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ABSTRACT: To facilitate the development of new polymeric

materials, we report the development of new heuristic models

to predict the dielectric constant, band gap, dielectric loss tan-

gent, and glass transition temperatures for organic polymers.

A new set of features called infinite chain descriptors (ICDs)

was designed and developed especially to characterize organic

polymers, utilizing methods with minimal dependence on pre-

defined fragment libraries. Machine learning models were built

for the aforementioned properties incorporating best practices

in the field such as objective feature selection, cross-validation

and external test sets. All models produced in this study

showed good performance in prediction. A web tool has been

developed and has been made available that supports the

input of novel structures. VC 2016 Wiley Periodicals, Inc. J.

Polym. Sci., Part B: Polym. Phys. 2016, 54, 2082–2091

KEYWORDS: dielectric properties; heuristic model; machine

learning; MQSPR; polymer

INTRODUCTION The first and most important step in shorten-
ing the cycle of new material discovery is creating models
that relate controllable parameters in synthesis to a target
property or set of properties. To this end, Material Quantitative
Structure–Property Relationship (MQSPR) can be applied to
create robust models, particularly when coupled with physics-
based descriptors and appropriate validation methods.1,2

MQSPR refers to the application of quantitative structure–prop-
erty/activity relationship (QSPR/QSAR) modeling within the
domain of materials informatics. In its original application as a
component of drug discovery workflows to predict small mole-
cule physical and biological properties, modern QSPR/QSAR
has been shown to be most effective when used within well-
defined domains of applicability. The motivation for introducing
MQSPR in polymer dielectric design is to create a time-efficient
and low-cost screening method for materials with desired
properties by relating encoded structural information (descrip-
tors) to macroscopic properties.

Dielectric polymeric materials have been used in energy stor-
age devices more than other alternatives, such as ceramics, due

to their high breakdown strengths, low fabricating tempera-
tures, and structural flexibility.3 The utility of the design tool
described here is to enable the design of low loss and high
energy density materials. In this process, a variety of properties
must be considered. For example, for capacitor applications,
suitable solvents need to be identified that can facilitate film
fabrication, and the glass transition temperatures of the result-
ing polymers will need to be predicted to assure that they will
not be within the working temperature range of the capacitor
system. In this application, to have high energy density, poly-
mers need to have both a high dielectric constant and high
breakdown strength. Dielectric loss must also be considered,
and this property is often correlated with high dielectric con-
stants in polar polymers such as PVC and PVF. To find struc-
tures that meet all of these design goals, a set of models needs
to be built that can be quickly applied as part of a materials
design workflow. To be most useful for new material discovery,
model universality is highly desirable.

In the past 30 years, numerous attempts have been made to pre-
dict polymer properties, where the glass transition temperature
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may be the most studied one.1,4–17 Studies on the dielectric
constant and refractive index have also been reported.16–21 Le
et al.22 did a comprehensive review on the QSPR modeling for
material properties in 2012. Basically, these models can be
divided into two categories: group contribution techniques and
descriptor-based methods. Group contribution methods, like
those built by van Krevelen,17 are fast and easy to interpret. The
well-known models built by Bicerano16 can be considered a
mixture of these two categories since molecular connectivity
index descriptors23 and modifications based on substructure
types are both used. Other models utilize more abstract descrip-
tors that may not be as easily interpreted—for example, topo-
logical descriptors or quantum-based descriptors. These two
model types are most widely used because both methods have
different and complementary limitations. There are always
tradeoffs between interpretability and prediction power for
models. While very effective within its defined applicability
domain, a group contribution model is unable to account for the
effect of new substructures not contained in the substructure/
fragment library, leading to instant failure of the method for tru-
ly novel materials. It becomes even more severe when the curat-
ed training data set is small, which is often the case in materials
studies. An additional issue is that the process of partitioning
group contributions between sets of substructures is empirical
and not deterministic, especially when the size of the training
set is small. Consequently, group contribution-based methods
may not be the optimal choice for new material discovery, but
can be useful tools for informing designers of the likely outcome
of including specific functional groups in a system. On the other
hand, descriptor-based methods use a more generalized numer-
ical description of structure and thus can cover a wider domain
of applicability if a sufficient level of physics is embedded in the
descriptors. Descriptor-based modeling practitioners often face
the problem that polymer chain features, especially those
derived from quantum computation, cannot be easily calculated
on a whole realistic polymer chain. Most of the published stud-
ies use features of a minimal repeat unit with hydrogen atoms
as terminating atoms. In this paper and other informatics stud-
ies, the minimal repeat units are usually called monomers. It
should be noted that the usage of this term here is not the same
as in polymer synthesis, where monomers refer to the structure
of small-molecule building blocks prior to polymerization. Simi-
larly, we use dimer and oligomer to describe the multiplication
of the repeat units.

