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ABSTRACT: Mining of currently available and evolving
materials databases to discover structure−chemistry−property
relationships is critical to developing an accelerated materials
design framework. The design of new and advanced polymeric
dielectrics for capacitive energy storage has been hampered by
the lack of sufficient data encompassing wide enough chemical
spaces. Here, data mining and analysis techniques are applied
on a recently presented computational data set of around 1100
organic polymers, organometallic polymers, and related
molecular crystals, in order to obtain qualitative understanding of the origins of dielectric and electronic properties. By
probing the relationships between crucial chemical and structural features of materials and their dielectric constant and band gap,
design rules are devised for optimizing either property. Learning from this data set provides guidance to experiments and to
future computations, as well as a way of expanding the pool of promising polymer candidates for dielectric applications.

■ INTRODUCTION

For a long time, empirical data has helped build chemical
intuition and scientific insights and supported the formulation
of chemical and physical laws. Some classic examples cited in
this regard are Hume-Rothery’s set of rules for miscibility in a
solid solution1 and the Hall-Petch relationship between
material strength and grain size.2,3 Analysis of data procured
from meticulous experimentation was key to developing these
rules, showing that data-driven approaches have sometimes
been a great ally of the materials scientist. Experimental data,
while invaluable, could suffer from being time-intensive,
nonuniform, and possibly irreproducible; on the other hand,
computational methods provide the means to generate data
much faster at a uniform level of theory. Indeed, modeling of
materials on a computer before a single experiment is even
conceived is steadily becoming the preferred route of materials
design.4−28 Today, one can find several impressive examples of
materials design via high-throughput computation,4−9 convert-
ing computational data into useful design rules and prediction
models,10−24,29 computation-guided experimental design,25−28

and development of enormously useful materials data-
bases.30−33 Data, whether experimental or computational, can
be mined to unearth the role of chemistry, structure, and other
crucial factors in determining the properties of materials. Figure
1 tries to capture the mechanism of converting materials data
into learning in the form of laws, rules, and models.
Recently, we implemented a computation-guided, data-

driven strategy for the rational design of new and advanced
polymer dielectrics for capacitive energy storage applica-
tions.25,34−46 Density functional theory47−53 was used as the
computational workhorse to estimate the dielectric and

electronic properties of several organic and organometallic
polymers, leading to the synthesis and characterization of many
candidates35−40 that could potentially replace the current
polymer standard for capacitor dielectrics, biaxially oriented
polypropylene (BOPP). This work also led to the generation of
a comprehensive computational data set of ∼1100 polymers
and related materials, recently presented in its entirety34 and
collected in the form of a “live” online database and polymer
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Figure 1. Data-driven materials design philosophy.
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recommendation engine.54 Specifically, this data set comprised
of the computed electronic band gaps and dielectric constants
(two properties that provide initial screening criteria for
attractive capacitor dielectrics) of many commonly known
polymers, novel organic polymers, newly proposed metal
containing polymers, and various molecular crystals.
In this work, we attempt to mine this data to obtain a critical

understanding of how factors such as the chemical composition
and coordination environment affect the dielectric constant and
band gap. A systematic way of doing this involves representing
all the materials in terms of f ingerprints,5,14,24,55−69 which are
then mapped to the properties of interest. Fingerprinting is
typically performed using easily attainable physical and
chemical characteristics (often referred to as descriptors or
feature vectors) such as composition, elemental properties, and
coordination environment, in a way that is unique, general, and
reproducible.55,70,71 Mapping the fingerprint to the property
helps reveal the correlation (or lack thereof) between any
fingerprint component and the property in question. We
fingerprint the polymeric (and related) materials using a
scheme that encodes compositional and connectivity informa-
tion by quantifying the fraction of different types of atoms and
the different types of chemical bonds present.72

