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Machine learning in materials informatics: recent applications
and prospects
Rampi Ramprasad1, Rohit Batra1, Ghanshyam Pilania2,3, Arun Mannodi-Kanakkithodi1,4 and Chiho Kim1

Propelled partly by the Materials Genome Initiative, and partly by the algorithmic developments and the resounding successes of
data-driven efforts in other domains, informatics strategies are beginning to take shape within materials science. These approaches
lead to surrogate machine learning models that enable rapid predictions based purely on past data rather than by direct
experimentation or by computations/simulations in which fundamental equations are explicitly solved. Data-centric informatics
methods are becoming useful to determine material properties that are hard to measure or compute using traditional methods—
due to the cost, time or effort involved—but for which reliable data either already exists or can be generated for at least a subset of
the critical cases. Predictions are typically interpolative, involving fingerprinting a material numerically first, and then following a
mapping (established via a learning algorithm) between the fingerprint and the property of interest. Fingerprints, also referred to as
“descriptors”, may be of many types and scales, as dictated by the application domain and needs. Predictions may also be
extrapolative—extending into new materials spaces—provided prediction uncertainties are properly taken into account. This article
attempts to provide an overview of some of the recent successful data-driven “materials informatics” strategies undertaken in the
last decade, with particular emphasis on the fingerprint or descriptor choices. The review also identifies some challenges the
community is facing and those that should be overcome in the near future.
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OVERARCHING PERSPECTIVES
When a new situation is encountered, cognitive systems (includ-
ing humans) have a natural tendency to make decisions based on
past similar encounters. When the new situation is distinctly
different from those encountered in the past, errors in judgment
may occur and lessons may be learned. The sum total of such past
scenarios, decisions made and the lessons learned may be viewed
collectively as “experience”, “intuition” or even as “common
sense”. Ideally, depending on the intrinsic capability of the
cognitive system, its ability to make decisions should progressively
improve as the richness of scenarios encountered increases.
In recent decades, the artificial intelligence (AI) and statistics

communities have made these seemingly vague notions quanti-
tative and mathematically precise.1,2 These efforts have resulted in
practical machines that learn from past experiences (or “exam-
ples”). Classic exemplars of such machine learning approaches
include facial, fingerprint or object recognition systems, machines
that can play sophisticated games such as chess, Go or poker, and
automation systems such as in robotics or self-driving cars. In each
of these cases, a large data set of past examples is required, e.g.,
images and their identities, configuration of pieces in a board
game and the best moves, and scenarios encountered while
driving and the best actions.
On the surface, it may appear as though the “data-driven”

approach for determining the best decision or answer when a new
situation or problem is encountered is radically different from
approaches based on fundamental science in which predictions

are made by solving equations that govern the pertinent
phenomena. But viewed differently, is not the scientific process
itself—which begins with observations, followed by intuition, then
construction of a quantitative theory that explains the observa-
tions, and subsequently, refinement of the theory based on new
observations—the ultimate culmination of such data-driven
inquiries?
For instance, consider how the ancient people from India and

Sri Lanka figured out, through persistent tinkering, the alloying
elements to add to iron to impede its tendency to rust, using only
their experience and creativity3,4 (and little “steel science”, which
arose from this empiricism much later)—an early example of the
reality and power of “chemical intuition.” Or, more recently, over
the last century, consider the enormously practical Hume–Rothery
rules to determine the solubility tendency of one metal in
another,5 the Hall–Petch studies that have led to empirical
relationships between grain sizes and mechanical strength (not
just for metals but for ceramics as well),6,7 and the group
contribution approach to predict complex properties of organic
and polymeric materials based just on the identity of the chemical
structure,8 all of which arose from data-driven pursuits (although
they were not called as such), and later rationalized using physical
principles. It would thus be fair to say that data—either directly or
indirectly—drives the creation of both complex fundamental and
simple empirical scientific theories. Figure 1 charts the timeline for
some classic historical and diverse examples of data-driven efforts.
In more modern times, in the last decade or so, thanks to the

implicit or explicit acceptance of the above notions, the “data-
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driven”, “machine learning”, or “materials informatics” paradigms
(with these terms used interchangeably by the community) are
rapidly becoming an essential part of the materials research
portfolio.9–12 The availability of robust and trustworthy in silico
simulation methods and systematic synthesis and characterization
capabilities, although time-consuming and sometimes expensive,
provides a pathway to generate at least a subset of the required
critical data in a targeted and organized manner (e.g., via “high-
throughput” experiments or computations). Indeed, such efforts
are already underway, which have lead to the burgeoning of a
number of enormously useful repositories such as NOMAD (http://
nomad-coe.eu), Materials Project (http://materialsproject.org),
Aflowlib (http://www.aflowlib.org), and OQMD (http://oqmd.org).
Mining or learning from these resources or other reliable extant
data can lead to the recognition of previously unknown
correlations between properties, and the discovery of qualitative
and quantitative rules—also referred to as surrogate models—that
can be used to predict material properties orders of magnitude
faster and cheaper, and with reduced human effort than required
by the benchmark simulation or experimental methods utilized to
create the data in the first place.
With excitement and opportunities come challenges. Questions

constantly arise as to what sort of materials science problems are
most appropriate for, or can benefit most from, a data-driven
approach. A satisfactory understanding of this aspect is essential
before one makes a decision on using machine learning methods
for their problem of interest. Perhaps the most dangerous aspect
of data-driven approaches is the unwitting application of machine
learning models to cases that fall outside the domain of prior data.
A rich and largely uncharted area of inquiry is to recognize when
such a scenario ensues, and to be able to quantify the
uncertainties of the machine learning predictions especially when
models veer out-of-domain. Solutions for handling these perilous
situations may open up pathways for adaptive learning models
that can progressively improve in quality through systematic
infusion of new data—an aspect critical to the further burgeoning
of machine learning within the hard sciences.
This article attempts to provide an overview of some of the

recent successful data-driven materials research strategies under-
taken in the last decade, and identifies challenges that the
community is facing and those that should be overcome in the
near future.