The first question to be answered when modeling polymers
is to define how they should be represented on a molecular
level. Direct computation on polymer chains of realistic
lengths is infeasible, not only because polymer chains are
usually much larger than classical small molecules, but also
due to polydispersity in polymer systems that preclude the
use of a single representative molecule. A natural and com-
mon idea is to use the polymer repeat unit to characterize
unbranched polymers, which essentially uses a small, capped
molecule to represent the chemical features of polymer
chains. Representations of oligomers that include statistical
treatments have also been used.9 However, none of these
methods have adequately addressed the limitations of “local”

molecular representations. Even though studies such as the
one described in Katrizky’s 1996 paper6 considered the
extension of descriptor values for long chains using a numer-
ical treatment, most of the models simply consider a repeat
unit with different end-cap atoms as a complete molecular
representation. Monomers with carbons as end-cap atoms14,
dimers,19 and ring-like dimers21 have been used as ways of
incorporating features of the polymer chemical environment.
With these models, two theoretical issues arise: If a descrip-
tor value is an “extensive” property that varies with the scale
of the local molecular representation (e.g., the monomer and
dimer give different descriptor values), the information
contained in this descriptor is contaminated by the choice of
the molecular representation. This issue makes creating a
universal model trained on data that includes large variation
in repeat unit size problematic. In addition, since the dimer
representation can be seen as the “copolymer” of the two
identical monomers, if the model predicts dimers and mono-
mers differently, a natural consequence is the difficulty in
dealing with alternating copolymers. Another issue, also
mentioned by Mattioni and Jurs,24 is that if oxygen is the
terminating atom, then using hydrogen as end-cap atoms
will introduce properties of a nonexistent hydroxyl group.
Such problems are usually seen in the treatments of polycar-
bonate and nylon.

The premise described here is that descriptors suitable for
predicting polymer properties that converge at higher chain
lengths must have three properties: (i) the descriptors
should represent intensive properties instead of extensive
ones; (ii) the descriptors should provide correct chemical
environments for all atoms; (iii) the descriptors should pro-
vide information about the functionalities of side groups and
backbones separately, as well as overall information. The
first property is quite easy to approximate by using normal-
ized descriptors (normalized by the number of atoms or the
volume of the repeat unit in use). Our contribution here is
that we developed descriptors that are not only free from
the influence by the end-capped atoms, but also provide
information relevant to both backbone and side-chains (see
more details in Methods Sections and Supporting Informa-
tion). The second feature mentioned above has also been
recognized by other groups, but can only be partially real-
ized using different end-cap atoms, as mentioned previously.
In our approach, we maintain this feature in the descriptor
computation level: The converged descriptor values are com-
puted directly from the fragment of interest, rather than
from an end-capped approximation of the repeat unit. Figure
1 shows a comparison between the partial charge (using
Partial Equalization of Orbital Electronegativities, PEOE34)
computed for hydrogen-capped monomers and for the corre-
sponding polymers. It is clear from this example that the
classical local representation provides inaccurate informa-
tion, but ICD can directly produce correct values. The third
property is less commonly discussed in QSPR studies, but is
much more in polymer physics. The side groups and back-
bones often contribute differently to a certain property;

JOURNAL OF
POLYMER SCIENCE WWW.POLYMERPHYSICS.ORG FULL PAPER

WWW.MATERIALSVIEWS.COM JOURNAL OF POLYMER SCIENCE, PART B: POLYMER PHYSICS 2016, 54, 2082–2091 2083



consequently, using descriptors that can be computed
separately for each of these components should be a better
choice.

In this study, we define a set of infinite chain descriptors
(ICDs) which were developed partly based on modifications
of some traditional descriptors used in QSPR/QSAR. These
descriptors directly describe the properties of infinite chains,
which are free from all the problems described above. By
utilizing machine-learning approaches, especially those with
ability to deal with nonlinearity, models for glass transition
temperature, dielectric constant, dielectric loss, and band
gap for linear polymers were built with minimal dependence
on specific fragment/atom type library entries. A web tool
with all the built models implemented in this study was
also developed and is ready for use at reccr.chem.rpi.edu/
polymerdesign.

METHODS

Dataset
Dielectric constants and band gaps for 155 polymers were com-
puted using DFT methods.25 This dataset included 118 back-
bone structures containing four components (CH2, NH, C5O,
benzene ring and thiophene ring) and 37 common polymers
(like PMMA and PEO). A set of 48 polymers with dielectric loss
tangent data at 100 Hz and 44 polymers at 1kHz were obtained
from Ku and Liepins26 and Sotzing et al.27–29 Properties of 262
polymers including glass transition temperature values and 58
polymers with dielectric constant data were taken from the set
reported by Bicerano.16 All structures (in SMILES format30) and
associated data are listed in the Supporting Information.