Our analysis has revealed several key guidelines (many of
them nonobvious) for designing dielectric polymers. For
instance, we find that while chemical bonds between 4-fold C
atoms and H atoms or 2-fold O atoms enhance the band gap,
bonds between 3-fold C atoms and S atoms increase the
electronic component of the dielectric constant while adversely
affecting the band gap. Further, we observe significant
differences in the properties of organics and organometallics,
with the latter showing notably higher dielectric constants for a
given large band gap. The identity of the metal atom, its
concentration by volume, and the coordination environment it
adopts are each seen to influence the dielectric constant. While
the commonly seen 4-fold metal coordination has less of an
effect, 6-fold coordinated metals such as Sn, Zn, and Cd when
bonded to electronegative atoms like O and F cause the
greatest enhancement in ionic contribution to the dielectric
constant (and consequently, the total dielectric constant).
In the following sections, we briefly explain the computa-

tional procedure for data generation and discuss the details of
fingerprint development. Next, we present all the data in the

form of plots between properties and make observations about
clearly visible trends. Following that, we draw correlations
between the fingerprint components and the properties, which
lead to the aforementioned insights. We end by providing some
guidelines for property optimization in the present classes of
polymers and related materials, and some concluding remarks.

■ METHODOLOGY
Computational Data Generation. All the computational data

was generated over a series of studies related to new and advanced
polymer dielectrics.25,34,36,37,41,55 Figure 2a shows the distribution of
various material classes, like organic crystals, common polymers (for
example, polyethylene, PVDF, and polystyrene), novel organic
polymers, and different types of organometallic polymers, across the
data set. It can be seen that nearly 80% of the data is from polymeric
materials; several molecular crystals were considered for computations
in order to add variety to the data set in terms of chemistry and
coordination environments. For the molecular crystals and common
polymers, crystal structure information was obtained from various
sources in the literature, as explained in the past work.34 However,
novel organic and organometallic polymers form the bulk of the data
set and the lack of any structural information related to these materials
necessitated the application of a structure prediction algorithm.73 A
glimpse of the two major polymer classes in the data set (making up
the 34% novel organic polymers and the 43% organometallic polymers
shown in Figure 2a, respectively) is provided in Figure 2b in terms of
their constituent chemical building units. While the organic polymers
were built from linear combinations of commonly seen chemical
blocks like CH2 and C6H4,

41,55 the organometallic polymers contained
metal−ester units (and in the case of organo-Sn polymers, dimethyl tin
ester (Sn(CH3)2(COO)2)

36,37 and tin halide (SnF2/SnCl2)
74 units)

flanked by linker CH2 units, with the metal atom chosen from a set of
a few selected metals.34,36,37

All the data was prepared using density functional theory (DFT) as
implemented in the Vienna Ab-Initio Software Package (VASP).75 We
would like to refer the readers to ref 32 for more specific
computational details than mentioned here, such as the exchange-
correlation functionals, the energy cut-offs, and other settings used. It
should be noted that the criteria were kept uniform across the data set.
Van der Waals corrections were explicitly taken into account given the
importance of such interactions in polymeric crystals.76,77 Ground
state crystal structure information was obtained either from the
literature or by using the Minima Hopping algorithm.78,79 While the
HSE functional52 was used to compute the band gaps given their
known accuracy as compared to PBE band gaps,53 the dielectric
constants were computed using the density functional perturbation
theory (DFPT)50,51 formalism at the PBE level of theory.

Figure 2. (a) Distribution of different classes of polymers and related materials present in the data set. (b) Chemical space of (I) organic and (II)
organometallic polymers in the data set.
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Fingerprinting Technique. Our fingerprinting scheme follows
from past work on purely organic polymers and molecular crystals.55,56

It has been hypothesized that the chemical structure (which comprises
of the repeat unit, branches, cross-links, etc.) of a polymer is one of its
most fundamental characteristics and determines all its properties.80 A
chemo-structural fingerprint was required to account for contributions
from various chemical constituents (building blocks, atoms, etc.) and
from combinations of these constituents that exist in the material.
Thus, we used a fingerprint that encodes compositional and
connectivity information by quantifying the fraction of different
types of atoms in the system and the different types of chemical bonds
they form.
Atom types were defined by their chemical identities (such as C, O,