ELEMENTS OF MACHINE LEARNING (WITHIN MATERIALS
SCIENCE)
Regardless of the specific problem under study, a prerequisite for
machine learning is the existence of past data. Thus, either clean,

curated and reliable data corresponding to the problem under
study should already be available, or an effort has to be put in
place upfront for the creation of such data. An example data set
may be an enumeration of a variety of materials that fall within a
well-defined chemical class of interest and a relevant measured or
computed property of those materials (see Fig. 2a). Within the
machine learning parlance, the former, i.e., the material, is referred
to as “input”, and the latter, i.e., the property of interest, is referred
to as the “target” or “output.” A learning problem (Fig. 2b) is then
defined as follows: Given a {materials→ property} data set, what is
the best estimate of the property for a new material not in the
original data set? Provided that there are sufficient examples, i.e.,
that the data set is sufficiently large, and provided that the new
material falls within the same chemo-structural class as the
materials in the original data set, we expect that it should be
possible to make such an estimate. Ideally, uncertainties in the
prediction should also be reported, which can give a sense of
whether the new case is within or outside the domain of the
original data set.
All data-driven strategies that attempt to address the problem

posed above are composed of two distinct steps, both aimed at
satisfying the need for quantitative predictions. The first step is to
represent numerically the various input cases (or materials) in the
data set. At the end of this step, each input case would have been
reduced to a string of numbers (or “fingerprints”; see Fig. 2c). This
is such an enormously important step, requiring significant
expertise and knowledge of the materials class and the applica-
tion, i.e., “domain expertise”, that we devote a separate Section to
its discussion below.
The second step establishes a mapping between the finger-

printed input and the target property, and is entirely numerical in
nature, largely devoid of the need for domain knowledge. Both
the fingerprinting and mapping/learning steps are schematically
illustrated in Fig. 2. Several algorithms, ranging from elementary
(e.g., linear regression) to highly sophisticated (kernel ridge
regression, decision trees, deep neural networks), are available
to establish this mapping and the creation of surrogate prediction
models.13–15 While some algorithms provide actual functional
forms that relate input to output (e.g., regression based schemes),
others do not (e.g., decision trees). Moreover, the amount of
available data may also dictate the choice of learning algorithms.
For instance, tens to thousands of data points may be adequately
handled using regression algorithms such as kernel ridge
regression or gaussian process regression, but the availability of
much larger data sets (e.g., hundreds of thousands or millions)
may warrant deep neural networks, simply due to considerations
of favorable scalability of the prediction models with data set size.
In the above discussion, it was implicitly assumed that the target
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Fig. 1 Some classic historical examples of data-driven science and engineering efforts
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property is a continuous quantity (e.g., bulk modulus, band gap,
melting temperature, etc.). Problems can also involve discrete
targets (e.g., crystal structure, specific structural motifs, etc.), which
are referred to as classification problems. At this point, it is worth
mentioning that the learning problem as described above for the
most part involving a mapping between the fingerprints and
target properties is referred to as “supervised learning”; “unsu-
pervised learning”, on the other hand, involves using just the
fingerprints to recognize patterns in the data (e.g., for classifica-
tion purposes or for reduction of the dimensionality of the
fingerprint vector).9,15

Throughout the learning process, it is typical (and essential) to
adhere to rigorous statistical practices. Central to this are the
notions of cross-validation and testing on unseen data, which
attempt to ensure that a learning model developed based on the
original data set can truly handle a new case without falling prey
to the perils of “overfitting”.9,15 Indeed, it should be noted here
that some of the original and most successful applications of
machine learning, including statistical treatments and practices
such as regularization and cross-validation, were first introduced
into materials research in the field of alloy theory, cluster
expansions and lattice models.16–24 These ideas, along with
machine learning techniques such as compressive sensing, are
further taking shape within the last decade.25,26

Machine learning should be viewed as the sum total of the
organized creation of the initial data set, the fingerprinting and
learning steps, and a necessary subsequent step (discussed at the
end of this article) of progressive and targeted new data infusion,
ultimately leading to an expert recommendation system that can
continuously and adaptively improve.

HIERARCHY OF FINGERPRINTS OR DESCRIPTORS
We now elaborate on what is perhaps the most important
component of the machine learning paradigm, the one that deals
with the numerical representation of the input cases or materials.
A numerical representation is essential to make the prediction
scheme quantitative (i.e., moving it away from the “vague” notions
alluded to in the first paragraph of this article). The choice of the
numerical representation can be effectively accomplished only
with adequate knowledge of the problem and goals (i.e., domain
expertise or experience), and typically proceeds in an iterative
manner by duly considering aspects of the material that the target
property may be correlated with. Given that the numerical
representation serves as the proxy for the real material, it is also

referred to as the fingerprint of the material or its descriptors (in
machine learning parlance, it is also referred to as the feature
vector).
Depending on the problem under study and the accuracy