Infinite Chain Descriptors
Descriptors are numerical representations of a variety of
molecular characteristics of chemical entities that encode spe-
cific structural and/or electronic information. When chosen
appropriately, descriptor sets can provide meaningful correla-
tions between molecular structures and target properties. The
descriptors used in this study were created by modifying tradi-
tional descriptors that have been previously used in (M)QSPR
modeling for polymers and small molecules, while retaining
the chemical meaning of these descriptors. Since properties for
polymers usually converge as the chain grows, a reasonable
procedure to employ is to use descriptors designed to repre-
sent infinite chains instead of those designed for a local struc-
tural representation, which either lack information on the
connection environment or are time-consuming to compute
for oligomers. It is also unacceptable for modeling if monomers
and dimers give different predictions, since they represent the
same polymer. Consequently, we seek descriptors that are
scale-insensitive, but represent pertinent features of the repeat
units. The problem of lack of information concerning 3D con-
formations introduces a stochastic issue, so primarily 2D
descriptors were considered. The descriptors considered can
be divided into three categories:

� Topological descriptors: Those containing information about
shape and structural flexibility, based on classic topological
descriptors like Kier’s shape descriptors31 and Balaban’s
BalabanJ descriptor.32 Such descriptors are usually derived
from graph theory. A polymer can be viewed as (nearly) an
infinite graph, rather than a finite graph usually used for
small molecules. Therefore, the descriptors are generally
redesigned to describe intensive properties, for example, the
polymer version of Zagreb descriptor33 is defined as the
number density of the squares of the vertex degrees. These
descriptors provide information related to structural
flexibility. For example, main chain flexibility is related to
the joint effects of rotatable bond density, side group size,
backbone connectivity, and related factors.

� Partial charge descriptors: Charges are based on the Partial
Equalization of Orbital Electronegativities (PEOE) 2D partial
charge algorithm,34 providing information on partial charge
distributions and electrostatic interactions. These descrip-
tors can provide information on interchain and intrachain
electrostatic forces and charge distributions, which are
related to chain mobility and dipole distributions.

� Electronic transferable atom equivalents (TAE) descrip-
tors35,36: derived from atom-based transferable electron den-
sity distributions, also containing information such as local
average ionization potentials and other electronic properties.
These descriptors provide information similar to that of tradi-
tional quantum mechanical descriptors, but are based on
atomic level property distributions. Changes in TAE electronic
descriptor values have been correlated with properties such
as polarizabilities and band gaps.35,36

� Three types of modifications have been applied to convert
these descriptors into the corresponding infinite chain
versions, using the following algorithm:

FIGURE 1 Partial charges computed for a hydrogen-capped

monomer (upper) and the polymer (lower) for a 20-mer poly-

methylene oxide oligomer. The maximum positively charged

atoms are circled. In this example, the charges computed for the

end-capped monomer are quite different from those computed

for a representative polymer. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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� Descriptors are calculated independently on backbones
and side chain groups. This procedure is based on the
observation that side chain and backbone structures often
contribute differently to polymer properties and have dis-
tinct structural effects. Descriptors for side chain groups
are identified with the prefix “sg,” while those for back-
bones are denoted as “BB” in their names.

� Correct connection conditions are set for connecting atoms
(head and tail of the repeat unit) within the descriptor
algorithm. All TAE and PEOE descriptors are calculated
with the correct chemical environment for all atoms. TAE
descriptors arise from a connectivity-based atom type
search that combines atomic electronic properties into
molecular ones.37 A precomputed atomic fragment library
is used to “reconstruct” new molecules. For each atom in
a new molecule, the chemical environment information is
used to define/encode its type and the corresponding
entry with that type is retrieved from the fragment library.
In the case of ICDs, the searching algorithm is modified so
that all the atoms have the correct encodings as in a poly-
mer chain. The PEOE algorithm within MOE is modified in
a similar way, such that the terminal atoms are defined as
being connected to each other. The algorithm provides
partial charge values for a long chain polymer based on
those of the repeat unit.

� For 2D topological descriptors, the connection condition is
redefined, and descriptor values are determined in two
ways: (1) normalized by the total number of bonds or
atoms (with prefix “polyb”) within a repeat unit; (2) nor-
malized by the topological displacement from head to tail
(designated with the prefix “polyq”). The latter can be
viewed as a measure of the extension of the polymer
chain in a direction perpendicular to that of the backbone.
The label “q” was also described in Balaban’s study38

related to the infinite value for the BalabanJ descriptor.

Using these rules together with existing descriptors, a total
of 277 descriptors were implemented in MOE,39 including
143 2D descriptors and 134 TAE/RECON descriptors. Figure

2 shows the fundamental concept of infinite chain
descriptors.