Sn, etc.) along with their coordination number (like 3-fold, 4-fold, 6-
fold, etc.). For instance, C4 referred to a C atom forming 4 different
bonds with neighboring atoms, and Sn6 to an Sn atom forming 6
bonds, each based on predefined bond length ranges. It should be
noted that while characteristic bond lengths are well documented in
the case of purely organic compounds (for instance, a C4−H1 bond
length will be ∼1 Å and a C4−C4 bond length will be ∼1.5 Å56), the
distribution of possible bond lengths is more diverse in the
organometallic systems. As an example, the Sn−O bond length
(known experimentally to be ∼2 Å in tin oxide81) is seen to range
from 2 to 3 Å in the organo-Sn systems in our data set. Defining
appropriate bond length cut-offs is thus of utmost importance for
obtaining meaningful fingerprints; the cut-offs employed in this work
for all possible bonding combinations are listed in Table 1.

In refs 53 and 54, we described a hierarchy of fingerprints, going
from singles to doubles to triples: these refer to the complexity and
dimensionality of the fingerprint. Here, three kinds of fingerprints
were considered again with increasing amounts of information and
increasing complexity:

1. When only the count of each atom type (C4, O2, Sn4, etc.) is
considered, the fingerprint is called “singles”. The fingerprint
dimensionality is equal to the distinct types of atoms, m,
present across the data set (m = 54 for the present data set).

2. When the count of each pair of atom types (C4−C3, Sn6−O3,
Zn4−O2, etc.) is considered, it is called “doubles”. Fingerprint
dimensionality would typically be m2, but it is ∼150 here once
the components that are zero throughout (that is, the pairs that
do not exist in any of the materials) are eliminated. Note here
that the chemical bonds are being taken into account along
with the atoms.

3. When the count of each triplet of atom types (C4−C3−H1,
Sn6−O3−C3, Zn4−O2−C3, etc.) is considered, it is called
“triples”. Fingerprint dimensionality would typically be m3, but
it is ∼500 here once the components that are zero throughout
(that is, the triplets that do not exist in any of the materials) are
eliminated. Note that here, along with the atoms and chemical
bonds, chemical conjugation82 is also being taken into account.

In this fashion, we could keep going higher up in n-tuple
combinations of atoms types, with increasing amount of information
added but with the caveat of increased dimensionality and complexity.
Figure 3 shows a few examples of the different types of singles,
doubles, and triples components that exist in the materials that
constitute the computational data set. It should be noted that, in each
type of fingerprint, the count is normalized with respect to the total
number of atoms in the system, which means every fingerprint
component is essentially a fraction. Periodicity is accounted for, so that
a system if doubled or tripled in size would have the same fingerprint.
While this is an elegant way of fingerprinting polymers, it should be
noted that structural and morphological considerations are ignored
here. Indeed, what makes BOPP, the state-of-the-art polymeric
capacitor dielectric, so attractive is the crystalline changes brought
about by biaxial orientation to improve the stiffness, strength, and
optical properties; our fingerprint would not distinguish between
regular polypropylene and BOPP. However, insights gained in terms
of molecular structure are very valuable, as we demonstrate in the
following sections.

■ RESULTS AND DISCUSSION
Computational Data: Visualization and Initial Obser-

vations. Figure 4 shows all the computational data in the form
of plots between band gap and dielectric constant (divided into
two distinct components, electronic and ionic).25,41 While the
data set can be broadly divided into organics and organo-
metallics, further subdivisions were created as shown in Figure
4 in order to see correlations between the presence of specific
atoms and the corresponding properties. The organics were
divided into systems containing only atoms C and H
(Organics-1), systems containing C, H, O, N, and F
(Organics-2), and systems containing C, H, O, N, and S
(Organics-3), and the organometallics were divided into 10
subsets based on the identity of the constituent metal atom, like
Organo-Sn, Organo-Zn, etc.
A visual examination of the plots in Figure 4 reveals that