requirements of the predictions, the fingerprint can be defined at
varying levels of granularity. For instance, if the goal is to obtain a
high-level understanding of the factors underlying a complex
phenomenon—such as the mechanical or electrical strength of
materials, catalytic activity, etc.—and prediction accuracy is less
critical, then the fingerprint may be defined at a gross level, e.g., in
terms of the general attributes of the atoms the material is made
up of, other potentially relevant properties (e.g., the band gap) or
higher-level structural features (e.g., typical grain size). On the
other hand, if the goal is to predict specific properties at a
reasonable level of accuracy across a wide materials chemical
space—such as the dielectric constant of an insulator or the glass
transition temperature of a polymer—the fingerprint may have to
include information pertaining to key atomic-level structural
fragments that may control these properties. If extreme (chemical)
accuracy in predictions is demanded—such as total energies and
atomic forces, precise identification of structural features, space
groups or phases—the fingerprint has to be fine enough so that it
is able to encode details of atomic-level structural information
with sub-Angstrom-scale resolution. Several examples of learning
based on this hierarchy of fingerprints or descriptors are provided
in subsequent Sections.
The general rule of thumb is that finer the fingerprint, greater is

the expected accuracy, and more laborious, more data-intensive
and less conceptual is the learning framework. A corollary to the
last point is that rapid coarse-level initial screening of materials
should generally be targeted using coarser fingerprints.
Regardless of the specific choice of representation, the

fingerprints should also be invariant to certain transformations.
Consider the facial recognition scenario. The numerical represen-
tation of a face should not depend on the actual placement
location of the face in an image, nor should it matter whether the
face has been rotated or enlarged with respect to the examples
the machine has seen before. Likewise, the representation of a
material should be invariant to the rigid translation or rotation of
the material. If the representation is fine enough that it includes
atomic position information, permutation of like atoms should not
alter the fingerprint. These invariance properties are easy to
incorporate in coarser fingerprint definitions but non-trivial in fine-
level descriptors. Furthermore, ensuring that a fingerprint contains
all the relevant components (and only the relevant components)
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for a given problem requires careful analysis, for example, using
unsupervised learning algorithms.9,15 For these reasons, construc-
tion of a fingerprint for a problem at hand is not always
straightforward or obvious.

EXAMPLES OF LEARNING BASED ON GROSS-LEVEL PROPERTY-
BASED DESCRIPTORS
Two historic efforts in which gross-level descriptors were utilized
to create surrogate models (although they were not couched
under those terms) have lead to the Hume–Rothery rules5 and
Hall–Petch relationships6,7 (Fig. 1). The former effort may be
viewed as a classification exercise in which the target is to
determine whether a mixture of two metals will form a solid
solution; the gross-level descriptors considered were the atomic
sizes, crystal structures, electronegativities, and oxidation states of
the two metal elements involved. In the latter example, the
strength of a polycrystalline material is the target property, which
was successfully related to the average grain size; specifically a

linear relationship was found between the strength and the
reciprocal of the square root of the average grain size. While a
careful manual analysis of data gathered from experimentation
was key to developing such rules in the past, modern machine
learning and data mining approaches provide powerful pathways
for such knowledge discovery, especially when the dependencies
are multivariate and highly nonlinear.
To identify potential nonlinear multivariate relationships effi-

ciently, one may start from a moderate number of potentially
relevant primary descriptors (e.g., electronegativity, E, ionic radius,
R, etc.), and create millions or even billions of compound
descriptors by forming algebraic combinations of the primary
descriptors (e.g., E/R2, R log(E), etc.); see Fig. 3a, b. This large space
of nonlinear mathematical functions needs to be “searched” for a
subset that is highly correlated with the target property.
Dedicated methodological approaches to accomplish such a task
have emerged from recent work in genetic programing,27

compressed sensing,28,29 and information science.30
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One such approach—based on the least absolute shrinkage and
selection operator (LASSO)—was recently demonstrated to be
highly effective for determining key physical factors that control a
complex phenomenon through identification of simple empirical
relationships.28,29 An example of such complex behavior is the
tendency of insulators to fail when subjected to extreme electric
fields.31,32 The critical field at which this failure occurs in a defect-
free material—referred to as the intrinsic electrical breakdown
field—is related to the balance between energy gained by charge
carriers from the electric field to the energy lost due to collisions
with phonons. The intrinsic breakdown field may be computed
from first principles by treatment of electron-phonon interactions,
but this computation process is enormously laborious. Recently,
the breakdown field was computed from first principles using
density functional theory (DFT) for a benchmark set of 82 binary
octet insulators.31 This data set included alkali metal halides,
transition metal halides, alkaline earth metal chalcogenides,
transition metal oxides, and group III, II–VI, I–VII semiconductors.
After validating the theoretical results by comparing against
available experimental data, this data set was used to build simple
predictive phenomenological surrogate models of dielectric
breakdown using LASSO as well as other advanced machine
learning schemes. The general flow of the LASSO-based proce-
dure, starting from the primary descriptors considered (Fig. 3a), is
charted in Fig. 3b. The trained and validated surrogate models
were able to reveal key correlations and analytical relationships
between the breakdown field and other easily accessible material
properties such as the band gap and the phonon cutoff frequency.
Figure 3c shows the agreement between such a discovered
analytical relationship and the DFT results (spanning three orders
of magnitude) for the benchmark data set of 82 insulators, as well
as for four new ones that were not included in the original training
data set.
The phenomenological model was later employed to system-

atically screen and identify perovskite compounds with high
breakdown strength. The purely machine learning based screen-
ing revealed that boron-containing compounds are of particular
interest, some of which were predicted to exhibit remarkable
intrinsic breakdown strength of ~1 GV/m (see Fig. 3d). These
predictions were subsequently confirmed using first principles
computations.32