An additional descriptor is used to represent the band gap
of the relevant polymer systems. This is based on a recipro-
cal extrapolation of the HOMO-LUMO gap determined using
a series of three oligomers (GAP_inf3), and designed to rep-
resent the observation that HOMO-LUMO gaps of linear poly-
mers generally decrease as approximately 1/n, where n is
the number of repeat units. In conjugated systems, the Kuhn
equation40 and Zade’s study41 have shown such a relation.
We also find for several non-conjugated polymer systems
(Supporting Information), the HOMO-LUMO gap calculated
from the semiempirical PM3 method can also be approxi-
mately described by the following rule, where A is a
constant:

GAPn5
A

n
1GAPinf (1)

Based on this equation, the infinite chain HOMO-LUMO gap
can be estimated by comparing the HOMO-LUMO gaps of
several oligomers. To avoid uncertainty from a single calcula-
tion (arising mostly from the uncertainty of the optimized
conformation and the influence of the end-cap hydrogens)
and to decrease the computation time, the original repeat
unit, the HOMO-LUMO gaps of the dimer and the trimer
were computed in this way. The following equation was
then used to calculate the GAP descriptor (t, d, and m refer
to trimer, dimer, and monomer, respectively).

GAPinf35
6GAPt22GAPd2GAPm

3
(2)

In practice, we found that the GAP_inf3 descriptor value
varies slightly with conformation, and with the size of the
initial repeat unit (such as CC or CCCC for polyethylene). In
these studies, the variance between different representations
is within 5% and the difference compared to the actual
computed value for a 30-mer is within 10%. Therefore, the
GAP_inf3 descriptor is designed to describe the effect of
polymerization upon the polarizabilities of polymers.

All infinite chain descriptors were implemented using MOE39

and its associated SVL language. In this study, the GAP_inf3
is calculated using MOE 2010 and MOPAC2012.42 Details of
all descriptor computations can be found in the Supporting
Information.

Model Development Using SVM Regression and
Classification
Support vector machine regression (SVR)43 is a machine
learning technique that utilizes a “kernel trick” in order to
find linear relationships in a high dimensional space that
correspond to non-linear relationships in descriptor space.
In contrast to traditional multiple linear regression (MLR),
SVR shows good generalizability and robustness to outliers
in the training set. K-fold cross-validation employs an itera-
tive approach, whereby a subset of training data is withheld,
models are built on the remaining data, and the withheld

FIGURE 2 Comparison of descriptor values between the ICD

and normal versions of PEOE_VSA_FHYD (fractional hydropho-

bic Van der Waals surface) descriptors for polyvinyl fluoride.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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data are used to assess the generalizability of the model. In
this study, each example within the training data was ran-
domly assigned to one of 10 cross-validation groups. The
randomization was performed 10 times. As part of the model
optimization process, feature selection was used to reduce
the number of descriptors to avoid overfitting. Objective fea-
ture selection (removal of collinear features and high vari-
ance features that span more than 6 standard deviations)
and recursive feature selection (remove the least important
features iteratively) were performed using partial least
square (PLS), support vector regression (SVR), or random
forest (RF) methods. Linearly correlated descriptors with
correlation coefficients larger than a specified cutoff value
(0.85 by default) were removed at random until only one of
them was left in the descriptor set. Descriptors with large
deviations are removed because they are more likely to be
spurious values, or be the product of outliers. The impor-
tance of descriptors is computed based on sensitivity analy-
sis: measured as the prediction change due to a perturbation
to the descriptor value. Models with the best cross-validation
performance were selected. More discussions of the model-
ing procedure can be found in Refs. 1 and 44. As a blind test
validation set, 20% of data was retained separately and used
to assess the predictive power of the resulting models. The
external test set was chosen randomly from the binned (5-
bin) target values, in order to make sure the training set and
test set have similar ranges and distributions.

Classification models based on support vector machine meth-
ods45 were built to predict the dielectric loss tangent (a
measure of energy dissipation) of different polymer systems.
From a practical perspective, the demand for prediction
accuracy for certain properties like dielectric loss is not as
high as for dielectric constant and glass transition tempera-
ture. Furthermore, much of the available experimental data
on dielectric loss is rather qualitative. For these reasons, a
regression model may not provide useful information for
guiding synthesis. Classification models, on the other hand,
can tolerate errors in experimental data and predict appro-
priate numerical ranges of the target property. In the models
developed to predict dielectric loss tangents, the data were
categorized into three classes: low (<0.001), medium
(0.001–0.01), and high (>0.01). Then 20% of data from each
class was retained as the test set. A different feature selec-
tion method specific to classification modeling was applied
as follows: The mean-centered and variance-normalized
descriptor matrix was first filtered to remove descriptors
with extreme values larger than 6 standard deviations from
the mean. The correlation matrix was then calculated and
presented as a connectivity graph. Descriptors with correla-
tion coefficients higher than 0.85 were considered connected
by an edge. Connected descriptors were removed in the
order of degree of connectivity and then the number of dis-
tinguished values was used to break ties for single pairs
until no collinearity above the threshold value remained. The
method we used here is a simple approximation, but retains
more descriptors than randomly removing one from a pair
of correlated descriptors at a time. Principal components

were then calculated with whitening,46 which makes the var-
iance 1.0 for each component. A portion of the total number
of principal components was then used as descriptors for
modeling after selection using variance analysis (ANOVA). A
support vector machine with a radial basis function kernel
(RBF)47 was used as a classifier, and 5-fold cross-validation
was used for model parameter selection, including the num-
ber of principal components used in the model (the search
range being one to ten PCs).