while the electronic dielectric constant (ϵelec, a function of
atomic polarizabilities) correlates inversely with the band gap
(Egap), the ionic dielectric constant (ϵionic, coming from IR-
active zone-center vibrational modes) does not and can thus
lead to a total dielectric constant (ϵtotal = ϵelec + ϵionic) that fails
to correlate with Egap, especially for points possessing a high
ϵionic. The organics, which span the entire expanse of the ϵelec
spectrum but generally show very low ϵionic have ϵtotal values
that inversely correlate with Egap. All the organometallics, on the
other hand, show a similar trend in ϵelec but clearly surpass the
organics in ϵionic and thus ϵtotal.
In a past computational study of the dielectric properties of

isolated single chain renditions of metal containing polymers, it
was shown that while ϵelec is directly proportional to the atomic
polarizabilities of the constituent atoms, and ϵionic correlates
directly with the dipole moments in the system and inversely
with rotational barriers around bonds, i.e., the ease with which
they are allowed to swing and stretch.74 Table 2 lists all the
different constituent atoms in the present data set along with
their measured and documented polarizabilities83 and electro-
negativities.84 From Figure 4, it can be seen that while
Organics-1 (containing only C and H atoms) show the lowest

Table 1. Bond Length Cut-Offs Defined for Fingerprinting
Purposes

bond
maximum bond length

(Å) bond
maximum bond length

(Å)

C−C 1.7 Zn−C 2.2
C−H 1.3 Cd−O 2.5
C−O 1.6 Cd−C 2.2
C−F 1.6 Al−O 2.5
O−H 1.4 Al−C 2.2
Sn−C 2.3 Mg−O 2.5
Sn−O 2.6 Mg−C 2.2
Sn−F 3.0 Ca−O 2.5
Sn−Cl 3.0 Ca−C 2.2
C−N 2.0 Hf−O 2.5
N−H 1.4 Hf−C 2.2
N−O 2.0 Pb−O 3.0
C−S 2.0 Pb−C 2.2
Ti−O 2.5 Zr−O 3.0
Ti−C 2.2 Zr−C 2.2
Zn−O 2.5 Al−Cl 2.5
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ϵtotal with nearly negligible ϵionic owing to the closeness of
electronegativities of C and H, Organics-2 (C, H, O, N, and F
atoms) show higher ϵionic values due to the presence of dipoles
formed by highly electronegative atoms like O, N, and F
bonding with C and H. Organics-3 (S atoms included) show
the highest ϵelec values among the organics because of the
higher relative atomic polarizability of S as listed in Table 2,
which also leads to their lower Egap, especially when the
concentration of S atoms is higher.
Further, Table 2 shows that all the metal atoms are much

more polarizable compared to the organic atoms, potentially
leading to a high ϵelec which is then brought down by the
presence of C and H atoms throughout the organometallics.
The electropositive nature of the metal atoms and the high
electronegativities of O and F lead to the presence of large
dipoles in the organometallics. Aside from being polar, these
bonds also display stretching and wagging vibrational modes
that are soft in nature, leading to higher IR intensities at low
frequencies85−87 and, thus, the highest ϵionic values. The
organometallics contain no clear demarcations between the
different subsets, with high ϵionic as well as generally large Egap

shown by all. However, the actual concentration of the metal
atom and the coordination environment it adopts play a crucial
role here, as discussed later.
The above observations provide an example of how patterns

can be extracted from data simply by visual analysis; however,
the problem today is that the rate of data generation far
surpasses our intrinsic ability to process the data. Consequently,
advanced machine learning and data mining techniques are
needed. This involves converting materials to numerically
representative fingerprints and developing models by mapping
them to the properties. As explained in the previous section,
our basis for fingerprinting is the abundance of different types
of atoms along with their respective connectivity information.
While factors such as atomic polarizability, dipole moment and
softness of bonds are not explicitly defined in the fingerprint,
they would nevertheless be taken into account while correlating
fingerprint vectors with the properties. For instance, a
fingerprint component that is a metal-electronegative atom
pair (like Sn−Cl or Zn−O), if strongly correlated with ϵionic,
would prove the same thing observed above: a larger
concentration of polar bonds would lead to a higher ionic

Figure 3. Fingerprinting technique, showing examples of various types of singles, doubles, and triples components found in our polymer data set.