The LASSO-based and related schemes have also been shown
to be enormously effective at predicting the preferred crystal
structures of materials. In a pioneering study that utilized the
LASSO-based approach, Ghiringelli and co-workers were able to
classify binary octet insulators into tendencies for the formation of
rock salt versus zinc blende structures.28,29,33 More recently, Bialon
and co-workers34 aimed to classify 64 different prototypical crystal
structures formed by AxBy type compounds, where A and B are sp-
block and transition metal elements, respectively. After searching
over a set of 1.7 × 105 non-linear descriptors formed by physically
meaningful functions of primary coarse-level descriptors such as
band-filling, atomic volume, and different electronegativity scales
of the sp and d elements, the authors were able to find a set of
three optimal descriptors. A three-dimensional structure-map—
built on the identified descriptor set—was used to classify 2105
experimentally known training examples
available from the Pearson’s Crystal Database35 with an 86%
probability of predicting the correct crystal structure. Likewise,
Oliynyk and co-workers recently used a set of elemental
descriptors to train a machine-learning model, built on a
random forest algorithm,36 with an aim to accelerate the search
for Heusler compounds. After training the model on available
crystallographic data from Pearson’s Crystal Database35 and the
ASM Alloy Phase Diagram Database37 the model was used to
evaluate the probabilities at which compounds with the
formula AB2C will adopt Heusler structures. This approach was
exceptionally successful in distinguishing between Heusler and

non-Heusler compounds (with a true positive rate of 94%),
including the prediction of unknown compounds and flagging
erroneously assigned entries in the literature and in crystal-
lographic databases. As a proof of concept, 12 novel predicted
candidates (Gallides with formulae MRu2Ga and RuM2Ga,
where M = Ti, V, Cr, Mn, Fe, and Co) were synthesized and
confirmed to be Heusler compounds. One point to be cautious
about when creating an enormous number of compound
descriptors (starting from a small initial set of primary descriptors)
is model interpretability. Efforts must be taken to ensure
that the final set of shortlisted descriptors (e.g., the output of
the LASSO process) is stable, i.e., the same or similar set of
compound descriptors is obtained during internal cross-validation
steps, lest the process becomes a victim of the “curse of
dimensionality.”
Yet another application of the gross-level descriptors relate to

the prediction of the band gap of insulators.38–42 Rajan and co-
workers38 have used experimentally available band gaps of ABC2
chalcopyrite compounds to train regression models with electro-
negativity, atomic number, melting point, pseudopotential radii,
and the valence for each of the A, B, and C elements as features.
Just using the gross-level elemental features, the developed
machine learning models were able to predict the experimental
band gaps with moderate accuracy. In a different study, Pilania
and co-workers41 used a database consisting of computed band
gaps of ~1300 AA′BB′O6 type double perovskites to train a kernel
ridge regression (KRR) machine learning model, a scheme that
allows for nonlinear relationships based on measures of (dis)
similarity between fingerprints, for efficient predictions of the
band gaps. A set of descriptors with increasing complexity was
identified by searching across a large portion of the feature space
using LASSO, with ≥ 1.2 million compound descriptors created
from primary elemental features such as electronegativities,
ionization potentials, electronic energy levels, and valence orbital
radii of the constituent atomic species. One of the most important
chemical insights that emerged from this effort was that the band
gap in the double perovskites is primarily controlled (and
therefore effectively learned) by the lowest occupied energy
levels of the A-site elements and electronegativities of the B-site
elements.
Other successful attempts of using gross-level descriptors

include the creation of surrogate models for the estimation of
formation enthalpies,43–45 free energies,46 defect energetics,47

melting temperatures,48,49 mechanical properties,50–52 thermal
conductivity,53 catalytic activity,54,55 and radiation damage resis-
tance.56 Efforts are also underway for the identification of novel
shape memory alloys,57 improved piezoelectrics,58 MAX phases,59

novel perovskite60 and double perovskite halides,43,60 CO2 capture
materials,61 and potential candidates for water splitting.62

Emerging materials informatics tools also offer tremendous
potential and new avenues for mining for structure-property-
processing linkages from aggregated and curated materials data
sets.63 While a large fraction of such efforts in the current literature
has considered relatively simple definitions of the material that
included mainly the overall chemical composition of the material,
Kalidindi and co-workers64–67 have recently proposed a new
materials data science framework known as Materials Knowledge
Systems68,69 that explicitly accounts for the complex hierarchical
material structure in terms of n-point spatial correlations (also
frequently referred to as n-point statistics). Further adopting the n-
point statistics as measures to quantify materials microstructure, a
flexible computational framework has been developed to
customize toolsets to understand structure-property-processing
linkages in materials science.70
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EXAMPLES OF LEARNING BASED ON MOLECULAR FRAGMENT-
LEVEL DESCRIPTORS
The next in the hierarchy of descriptor types are those that encode
finer details than those captured by the gross-level properties.
Within this class, materials are described in terms of the basic
building blocks they are made of. The origins of “block-level” or
“molecular fragment” based descriptors can be traced back to
cheminformatics, which is a field of theoretical chemistry that
deals with correlating properties such as biological activity,
physio-chemical properties and reactivity with molecular structure
and fragments,71–73 leading up to what is today referred to as
quantitative structure activity/property relationships (QSAR/QSPR).
Within materials science, specifically, within polymer science,

the notions underlying QSAR/QSPR ultimately led to the successful
group contribution methods.8 Van Krevelen and co-workers
studied the properties of polymers and discovered that they
were strongly correlated to the chemical structure (i.e., nature of
the polymer repeat unit, end groups, etc.) and the molecular
weight distribution. They observed that polymer properties such
as glass transition temperature, solubility parameter and bulk
modulus (which were, and still are, difficult to compute using
traditional computational methods) were correlated with the
presence of chemical groups and combinations of different
groups in the repeat unit. Based on a purely data-driven approach,
they developed an “atomic group contribution method” to
express various properties as a linear weighted sum of the
contribution (called atomic group parameter) from every atomic
group that constituted the repeat unit. These groups could be
units like CH2, C6H4, CH2-CO, etc., that make up the polymer. It was