RESULT AND DISCUSSION

Dielectric Constant
Macroscopically, the dielectric constant measures the ability
of a material to alter the capacitance of a device, which con-
sists of two parallel plates separated by a dielectric medium.
Microscopically, the magnitude of the dielectric constant
depends upon the availability of molecular mechanisms that
allow for charge polarization to occur. These mechanisms
may involve polar group rotation, ion pair separation, and/
or electron density deformation. Usually, polar group rotation
contributes significantly to the dielectric constant of polymers
with small polar side groups such as PVF. The importance of
this effect decreases with the frequency of the applied electric
field and contributes to dielectric loss. The propensity of elec-
tron distribution deformation is related to molecular polariz-
ability. Electronic polarization is independent of frequency in
the normal working range and is often denoted as e1. The
total dielectric constant at 0Hz (DC) is usually called the static
dielectric constant, while at infinite frequency it is called the
optical dielectric constant. Theoretical models have been
developed to relate the two microscopic properties—dipole
moment and molecular polarizability—to the overall dielectric
constant. The Claussius-Mossoti equation describes the dielec-
tric behavior of nonpolar gases at low temperature, but can
also be applied to polymers.48

e21

e12
5

4pNAqa
3M

(3)

where e is the dielectric constant, NA is the Avogadro con-
stant, q is the density, M is the molecular weight and a is
the molecular polarizability. Due to the multiplicity of mech-
anisms involved, it is well known that dielectric constants
for polymers cannot be simply modeled by an ideal single
relaxation time model. Alternatively, to describe the dielec-
tric spectrum, the Havriliak–Negami equation, which includes
two empirical parameters, is generally used. As two empiri-
cal parameters need to be obtained from fitting and are spe-
cific for certain polymers, such a model cannot be used as a
prediction tool. While computationally intensive, it is possi-
ble to use ab intio methods to predict dielectric behavior25.
The advantage of ab initio methods lies in their being based
on microscopic physics. Unfortunately, good quality results
require large computational resources as well as some
parameter tuning (e.g., pseudo-potentials, basis set size,
reciprocal space sampling), requiring experience, and some-
times case-specific knowledge.

FULL PAPER WWW.POLYMERPHYSICS.ORG
JOURNAL OF

POLYMER SCIENCE

2086 JOURNAL OF POLYMER SCIENCE, PART B: POLYMER PHYSICS 2016, 54, 2082–2091



Here, MQSPR modeling has the advantage of allowing a sig-
nificant increase in prediction speed. In the current work,
ICD descriptors were used with machine learning to build
models that show good performance and internal consisten-
cy, requiring less than 3 min per polymer on average even
while using the more computationally intensive GAP_inf3
descriptor.

Two datasets of polymer dielectric constants were used in
this study. Experimental data were compiled from the work
of Bicerano16 and data from quantum computation was from
DFT calculations performed by Ramprasad et al.25 In the lat-
ter dataset, the electronic and ionic components were calcu-
lated separately using density functional perturbation theory
(DFPT). Separating the two components of dielectric
response can help to better understand the relationship
between polymer structures and dielectric constants. It was
observed that polymers with large polar components were
usually subject to increased dielectric loss. Dielectric loss
measures the energy dissipation of the material and for
capacitor applications should be as low as possible. The
modeling of dielectric loss tangents will be discussed in the
next section.

In the model developed for the electronic component of the
dielectric constant ee, only using ICD (243 descriptors) gave
the R25 0.85 and RMSE5 0.44 for the training set, and 0.82
and 0.64, respectively, for the test set. When the GAP_in-
f3_inv (the inverse of GAP_inf3) was added (Fig. 3), the cor-
responding values were 0.91 and 0.35 for the training and
0.90 and 0.37 for the test set. In the latter case, the cross-
validation R2 was found to be 0.83, demonstrating the ability
of GAP_inf3_inv to describe the electronic flexibility of the
structures.

The use of semiempirical methods was found to largely
broaden the domain of applicability for this model, and by
extrapolation (eq 2), the value of GAP_inf3_inv was found to
be insensitive to the size of the repeat unit. For repeat units
of medium size, such as polycarbonate, the computation time
was around 3 min per polymer. A colinearity cutoff of 0.85
was used in descriptor selection for modeling and eight iter-
ations of RF recursive feature selection were used with a
75% retention factor. Nine descriptors were ultimately found
to be important, of which the top three were polyb_B_zagreb,

GAP_inf3_inv, and RECON_FDel.Rho.NA7. The poly_B_zagreb
descriptor was of the same type as the polyb_zagreb but
used for the backbone, which basically shows the content of
conjugated rings in the structure. RECON_FDel.Rho.NA7 is a
TAE/RECON descriptor that is related to the electron density
gradient and thus also correlated with the polarizability of
the electron distribution.

