 
metastable to global minima, but the reverse jump larly useful in efficiently modelling the effects of long- 
require has a higher activation energy barrier. Thus, as range diffusion, since atoms can be moved, created or 
the system cools they tend to become trapped in the destroyed in one step. The same process would gener- 
global minima. Whereas energy minimization tends to ally never occur in a MD simulation, due to the short 
find local minima (regardless of whether or not it is the time simulated. Thus, MC is often more efficient than 
global minima), simulated annealing may escape from MD for generating optimal structures. The disadvan- 
those local minima, thereby yielding the optimal struc- tage of MC is that it does not model the physical 
ture of the system. dynamics of the systems. 

3.3. Monte Carlo simulations 3.4. Lattice Monte Carlo 

As mentioned previously, energy minimization 
methods will generally find the local (not global) min- 
ima of a system. Molecular dynamics can often be 

The Monte Carlo method mentioned previously is 
typically used to find equilibrium structures. However, 
lattice Monte Carlo (LMC) can also be used to model 
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dynamic processes over long times. In LMC, one as- 
sumes that all atoms are on lattice sites, and one only 
considers events that transport atoms from one lattice 
site to another. The principle advantage of the LMC 
method is that it ignores atomic vibrations which do 
not in general change the structure; this dramatically 
reduces the number of events which must be consid- 
ered. Thus, whereas MD is limited to time scales of 
lO-‘o s, LMC simulates events at the rate at which 
they occur, which may be seconds or hours. The LMC 
methods, by definition, are unable to model amor- 
phous or liquid systems, grain boundaries and disloca- 
tions, and other problems involving atoms not on bulk 
lattice sites. 

One major use of LMC is the study of crystal 
growth from the vapor phase 1551. In these simulations 
atoms are deposited on the simulated surface and 
diffuse by specified routes. The most common LMC 
approach for modeling crystal growth is the solid-on- 
solid (SOS) form in which atoms are only allowed to lie 
on top of other atoms. Overhangs and vacancies below 
the surface are not permitted. This greatly simplifies 
representation of the solid (since only the height of the 
surface at a given location need be specified) and 
reduces the number of tests which must be performed 
to determine where the next event will occur. 

During a typical LMC simulation, one must first 
tabulate the possible jump events (adatom moving on a 
flat surface, adatom, moving along a ledge, etc.), and 
the activation energy associated with it. Then, one 
event is picked randomly, with a weighting appropriate 
to the rate at which the event occurs. Thus, with LMC, 
one ignores atomic vibrations, which occur on a short 
time scale, in order to model dynamic processes such 
as thin film growth which occur on a much longer time 
scale. 

It should be pointed out that LMC is limited by the 
understanding of the underlying events. If incorrect 
assumptions are made regarding which events occur, or 
the rate at which they occur, incorrect results will be 
obtained. In some cases, activation energies may be 
known experimentally or derived from atomic level 
simulations; alternatively, they may be assumed to have 
a certain value, and then by running the LMC simula- 
tion and comparing the resulting structures with exper- 
imental results, one can infer what the energetics 
should be. Typically, a combination of known and 
unknown processes are involved. 

A possible application of LMC to radiation damage 
would be the study of cascade evolution. First, a molec- 
ular dynamics simulation of a cascade event could 
determine the position of vacancies and interstitials 
after a few picoseconds. Then, using that structure as 
the starting structure for a LMC calculation, one could 
study the diffusion of interstitials and vacancies, lead- 
ing to their possible annihilation or clustering. Whereas 

MD could only simulate the first few picoseconds, 
LMC could simulate the long-time evolution of the 
defects. However, in order for the LMC to be realistic, 
one would have to input defect migration rates, and 
possibly strain effects on those migration rates. 

4. Summary 

We have briefly summarized the methods of 
atomic-level computer simulation. Atomic bonding can 
be modelled with quantum mechanical models or with 
empirical models, depending on the trade-off between 
reliability and the number of simulated atoms. In gen- 
eral, empirical models accurately describe small strains, 
but are less accurate for major changes in the bonding 
environment such as on the surface, although many- 
body models are more successful in this regard. Quan- 
tum mechanical models can handle changes in chemi- 
cal bonding quite accurately, but still meet difficulties 
in handling strains due to their small simulation cells. 

Four methods of modelling atomic-level systems 
were reviewed, namely energy minimization, molecular 
dynamics (MD), Monte Carlo (MC), and lattice Monte 
Carlo (LMC). Energy minimization methods can be 
used to find the stable structure of a system, but are 
limited to zero Kelvin and are easily trapped in local 
minima. MD simulations can model phenomena on the 
time scale of picoseconds, but not longer. MC is used 
for finding an equilibrium structure but cannot model 
the physical dynamics of a system. LMC can be used 
for modelling a dynamic process over long time, but it 
is limited by the knowledge of the rate of jump events. 
In general, all these interatomic interaction models 
and simulation methods supply one with a variety of 
approaches to carry out computational studies for a 
wide variety of problems. In future, as computational 
power continues to grow rapidly, computer simulations 
will become more even more useful. 
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