also noticed that factors such as the presence of aromatic rings,
long side chains and cis/trans conformations influence the
properties, prompting their introduction into the group additivity
scheme. For instance, a CH2 group attached to an aromatic ring
would have a different atomic group parameter than a CH2 group
attached to an aliphatic group. In this fashion, nearly all the
important contributing factors were taken into account, and linear
empirical relationships were devised for thermal, elastic and other
polymer properties. However, widespread usage of these surro-
gate models is still restricted because (1) the definition of atomic
groups is somewhat ad hoc, and (2) the target properties are
assumed to be linearly related to the group parameters.
Modern data-driven methods have significantly improved on

these earlier ideas with regards to both issues mentioned above.
Recently, in order to enable the accelerated discovery of polymer
dielectrics,74–79 hundreds of polymers built from a chemically
allowed combination of seven possible basic units, namely, CH2,
CO, CS, O, NH, C6H4, and C4H2S, were considered, inclusive of van
der Waals interactions,80 and a set of properties relevant for
dielectric applications, namely, the dielectric constant and band
gap, were computed using DFT.74,81 These polymers were then
fingerprinted by keeping track of the occurrence of a fixed set of
molecular fragments in the polymers in terms of their number
fractions.81,82 A particular molecular fragment could be a triplet of
contiguous blocks such as –NH–CO–CH2– (or, at a finer level, a
triplet of contiguous atoms, such as C4–O2–C3 or C3–N3–H1, where
Xn represents an n-fold coordinated X atom).83,84 All possible
triplets were considered (some examples are shown in Fig. 4a),
and the corresponding number fractions in a specific order
formed the fingerprint of a particular polymer (see Fig. 4b). This
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procedure provides a uniform and seamless pathway to represent
all polymers within this class, and the procedure can be
indefinitely generalized by considering higher order fragments
(i.e., quadruples, quintuples, etc., of atom types). Furthermore,
relationships between the fingerprint and properties have been
established using the KRR learning algorithm; a schematic of how
this algorithm works is shown in Fig. 4c. The capability of this
scheme for dielectric constant and band gap predictions is
portrayed in Fig. 4d. These predictive tools are available online
(Fig. 4e) and are constantly being updated.85 The power of such
modern data-driven molecular fragment-based learning
approaches (like its group contribution predecessor) lies in the
realization that any type of property related to the molecular
structure—whether computable using DFT (e.g., band gap,
dielectric constant) or measurable experimentally (e.g., glass
transition temperature, dielectric loss)—can be learned and
predicted.
The molecular fragment-based representation is not restricted

to polymeric materials. Novel compositions of AxByOz ternary
oxides and their most probable crystal structures have been
predicted using a probabilistic model built on an experimental
crystal structure database.86 The descriptors used in this study are
a combination of the type of crystal structure (spinel, olivine, etc.)
and the composition information, i.e., the elements that constitute
the compound. Likewise, surrogate machine learning models have
been developed for predicting the formation energies of AxByOz

ternary compounds using only compositional information as
descriptors, trained on a data set of 15,000 compounds from the
Inorganic Crystal Structure Database.44 Using this approach, 4500
new stable materials have been discovered. Finally, surrogate
models have been developed for predicting the formation
energies of elpasolite crystals with the general formula A2BCD6,
based mainly on compositional information. The descriptors used
take into account the periodic table row and column of elements
A, B, C, and D that constitute the compound (although this
fingerprint could have been classified as a gross-level one, we
choose to place this example in the present Section as the
prototypical structure of the elpasolite was implicitly assumed in
this work and fingerprint). Important correlations and trends were
revealed between atom types and the energies; for example, it
was found that the preferred element for the D site is F, and that
for the A and B sites are late group II elements.43

EXAMPLES OF LEARNING BASED ON SUB-ANGSTROM-LEVEL
DESCRIPTORS
We now turn to representing materials at the finest possible scale,
such that the fingerprint captures precise details of atomic
configurations with high fidelity. Such a representation is useful in
many scenarios. For instance, one may attempt to connect this
fine-scale fingerprint directly with the corresponding total
potential energy with chemical accuracy, or with structural
phases/motifs (e.g., crystal structure or the presence/absence of
a stacking fault). The former capability can lead to purely data-
driven accelerated atomistic computational methods, and the
latter to refined and efficient on-the-fly characterization schemes.
“Chemical accuracy” specifically refers to potential energy and

reaction enthalpy predictions with errors of < 1 kcal/mol, and
atomic force predictions (the input quantity for molecular
dynamics, or MD, simulations) with errors of < 0.05 eV/Å. Chemical
accuracy is key to enable reliable MD simulations (or for precise
identification of the appropriate structural phases or motifs), and
is only possible with fine-level fingerprints that offer sufficiently
high configurational resolution, more than those in the examples
encountered thus far.
The last decade has seen spectacular activity and successes in

the general area of data-driven atomistic computations. All
modern atomistic computations use either some form of quantum