Figure 4. Electronic, ionic, and total dielectric constants plotted against the band gaps for the entire data set, divided into Organics-1 (only C and H
atoms), Organics-2 (C, H, O, N, and F atoms), Organics-3 (C, H, O, N, and S atoms), and various Organo-M subdata sets, depending on the
identity of the metal M present in the polymer. Organo-Sn, Zn, and Cd are plotted with different colors because there are more than 100 systems for
each, while Organo-Ti, Ca, Al, Mg, Zr, Hf, and Pb are all plotted with the same color.

Chemistry of Materials Article

DOI: 10.1021/acs.chemmater.7b02027
Chem. Mater. XXXX, XXX, XXX−XXX

D

http://dx.doi.org/10.1021/acs.chemmater.7b02027


contribution to the dielectric constant. In the following section,
the origins of polymer properties will be explained using the
fingerprint components.
Fingerprint−Property Relationships. Here, we draw

linear correlations between various fingerprint components
and three properties respectively: ϵelec, ϵionic, and Egap. If for a
data set of n members, any fingerprint component column is
denoted as x = [x1, x2, ..., xn], and any property is denoted as y
= [y1, y2, ..., yn]; the Pearson coefficient of linear correlation88

between x and y is defined as

=
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This coefficient can go from 1 (maximum positive
correlation, when x is identical to y) to −1 (maximum negative
correlation, when x is exactly the negative of y). Correlation
coefficients were calculated for each component of the singles
fingerprint and the doubles fingerprint with the properties over
the entire data set; the triples fingerprint was avoided at this
stage for ease of discussion.
Figure 5 shows the correlation coefficients between all the

components of the singles and the three properties (in the form
of bar charts), as well as between some selected components of
the doubles and the properties (in the form of heat maps). The
singles components correlating the most positively and the
most negatively with the properties have been highlighted; the
most relevant doubles components are shown in the middle
covering up the singles that show little or no correlation. Any
component of the heat map refers to a specific pair of atom
types and the color shows the amount of positive or negative
(or no) correlation.
The most positive correlations to ϵelec come from 3-fold C

and 1- or 2-fold S atoms, while the negative correlations are
provided by 4-fold C and H, and 2- and 3-fold O atoms. The
correlations to Egap follow exactly the opposite trend. These

observations can be explained with the help of the atomic
polarizabilities listed in Table 2 as well as the frequencies of
occurrence of different types of atoms. While the metal atoms
have by far the largest polarizabilities, they do not contribute as
much to ϵelec because their relative concentrations compared to
C, H, and O atoms are very small. Meanwhile, S atoms are
present in comparatively higher concentrations in Organics-3,
and their effect in increasing ϵelec and decreasing Egap is
considerable.
The bonds that contribute to large ϵelec are C3−C3, C3−S2,

C3−S1, and C3−H1. The presence of S atoms in Organics-3 is
in the form of thiophene (−C4H2S−) groups and thiol
(−CS−) groups, both of which contain 3-fold C atoms
forming bonds with S atoms, thus explaining the results in
Figure 5a. It can be seen from the heat map in Figure 5c that
the same chemical bonds decrease Egap. C4−C4, C4−H1, and
C4−O2 bonds, on the other hand, increase Egap and decrease
ϵelec. This is owing to all the data subsets other than Organics-3,
in which C and H as well as O atoms exist in abundance and S
atoms do not.

Table 2. All the Constituent Atoms Across the Entire
Dataset, the Respective Subsets That Contain Them, Their
Polarizabilities, and Electronegativitiesa

atom presence in data set
polarizability
(C m2/V)

electronegativity
(Pauling)

C all organics, all organometallics 11.0 2.55
H all organics, all organometallics 4.5 2.1
O Organics-2, Organics-3, all

organometallics
6.04 3.44

N Organics-2, Organics-3, all
organometallics

7.43 3.04

F Organics-2, Organo-Sn 3.76 3.98
S Organics-3 19.6 2.58
Cl Organo-Sn 14.7 3.16
Sn Organo-Sn 52 1.96
Zn Organo-Zn 39.2 1.65
Cd Organo-Cd 46.3 1.69
Pb Organo-Pb 46 2.33
Hf Organo-Hf 109 1.3
Zr Organo-Zr 121 1.33
Mg Organo-Mg 71.7 1.31
Ca Organo-Ca 160 1.0
Al Organo-Al 56.3 1.61
Ti Organo-Ti 99 1.54

aValues for the latter two are taken from refs 80 and 81, respectively.