The model for the ionic component ei also shows good per-
formance after log transformation and mean centering (See
Supporting information for details)

For feature selection with this dataset, the colinearity cutoff was
set to 0.7, and five iterations of PLS recursive feature selection
were performed retaining 75% of descriptors in each iteration. A
set of 18 descriptors remained after feature selection, resulting in
R25 0.88 and RMSE5 0.11 for the training set and 0.73 and
0.17, respectively, for the test set, as shown in Figure 4. Important
descriptors included poly_PEOE_VSA1 2, b_doubleR, RECON_
FDel.G.NA5, poly_PEOE_maxPC-, and poly_PEOE_VSA1 3. Most of
these descriptors are related to features of the charge distribu-
tion, indicating large differences in partial charges between atoms
of varying electronegativity, leading to large ionic components.
The descriptor poly_PEOE_maxPC- reflects the maximum nega-
tive partial charge value, which showed clear negative correlation
with the response, that is, the larger the negative charge a struc-
ture has, the larger will be the ionic component of its polarizabili-
ty. This finding agrees well with physical intuition since more
extreme partial charges should lead to more polar groups. In the
study of the ionic component of the dielectric constant, we found
that descriptors commonly used in QSPR rarely include bond
strengths or rotational barrier information, which should be
directly related to the deformations responsible for the ionic
polarization mechanism. Such deficits may not be easily resolved,
especially in the case of polymers, given uncertainties in their
conformations. Information derived from IR spectra calculated
by semiempirical methods may prove to be useful; this idea is
similar to that of EVA descriptors.49 However, we found that the
model developed using the IR information calculated by PM3 on
monomers does not show better performance, which may be due
to the inconsistencies of the conformations and chain lengths.

Even though the model statistics for predictions of the ionic
component are not as good as for the other models, in most
cases the ionic component only accounts for a small part of

FIGURE 3 Model for the electronic component of the dielectric

constant, left: Training set (125 data points), right: Test set data

(30 data points).

FIGURE 4 Model for the ionic component of the dielectric con-

stant, left: Training set (125 data points), right: Test set data

(30 data points).
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the total dielectric constant (average �15%). For the total
dielectric constant, the model shows very good performance
(RMSE5 0.52).

A predictive model was also built directly using the experi-
mental data from Bicerano’s book.16 The best model was
found by setting the colinearity cutoff to 0.85, with seven
iterations of PLS feature selection and 80% of the descrip-
tors retained in each iteration, as shown in Figure 5. Since
the data set is quite small, the linear PLS method was used
instead of kernel SVM. Linear models with low capacity are
less susceptible to overfitting on small datasets. The descrip-
tor set used is the same as in previous models (2D, TAE and
GAP_inf3_inv). The R2 values for training and test were 0.91
and 0.96, respectively, with RMSE values of 0.11 in both
cases. The cross-validation R2 was 0.86.

Dielectric Loss Tangent
The dielectric loss tangent quantifies the energy dissipated
by the material during operation. It is defined as the ratio of
the imaginary part (dielectric loss, e00) and the real part
(dielectric constant, e0) of the relative permittivity.

tan d5
e00

e0
(4)

Dielectric loss results from the mismatch of the polarization
rate in material and rate of the oscillating applied electric
field. A high loss material transfers large amount of input
energy into heat, thus in energy-storage applications, low
loss material is desired. QSPR studies for predicting tan d are
rare in the literature. Bicerano16 gave a regression model
relating the loss tangent to the refractive index, static dielec-
tric constant and several structural parameters. Alternatively,
Yu et al.50 used quantum descriptors together with measure-
ment frequency to predict the loss tangent of vinyl polymers.
However, structural similarities between the polymers in this
dataset may lead to a limitation in the domain of applicabili-
ty for the resulting heuristic models. It should be recognized
that local models on similar structures always perform bet-
ter than universal models, since the latter must generalize at
the expense of accuracy. Consequently, the choice between
the two types of models depends largely on the require-
ments of the synthesis planning process. In this project,

universal models were sought to allow virtual experiments to
be performed on large portions of chemical/materials space.