mechanical scheme (e.g., DFT) or a suitably parameterized semi-
empirical method to predict the properties of materials, given just
the atomic configuration. Quantum mechanical methods are
versatile, i.e., they can be used to study any material, in principle.
However, they are computationally demanding, as complex
differential equations governing the behavior of electrons are
solved for every given atomic configuration. Systems involving at
most about 1000 atoms can be simulated routinely in a practical
setting today. In contrast, semi-empirical methods use prior
knowledge about interatomic interactions under known condi-
tions and utilize parameterized analytical equations to determine
properties such as the total potential energies, atomic forces, etc.
These semi-empirical force fields are several orders of magnitude
faster than quantum mechanical methods, and are the choice
today for routinely simulating systems containing millions to
billions of atoms, as well as the dynamical evolution of systems at
nonzero temperatures (using the MD method) at timescales of
nanoseconds to milliseconds. However, a major drawback of
traditional semi-empirical force fields is that they lack versatility,
i.e., they are not transferable to situations or materials for which
the original functional forms and parameterizations do not apply.
Machine learning is rapidly bridging the chasm between the

two extremes of quantum mechanical and semi-empirical
methods, and has offered surrogate models that combine the
best of both worlds. Rather than resort to specific functional forms
and parameterizations adopted in semi-empirical methods (the
aspects that restrict their versatility), machine learning methods
use an {atomic configuration→ property} data set, carefully
prepared, e.g., using DFT, to make interpolative predictions of
the property of a new configuration at speeds several orders of
magnitude faster than DFT. Any material for which adequate
reference DFT computations may be performed ahead of time can
be handled using such a machine learning scheme. Thus, the lack
of versatility issue of traditional semi-empirical approach and the
time-intensive nature of quantum mechanical calculations are
simultaneously addressed, while also preserving quantum
mechanical and chemical accuracy.
The primary challenge though has been the creation of suitable

fine-level fingerprinting schemes for materials, as these finger-
prints are required to be strictly invariant with respect to arbitrary
translations, rotations, and exchange of like atoms, in addition to
being continuous and differentiable (i.e., “smooth”) with respect to
small variations in atomic positions. Several candidates, including
those based on symmetry functions,87–89 bispectra of neighbor-
hood atomic densities,90 Coulomb matrices (and its variants),91,92

smooth overlap of atomic positions (SOAP),93–96 and others,97,98

have been proposed. Most fingerprinting approaches use
sophisticated versions of distribution functions (the simplest one
being the radial distribution function) to represent the distribution
of atoms around a reference atom, as qualitatively captured in
Fig. 5a. The Coulomb matrix is an exception, which elegantly
represents a molecule, with the dimensionality of the matrix being
equal to the total number of atoms in the molecule. Although
questions have arisen with respect to smoothness considerations
and whether the representation is under/over-determined
(depending on whether the eigenspectrum or the entire matrix
is used as the fingerprint),93 this approach has been shown to be
able to predict various molecular properties accurately.92

Figure 5b also shows a general schema typically used in the
construction of machine learning force fields, to be used in MD
simulations. Numerous learning algorithms—ranging from neural
networks, KRR, Gaussian process regression (GPR), etc.—have
been utilized to accurately map the fingerprints to various
materials properties of interest. A variety of fingerprinting
schemes, as well as learning schemes that lead up to force fields
have been recently reviewed.9,93,99 One of the most successful and
widespread machine learning force field schemes to date is the
one by Behler and co-workers,87 which uses symmetry function

Machine learning in materials informatics
R Ramprasad et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2017)  54 



fingerprints mapped to the total potential energy using a neural
network. Several applications have been studied, including surface
diffusion, liquids, phase equilibria in bulk materials, etc. This
approach is also quite versatile in that multiple elements can be
considered. Bispectra based fingerprints combined with GPR
learning schemes have lead to Gaussian approximation poten-
tials,87,90 which have also been demonstrated to provide chemical
accuracy, versatility and efficiency.
A new development within the area of machine learning force

fields is to learn and predict the atomic forces directly;100–105 the
total potential energy is determined through appropriate integra-
tion of the forces along a reaction coordinate or MD trajectory.105

These approaches are inspired by Feynman’s original idea that it

should be possible to predict atomic forces given just the atomic
configuration, without going through the agency of the total
potential energy.106 An added attraction of this perspective is that
the atomic force can be uniquely assigned to an individual atom,
while the potential energy is a global property of the entire system
(partitioning the potential energy to atomic contributions does
not have a formal basis). Mapping atomic fingerprints to purely
atomic properties can thus lead to powerful and accurate
prescriptions. Figure 5c, for instance, compares the atomic forces
at the core of an edge dislocation in Al, predicted using a machine
learning force prediction recipe called AGNI, with the DFT forces
for the same atomic configuration. Also shown are forces
predicted using the embedded atom method (EAM), a popular
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classical force field, for the same configuration. EAM tends to
severely under-predict large forces while the machine learning
scheme predicts forces with high fidelity (neither EAM nor the
machine learning force field were explicitly trained on dislocation
data). This general behavior is consistent with recent detailed
comparisons of EAM with machine learning force fields.107 It is
worth noting that although this outlook of using atomic forces
data during force field development is reminiscent of the “force-
matching” approach of Ercolessi and Adams,108 this new
development is distinct from that approach in that it attempts
to predict the atomic force given just the atomic configuration.
Another notable application of fine-level fingerprints has been

in the use of the electronic charge density itself as the
representation to learn various properties82 or density func-
tionals,109–111 thus going to the very heart of DFT. While these
efforts are in a state of infancy—as they have dealt with mainly
toy problems and learning the kinetic energy functional—such
efforts have great promise as they attempt to integrate machine
learning methods within DFT (all other DFT-related informatics
efforts so far have utilized machine learning external to DFT).
Fine-level fingerprints have also been used to characterize

structure in various settings. Within a general crystallographic
structure refinement problem, one has to estimate the structural
parameters of a system, i.e., the unit cell parameters (a, b, c, α, β,
and γ) that best fit measured X-ray diffraction (XRD) data. Using a
Bayesian learning approach and a Markov chain Monte Carlo
algorithm to sample multiple combinations of possible structural
parameters for the case of Si, Fancher and co-workers112 not only
accurately determined the estimates of the structural parameters,
but also quantified the associated uncertainty (thus going beyond
the conventional Rietveld refinement method).
Unsupervised learning using fine-level fingerprints (and cluster-

ing based on these fingerprints) has led to the classification of
materials based on their phases or structural characteristics.11,12