Figure 5. Correlations between the three properties and different
components of the singles (bar plots) and doubles (heat maps)
fingerprints, respectively.
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Figure 5b shows that the largest positive correlations to ϵionic
are dominated by high coordination number (CN) metal atoms
like Sn6, Zn6, Pb6, and Cd6 and by atoms with high
electronegativity like O, F, and Cl, as evident from Table 2.
The heat map shows that it is indeed chemical bonds between
high CN metals and O2, O3, F2, or Cl2 atoms that, owing to
the dipole moments they introduce in the system, as touched
upon earlier, contribute the highest to ϵionic. Bonds between C3
and O atoms as well as bonds between C4 and Sn6 atoms also
show positive correlations, mainly because of the high
abundance of these bonds in organometallic systems.
Negative correlations with ϵionic are shown by C3, O1, and

the S atoms, owing to relatively lower polarities in systems
where 3-fold C atoms are singly bonded to H, doubly bonded
to O, and singly or doubly bonded to S. It is interesting to note
that while O2 and O3 increase ϵionic greatly, O1 has the
opposite effect; this is because of the abundance of 2- and 3-
fold O atoms bonded either to C or to metal atoms in the
organometallic systems, which show much higher ϵionic values
than the Organics-2 where double bonds between C and O1
atoms are common. Moreover, the C3−O1 double bond
stretching mode of vibration occurs at a higher frequency than
the C4/C3−O2/O3 single bond mode, as shown previously,36

and the former also shows a slightly lower dipole moment
owing to a shorter bond length; this leads to the C4/C3−O2/
O3 bonds contributing to higher ϵionic.
Guidelines for Property Optimization. The analysis

presented in the previous section can be utilized to engineer
novel polymers that are likely to show desirable properties for
capacitor applications, that is, high dielectric constants and large
band gaps. In the past, we found the right mix of chemical
constituents in pure organic polymers to optimize both
properties simultaneously,25,41,55 resulting in the synthesis and
testing of polymer repeat units like −[NH−CO−NH−C6H4]−
and −[NH−CS−NH−C6H4]−, which showed ϵtotal as high as 5
and 6, respectively, and Egap greater than 3 eV. Perhaps more
exciting is the substantial increase in ϵionic seen in organo-
metallic polymers where metal atoms like Sn, Zn, Cd, and Pb
adopt an octahedral coordination surrounded by electro-
negative atoms like O and F. This led to the successful
synthesis of a series of Sn-ester based polymers (with the repeat
unit −[(COO)Sn(CH3)2COO−(CH2)n]−, n ∈ 0, 11; this is
pictured in Figure 2b),36,37 with impressive correspondence
between experimentally measured and computed properties.
While enhancement in ϵtotal from organics to organometallics

is undeniable, Figure 4b showed that the organometallics
themselves cover a wide range of ϵionic values. This comes from
the varying concentrations of metal atom in the system, an
effect we have explored in previous studies.37,41 For instance, in
ref 34, it was shown that the Sn-polyesters experienced a
general decrease in ϵionic (and consequently, ϵtotal) as the
number of linker CH2 units increased and metal concentration
went down. The same trend was observed for organometallics
containing any of the other metals, showing that ϵtotal generally
increases with the metal content. This also follows from Figure
5b, where fingerprint components corresponding to bonds
between 6-fold metal atoms and O/Cl/F atoms (where every
component is the fraction of the particular type of bond in the
material, and as such a measure of the metal content) showed
maximum correlation with ϵionic. That said, a certain amount of
organic linker in the organometallic polymer is beneficial for
easy synthesis and processability into free-standing thin films.41