From the viewpoint of a materials scientist, the level of loss
is often more important than the exact value. Consequently,
classification models for dielectric loss at 100 and 1000 Hz
(As we found are the most frequently reported and repre-
sentative frequencies in literatures) were developed using
the procedures described in Section 2. A total of 143
descriptors were originally included, which were pared
down to 139 descriptors for use in the principal component
analysis (PCA) after feature selection. In the 100 Hz model,
four principal components were ultimately used for the
training set of 42 polymers, the training accuracy is 88%
and cross-validation accuracy is 76%. Six polymers were
used for the blind test. In this example, it was found that
only one polymer was misclassified. Similar results were
found for the 1 kHz model. Four principal components were
used in that case as well. A training accuracy of 82% and a
cross-validation accuracy of 82% were found for 38 poly-
mers. One of the six blind test data was found to be misclas-
sified. Tables (1–4) show the confusion matrices and e
results for the test set. In the 1 kHz model, the misclassified
polymer was 1,2-DAE, with the value of 0.0076, which is
very close to the arbitrary boundary defined between class
Medium and class High. Such misclassification is actually
consistent with the overall model performance, since the
boundaries for each class are set to only indicate the data
range and in nature the property should be continuous in
value. The misclassified polymer in the 100 Hz model was
methocel. The error may be due to the uncertainty of the
structure, since for methocel, the R group position could not
be set with certainty. For classification models built using
support vector machines, the importance of descriptors can-
not be easily accessed, however, based on the analysis of the
principal components that are used in the two models, it is
observed that descriptors related to partial charge distribu-
tion and structural flexibility are highly involved.

Apart from Bicerano’s work, this may be the first time that a
dielectric loss tangent for polymers from various categories
has been successfully modeled and predicted. This model
can aid in the search for new dielectric materials by provid-
ing prospective predictions of structures likely to exhibit
unacceptable levels of dielectric loss.

Band Gap
Band gap is defined as the energy difference between the
conduction band and valence band. Large band gap implies

FIGURE 5 Model for dielectric constant from experiments com-

piled by Ref. 16, left: Training set (125 data points), right: Test

set data (30 data points).

TABLE 1 Confusion Matrix for Loss Tangent at 100 Hz

Actual

Low Medium High

Predicted Low 4 1 0

Medium 1 15 2

High 0 1 18
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better insulating capability since it requires more energy to
excite an electron into the conduction band. It was found that
band gap could be used as an indicator of a polymer’s break-
down strength.51 The breakdown strength is usually described
by the Weibull distribution,52 which is related not only to
chemical structure, but also to the thickness of the test sam-
ple, defects and temperature. It was also observed that break-
down strength shows significant change at Tg and the
breakdown process may involve different mechanisms below
and above Tg. Frohlich’s electron avalanche theory53 applies
when the temperature is low, while other theories are usually
used to describe the situation near and beyond Tg. Ku and
Liepins’ book26 provides a good review on the theories.

In concept the bulk band gap is related to the HOMO-LUMO
gap for the repeat unit. Thus using the HOMO-LUMO gap
calculated by some semiempirical method seems to work.
However the HOMO-LUMO gap decreases with the growth of
the chain and it can still be time-consuming to determine
the convergence limit. In this study, we used the ICD topo-
logical descriptor with the extrapolated HOMO-LUMO gap
(GAP_inf3) to model the band gap.

Figure 6 shows the MQSPR model for band gaps. Partial least
square (PLS) regression was used, with colinearity cutoff
0.75. Five iterations of recursive feature selection were used
with 80% of the overall 144 descriptors retained in each
iteration. Nine descriptors were left after feature selection.
The R2 values for training and test sets are 0.84 and 0.88,
respectively, and RMSE values are 0.37 and 0.44. The cross-
validated R2 is 0.79. The most important descriptors were
found to be GAP_inf3, polyb_chi1v_C, b_singleR, and poly-
q_b_double. GAP_inf3 on its own shows a correlation coeffi-
cient of 0.7 with the band gap. polyb_chi1v_C is the
normalized chi1v_C originally designed by Kier and Hall54. It
describes the extent of conjugation of the structure.

b_singleR and polyq_b_double also describe similar proper-
ties with different emphasis: b_singleR is the number density
of the single bond count and polyq_b_double is the double
bond count normalized by the repeat unit displacement q.

Glass Transition Temperature
Glass transition temperature (Tg) is one of the most important
and widely studied properties of polymers. At Tg, dramatic
changes in dielectric constant, dielectric loss and breakdown
strength occur. Below the Tg, polymer chains are restricted to
local motion and polymers are brittle and glassy, and above it,
polymers become rubber-like. Even though studies on Tg pre-
diction have been reported for several decades, the physics
behind it is still not fully understood. Qualitative descriptions
of factors that influence Tg, like the rigidity of the main chain,
flexibility of the side chain, size of the side chain and electro-
static interaction have been discussed widely. Many QSPR
models have been built in the past based on small data sets or
lacking modern statistical validation. As mentioned above,
properties like Tg actually converge with increasing molecular
weight, but different polymers may have very different conver-
gence limits55. Theories have been proposed to explain the
influence of molecular weight, such as the free volume theo-
ry56, but the difference between the converged value of Tg and
the values for polymers with relatively large molecular weight
is usually small. Furthermore, polymers with small molecular
weight are usually not feasible as dielectric materials; so
converged Tg prediction can provide enough instructive
information for synthesis.