Using the XRD spectrum itself as the fingerprint, high-throughput
XRD measurements for various compositional spreads11,12,113–116

have been used to automate the creation of phase diagrams.
Essentially, features of the XRD spectra are used to distinguish
between phases of a material as a function of composition.
Likewise, on the computational side, the SOAP fingerprints have
been effectively used to distinguish between different allotropes
of materials, as well as different motifs that emerge during the
course of a MD simulation (see Fig. 5d for an example).117

CRITICAL STEPS GOING FORWARD
Quantifying the uncertainties of predictions
Given that machine learning predictions are inherently statistical
in nature, uncertainties must be expected in the predictions.
Moreover, predictions are typically and ideally interpolative
between data points corresponding to previously seen data. To
what extent a new case for which a prediction needs to be made
falls in or out of the domain of the original data set (i.e., to what
extent the predictions are interpolative or extrapolative) may be
quantified using the predicted uncertainty. While strategies are
available to prescribe prediction uncertainties, these ideas have
been explored only to a limited extent within materials
science.57,118 Bayesian methods (e.g., Gaussian process regres-
sion)15 provide a natural pathway for estimating the uncertainty of
the prediction in addition to the prediction itself. This approach
assumes that a Gaussian distribution of models fit the available
data, and thus a distribution of predictions may be made. The
mean and variance of these predictions—the natural outcomes of
Bayesian approaches—are the most likely predicted value and the
uncertainty of the prediction, respectively, within the spectrum of
models and the fingerprint considered. Other methods may also
be utilized to estimate uncertainties, but at significant added cost.

A straightforward and versatile scheme is bootstrapping,119 in
which different (but small) subsets of the data are randomly
excluded, and several prediction models are developed based on
these closely related but modified data sets. The mean and
variance of the predictions from these bootstrapped models
provide the property value and expected uncertainty. Essentially,
this approach attempts to probe how sensitive the model is with
respect to slight “perturbations” to the data set. Another related
methodology is to explicitly consider a variety of closely related
models, e.g., neural networks or decision trees with slightly
different architectures, and to use the distribution of predictions
to estimate uncertainty.89

Adaptive learning and design
Uncertainty quantification has a second important benefit. It can
be used to continuously and progressively improve a prediction
model, i.e., render it a truly learning model. Ideally, the learning
model should adaptively and iteratively improve by asking
questions such as “what should be the next new material system
to consider or include in the training set that would lead to an
improvement of the model or the material?” This may be
accomplished by balancing the tradeoffs between exploration
and exploitation.118,120 That is, at any given stage of an iterative
learning process, a number of new candidates may be predicted
to have certain properties with uncertainties. The tradeoff is
between exploiting the results by choosing to perform the next
computation (or experiment) on the material predicted to have
the optimal target property or further improving the model
through exploration by performing the calculation (or experiment)
on a material where the predictions have the largest uncertainties.
This can be done rigorously by adopting well-established
information theoretic selector frameworks such as the knowledge
gradient.121,122 In the initial stages of the iterative process, it is
desired to “explore and learn” the property landscape. As the
machine learning predictions improve and the associated
uncertainties shrink, the adaptive design scheme allows one to
gradually move away from exploration towards exploitation. Such
an approach, schematically portrayed in Fig. 6a, enables one to
systematically expand the training data towards a target chemical
space, where materials with desired functionality are expected to
reside.
Some of the first examples of using adaptive design for targeted

materials discovery include identification of shape memory alloys
with low thermal hysteresis57 and accelerated search for BaTiO3-
based piezoelectrics with optimized morphotropic phase bound-
ary.58 In the first example, Xue and co-workers57 employed the
aforementioned adaptive design framework to find NiTi-based
shape memory alloys that may display low thermal hysteresis.
Starting from a limited number of 22 training examples and going
through the iterative process 9 times, 36 predicted compositions
were synthesized and tested from a potential space of ~800,000
compound possibilities. It was shown that 14 out of these 36 new
compounds were better (i.e., had a smaller thermal hysteresis)
than any of the 22 compounds in the original data set. The second
successful demonstration of the adaptive design approach
combined informatics and Landau–Devonshire theory to guide
experiments in the design of lead-free piezoelectrics.58 Guided by
predictions from the machine learning model, an optimized solid
solution, (Ba0.5Ca0.5)TiO3–Ba(Ti0.7Zr0.3)O3, with piezoelectric prop-
erties was synthesized and characterized to show better
temperature reliability than other BaTiO3-based piezoelectrics in
the initial training data.