The fingerprint−property correlations reveal the importance
of the metal concentration, metal coordination number, and
identity of its surrounding atoms in determining the dielectric
constant. Given the great promise offered by the organometallic
polymers, we attempted a closer look at the effect of these
factors by plotting ϵtotal as a function of the identity of metal
atom in Figure 6, using different colors and circle sizes to

distinguish between coordination number and metal content.
The latter quantity is the fraction of the metal covalent
volume89 to the total crystalline volume of the polymer, as
estimated from its computationally obtained crystal structure.
The metal volume fractions ranged from the lower limit of ∼2%
to a high of ∼23%.
It can be seen from Figure 6 that circle size does not

uniformly go up with increase in ϵtotal, which means metal
content is not the only factor affecting the property. In general,
the highest ϵtotal values were shown by systems where the metal
exists in a 6-fold coordination, and systems with 4-fold
coordinated metal atoms dominated the lowest ϵtotal region. It
was further observed that certain polymers containing Sn, Zn,
Cd, and Pb display ϵtotal > 10 even with low metal volume
fractions of 2−5%. This is an important insight, as it implies
that it is possible to boost the dielectric constant of
organometallic polymers without the need to insert a very
large quantity of metal. Indeed, synthetic and cost concerns
dictate that we seek polymers with smaller metal content yet a
large ϵtotal; four of the best polymers in this regard are
highlighted using their repeat units in Figure 6, one each from
the polymers in the Organo-Sn, Zn, Cd, and Pb subdata sets.
The repeat units of the four highlighted polymers, mentioned

in the Figure 6 caption, contain metal based units (SnCl2/
Zn(COO)2/Cd(COO)2/Pb(COO)2) flanked by 6 to 10 CH2
units, which leads to desirably low metal content. It should be
noted that, for each of these polymer repeat units, the structure
prediction algorithm yielded several competing low energy
structures, leading to a whole range of computed dielectric

Figure 6. Dependence of dielectric constant on metal identity, volume
fraction, and coordination number. As shown in the legends, circle
sizes correlate with the metal volume fraction (which ranges from 2%
to 23%) whereas different colors correspond to different metal
coordination numbers (which vary from 4 to 8). Four polymers that
provide the best combination of high dielectric constant and low metal
content (restricted to <5%) are pictured in terms of their repeat units
(from left to right): −[(SnCl2)(CH2)6]−, −[Zn(COO)2(CH2)8]−,
−[Cd(COO)2(CH2)10]−, and −[Pb(COO)2(CH2)10]−.
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constants34 (thus justifying the uneven distribution of evenly
sized circles in Figure 6). The specific structures we show here
are the ones with the respective highest ϵtotal, which if
experimentally isolated could be very rewarding. The Sn-halide
containing polymers were previously recommended for experi-
ments but cast aside owing to difficulty of synthesis,36,37,74

while the Pb-ester based polymer may not be the best choice
because of the toxicity of Pb. However, a series of Zn- and Cd-
ester based polymers (with the repeat unit −[(COO)−M−
COO−(CH2)n]−, where M ∈ Zn, Cd and n ∈ 1, 8) were
recently subjected to synthesis and characterization by our
collaborators, and it was seen that not only did their
experimentally measured properties compare well with the
DFT values, but the relationship between metal content and
ϵtotal was recovered qualitatively. This will be the subject of a
follow up report. Figure 6 can thus prove to be a valuable chart
for polymer chemists in their search for the optimal mix of
metal atom, coordination number and metal content needed in
a polymer backbone for a desired dielectric constant.
Quantitative Prediction of Properties. Studying corre-

lations between different singles and doubles fingerprint
components and the properties has helped us qualitatively
determine the atoms and bonds one would choose or avoid
when looking for a certain desired combination of dielectric and
electronic properties. However, an even more valuable utility
would be to make a quantitative property prediction for any
given polymer based on its fingerprint. In our past work, we
developed such models for ϵelec, ϵionic, and Egap for a data set of
purely organic polymers (pictured in Figure 2a),55 using the
triples fingerprint based on chemical building blocks (such as
CH2, NH, C6H4, etc.) as opposed to atom types. Kernel Ridge
Regression (KRR)4,55 was applied on the data to yield models
with prediction errors of less than 10%. Testing on newer
polymers proved that these models could, within an acceptable
statistical level of accuracy, act as a surrogate for future DFT
computations on polymers belonging the same chemical
subspaces.
We attempted the same here using the triples fingerprint and

employing KRR. Prediction performances for the three
properties are shown in the Supporting Information for three
distinct subdata sets:

• The data set of purely organic polymers, i.e., all the
polymers belonging to the sets Organics-1, Organics-2,
and Organics-3.