The most popular methods are still based on group contribu-
tions17 or partially include some specific description of substruc-
tures16. For the discovery of new materials, a universal model

TABLE 2 Blind Test Result for Loss Tangent at 100 Hz

Polymer

Loss

Tangent

Actual

Class

Predicted

Class

1,3-DAP 0.0117 H H

PMDA-D230 0.0037 M M

DieG 0.0149 H H

Poly(vinyl acetate) 0.0049 M M

Methocel 0.128 H M

Poly(vinyl toluene) 0.0007 L L

TABLE 3 Confusion Matrix for Loss Tangent at 1 kHz

Actual

Low Medium High

Predicted Low 4 3 0

Medium 0 11 2

High 0 2 16

TABLE 4 Blind Test Result for Loss Tangent at 1 kHz

Polymer

Loss

Tangent

Actual

Class

Predicted

Class

1,2-DAE 0.0076 M H

EDR 0.0429 H H

DieG 0.0188 H H

PVDF 0.016 H H

Poly(methyl-p-xylene) 0.0025 M M

Polystyrene 0.0005 L L

FIGURE 6 Model for the band gap of polymers computed

using DFT. left: Training set (125 data points), right: Test set

data (30 data points). Unit: eV.
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with minimum dependence on specific substructures is required,
since the prediction will fail if some new fragments are used in
the design that are missing from the parameter library. In the syn-
thesis of new dielectric materials, one should avoid materials with
Tg in the working temperature zone; so robust, accurate and uni-
versal models are required.

A regression model was built with only the structural descrip-
tors, including the topological descriptors and PEOE partial
charge descriptors, resulting in models with high accuracy.

Figure 7 shows the result for the Tg modeling. The SVM model
was built with colinearity cutoff 0.85, 143 2D descriptors, sev-
en iterations of SVM recursive feature selection with 90% of
descriptors being retained in each iteration. This resulted in
26 descriptors used in modeling. The R2 and RMSE for the
training set were 0.97 and 18.05, respectively and 0.95 and
23.32 for the test set. The R2 for cross-validation was 0.88.
By sensitivity analysis, polyb_zagreb_mod, polyb_zagreb, poly-
b_Polar, polyb_apol, polybRothN_Weight and polyb_BBrotN_
Weight were found to be the top 6 most important descriptors.
Descriptors polyb_zagreb_mod and polyb_zagreb represent the
number density of the square of the vertex degree only on
heavy (non-hydrogen) atoms, the difference being that the for-
mer does not consider the terminal heavy atoms (like Cl in
PVC) while the latter take all heavy (non-hydrogen) atoms into
consideration. Descriptor polyb_Polar is the number density of
polar atoms. Polyb_apol is the number density of atomic polar-
izability. polybRotN_Weight is the molecular weight per rotat-
able bond for the whole structure. The important descriptors
are consistent with the physical meaning of the glass transition
temperature. Partial charge descriptors and other descriptors
related to the presence of polar groups were also found in the
selected descriptor list. From sensitive analysis, they were
found to be not as important as those descriptors describing
structure flexibility, indicating that the polar-polar interaction
may be a secondary mechanism of Tg at least for this training
set.

Web Tool Implementation
All the models were implemented in a web tool named Poly-
mer Design Platform (reccr.chem.rpi.edu/polymerdesign). The
intention was to make all the models accessible to synthesis
groups and other QSPR groups if comparison with other mod-
els is desired. Two types of computations are supported: the
user can either input a SMILES string with asterisks (*) to

indicate the head and tail atoms, or upload a MOE mdb file for
a batch computation. Figure 8 shows the user interface and the
example results page. We encourage people to use our web
tools, report bugs and tell us if any other function is desired.

CONCLUSIONS AND FUTURE DIRECTIONS

The new infinite chain descriptors provide a time-efficient
and physics-related option for heuristic modeling using the
MQSPR techniques on repeat units with any arbitrary size.
Models for glass transition temperature, electronic and ionic
component of the polarizability computed from DFT, experi-
mental dielectric constant, dielectric loss tangent and band
gap were developed and show good predictive performance.

The practical use of QSPR models in materials design work-
flows requires that some estimate of prediction uncertainty
be available. While confidence intervals of linear models
have been used for this purpose, there is no consensus on
best practices for estimating prediction accuracy for nonline-
ar machine learning models. This is a rich area of current
and future research. Techniques such as bootstrapping57 and
Bayesian estimations58 provide potential solutions, and may
prove valuable in materials informatics applications.

Other future directions include three areas: 1. to develop solubili-
ty models to facilitate the design of new polymers; 2. to improve
the model for loss tangent with higher resolution; 3. to utilize all
the models in the search for promising dielectric polymer materi-
als. It is expected that this program will lead to the development
of a general method with broad domain of applicability for
modeling and prediction of diverse polymer properties and to
computer-aided design of polymeric materials with specific
desired physical, chemical, structural and electronic properties.
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