Other algorithms
The materials science community is just beginning to explore and
utilize the plethora of available information theoretic algorithms
to mine and learn from data. The usage of an algorithm is driven
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largely by need, as it should. One such need is to be able to learn
and predict vectorial quantities. Examples include functions, such
as the electronic or vibrational density of states (which are
functions of energy or frequency). Although, the target property in
these cases may be viewed as a set of scalar quantities at each
energy or frequency (for a given structure) to be learned and
predicted independently, it is desirable to learn and predict
the entire function simultaneously. This is because the value of the
function at a particular energy or frequency is correlated to the
function values at other energy or frequency values. Properly
learning the function of interest requires machine learning
algorithms that can handle vectorial outputs. Such algorithms
are indeed available,123,124 and if exploited can lead to prediction
schemes of the electronic structure for new configurations of
atoms. Another class of examples where vector learning is
appropriate includes cases where the target property is truly a
vector (e.g., atomic force) or a tensor (e.g., stress). In these cases,
the vector or tensor transforms in a particular way as the material
itself is transformed, e.g., if it is rotated (in the examples of
functions discussed above, the vectors, i.e., the functions, are
invariant to any unitary transformation of the material). These truly
vectorial or tensorial target property cases will thus have to be
handled with care, as has been done recently using vector
learning and covariant kernels.102

Another algorithm that is beginning to show value within
material science falls under multi-fidelity learning.125 This learning
method can be used when a property of interest can be computed
at several levels of fidelities, exhibiting a natural hierarchy in both
computational cost and accuracy. A good materials science
example is the band gap of insulators computed at an inexpensive
lower level of theory, e.g., using a semilocal electronic exchange-
correlation functional (the low-fidelity value), and the band gap
computed using an more accurate, but expensive, approach, e.g.,
using a hybrid exchange-correlation functional (the high-fidelity
value). A naive approach in such a scenario can be to use a low-
fidelity property value as a feature in a machine learning model to
predict the corresponding higher fidelity value. However, using
low-fidelity estimates as features strictly requires the low-fidelity
data for all materials for which predictions are to be made using

the trained model. This can be particularly challenging and
extremely computationally demanding when faced with a
combinatorial problem that targets exploring vast chemical and
configurational spaces. A multi-fidelity co-kriging framework, on
the other hand, can seamlessly combine inputs from two or more
levels of fidelities to make accurate predictions of the target
property for the highest fidelity. Such an approach, schematically
represented in Fig. 6b, requires high-fidelity training data only on
a subset of compounds for which low-fidelity training data is
available. More importantly, the trained model can make efficient
highest-fidelity predictions even in the absence of the low-fidelity
data for the prediction set compounds. While multi-fidelity
learning is routinely used in several fields to address computa-
tionally challenging engineering design problems,125,126 it is only
beginning to find applications in materials informatics.42

Finally, machine learning algorithms may also lead to strategies
for making the so-called “inverse design” of materials possible.
Inverse design refers to the paradigm whereby one seeks to
identify materials that satisfy a target set of desired properties (in
this parlance, the “forward” process refers to predicting the
properties of a given material).127 Within the machine learning
context, although the backward process of going from a desired
set of properties to the appropriate fingerprints is straightforward,
the process of inverting the fingerprint to actual physically and
chemically meaningful materials continues to be a major hurdle.
Two strategies that are adopted to achieve inverse design within
the context of machine learning involves either inverting the
desired properties to only fingerprints that correspond to
physically realizable materials (through imposition of constraints
that fingerprint components are required to satisfy),83,127 or
adopting schemes such as the genetic algorithm or simulated
annealing to determine iteratively a population of materials that
meet the given target property requirements.81,83 Despite these
developments, true inverse design continues to remain a
challenge (although materials design through adaptive learning
discussed above appears to have somewhat mitigated this
challenge).
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DECISIONS ON WHEN TO USE MACHINE LEARNING
Perhaps the most important question that plagues new research-
ers eager to use data-driven methods is whether their problem
lends itself to such methods. Needless to say, the existence of past
reliable data, or efforts devoted to its generation for at least a
subset of the critical cases in a uniform and controlled manner, is a
prerequisite for the adoption of machine learning. Even so, the
question is the appropriateness of machine learning for the
problem at hand. Ideally, data-driven methods should be aimed at
(1) properties very difficult or expensive to compute or measure
using traditional methods, (2) phenomena that are complex
enough (or nondeterministic) that there is no hope for a direct
solution based on solving fundamental equations, or (3)
phenomena whose governing equations are not (yet) known,
providing a rationale for the creation of surrogate models. Such
scenarios are replete in the social, cognitive and biological
sciences, explaining the pervasive applications of data-driven
methods in such domains. Materials science examples ideal for
studies using machine learning methods include properties such
as the glass transition temperature of polymers, dielectric loss of
polycrystalline materials over a wide frequency and temperature
range, mechanical strength of composites, failure time of
engineering materials (e.g., due to electrical, mechanical or
thermal stresses), friction coefficient of materials, etc., all of which
involve the inherent complexity of materials, i.e., their polycrystal-
line or amorphous nature, multi-scale geometric architectures, the
presence of defects of various scales and types, and so on.
Machine learning may also be used to eliminate redundancies

underlying repetitive but expensive operations, especially when
interpolations in high-dimensional spaces are required, such as
when properties across enormous chemical and/or configurational
spaces are desired. An example of the latter scenario, i.e., an
immense configurational space, is encountered in first principles
molecular dynamics simulations, when atomic forces are eval-
uated repetitively (using expensive quantum mechanical
schemes) for myriads of very similar atomic configurations. The
area of machine learning force fields has burgeoned to meet this
need. Yet another setting where large chemical and configura-
tional spaces are encountered is the emerging domain of high-
throughput materials characterization, where on-the-fly predic-
tions are required to avoid data accumulation bottlenecks.
Although materials informatics efforts so far have largely focused
on model problems and the validation of the general notion of
data-driven discovery, active efforts are beginning to emerge that
focus on complex real-world materials applications, strategies to
handle situations inaccessible to traditional materials computa-
tions, and the creation of adaptive prediction frameworks
(through adequate uncertainty quantification) that build efficien-
cies within rational materials design efforts.
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