• The data set of organic and some organometallic
polymers, i.e., polymers belonging to the sets Organics-
1, Organics-2, Organics-3, Organo-Sn, Organo-Zn, and
Organo-Cd.

• All the organic and organometallic polymers presented in
this work.

It was seen that KRR prediction performances steadily
became worse upon including the organometallic systems, with
ϵionic especially being harder to predict, owing to the sudden
increase in its values, as well as a widening of the range it spans,
from organics to organometallics. While relative prediction
errors of ∼10% are seen for the three properties for pure
organics, similar to the performances obtained in ref 55, the
errors for the dielectric constants went up to as much as ∼30%
for the data sets including the organometallics. It can be
concluded that more variety in the data set of metal containing
polymers is necessary here. Moreover, a stronger dependence
of the dielectric constant of organometallic polymers on the

crystal structure and morphology (as evidenced by the wide
range of property values sometimes obtained for the same
polymer chemical composition) indicates that our finger-
printing definition may not be adequate in training predictive
models. Factors such as polymer side chains, distances between
polymer chains, and percentage of crystallinity could be crucial
here and would need to be considered in future studies where
quantitative prediction is the goal.

■ CONCLUSIONS
A large computational data set of polymers and related
materials has been mined to unravel trends and hidden
chemistry in their dielectric constants and band gaps. By
understanding the role of specific atoms and coordination
environments, certain “design rules” were developed for
optimizing polymers for dielectric (and related) applications.
Some of the main conclusions are listed as follows:

• Organic polymers containing a majority of 4-fold C
atoms bonded to H atoms show very large band gaps but
low electronic dielectric constants and almost negligible
ionic dielectric constants.

• Organic polymers containing S atoms bonded to 3-fold
C atoms show very high electronic dielectric constants
and low band gaps.

• In organic polymers, O and N atoms lead to slightly
higher ionic dielectric constants (compared to polymers
with only C and H atoms) via bonds with C while
maintaining large band gaps.

• Organometallic polymers far outperform pure organics in
terms of simultaneously enhancing the dielectric constant
and the band gap. The metal atom, the metal
concentration, and its coordination chemistry are the
important factors that control the polymer’s dielectric
constant.

• 6-fold Sn, Zn, Cd, and Pb atoms bonded with O or F
lead to the highest ionic dielectric constants observed in
this work, with band gaps in the moderate to high
regions. For many of these polymers, modest metal
fractions (by volume) of 2−5% were sufficient to obtain
dielectric constants greater than 10. The same metal
atoms in a 4-fold coordination, meanwhile, led to lower
dielectric constants between 3 and 5, highlighting the
significance of a higher coordination number.

Although the precise atoms and bonds required to
manipulate the polymer properties have been revealed, in
practice, choosing the right mix of chemical constituents to
optimize different properties simultaneously is no trivial task
and is further complicated by issues of experimental viability,
processability, and stability. Regardless, the process is made
more systematic as a result of these design rules, which can be
further reinforced and improved upon by infusion of fresh data.
Higher amounts of data are being generated on a regular basis
by the community, which when combined with an improved
fingerprint could lead to more accurate and more general
models for the properties of polymers. Further, while
qualitative models as obtained here are more than valuable in
making forecasts on the properties of materials, accurate
prediction models based on regression techniques would enable
quantitative estimates of the properties. Such models have been
developed using the “triples” fingerprint for subsets of the data
in the past55,56 and are now a part of an online on-demand
polymer design tool.54 The most important utility of such
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models is in knowing beforehand the properties of new and
hypothetical polymers and in enabling decisions on whether to
pursue them for a given application or not.
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