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We present two Monte Carlo algorithms to find the Pareto front of the chemical space of a class of dielec-
tric polymers that is most interesting with respect to optimizing both the bandgap and dielectric con-
stant. Starting with a dataset generated from density functional theory calculations, we used machine
learning to construct surrogate models for the bandgaps and dielectric constants of all physically mean-
ingful 4-block polymers (that is, polymer systems with a 4-block repeat unit). We parameterized these
machine learning models in such a way that the surrogates built for the 4-block polymers were readily
extendable to polymers beyond a 4-block repeat unit. By using translational invariance, chemical intu-
ition, and domain knowledge, we were able to enumerate all possible 4, 6, and 8 block polymers and
benchmark our Monte Carlo sampling of the chemical space against the exact enumeration of the surro-
gate predictions. We obtained exact agreement for the fronts of 4-block polymers and at least a 90%
agreement for those of 6 and 8-block polymers. We present fronts for 10-block polymer that are not pos-
sible to obtain by direct enumeration. We note that our Monte Carlo methods also return polymers close
to the predicted front and a measure of the closeness. Both quantities are useful information for the
design and discovery of new polymers.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The search for newmaterials is generally motivated by the need
for finding materials having multiple properties more optimal than
those of materials presently known. This multi-objective optimiza-
tion problem is similar to the one of picking the best possible
material from a limited number of possible options to use in a
specific application. In the latter problem, the search is often con-
ducted in a very simple manner by using an Ashby plot [1,2].

An Ashby plot is a two-dimensional plot that displays any two
important material characteristics for a large number of known
materials, for example, the wear-rate coefficient and the hardness
for a variety of ceramics, polymers and metals [2]. For a typical
application, we require a very hard material that is also highly
resistant to wear, meaning we need to maximize both the hardness
and the wear rate coefficient. Another example is the Ashby plot
for dielectric materials: for large bandgap, high dielectric constant
materials [3–7], we could plot the two properties as in Fig. 1. What
is clear from this plot is the bandgap and the dielectric constant
exhibit an inverse relationship in the sense that increasing the
value of one typically decreases the value of the other. Such an
inverse relationship is common in multi-objective optimization
problems. In general, the task in materials design or materials
selection is to propose or choose materials with the best trade-
off between two anti-correlated characteristics.

On an Ashby plot, such as Fig. 1, there exists a set of materials
that in some sense is more optimal than the others in that they
define a boundary. What is characteristic about this boundary is
that for every material on it, we can improve neither of its objec-
tives without degrading the other. Such boundary materials define
what is called the Pareto front [8,6,9]. This front represents the best
trade-off between the two objectives. In Fig. 1, the set of points
marked in blue is the Pareto front for the displayed population of
materials.

In the current work, we are interested in multi-objectively pre-
dicting new members of a specific class of organic dielectric poly-
mers whose dielectric properties are characterized by large
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Fig. 1. An Ashby plot to determine materials with the best trade-off between two
properties: the bandgap and the dielectric constant. The blue points represent the
Pareto front for the entire population. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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bandgaps and high dielectric constants. Fig. 1 contains a number of
representative polymers. Evident is the inverse property relation-
ship of the multi-objective problem. With an Ashby plot of pro-
posed or known materials, it is easy to find the Pareto front. The
challenge in the search for new materials is meaningfully populat-
ing such plots with possible materials that might lie beyond the
known front. The difficulty is the number of possible newmaterials
is far too large to identify all candidates by numerical computation
or by synthesis and measurement. Here, we propose approaching
this complex situation by exploiting our recent work [6], where
we generated computational data and used this data to create
machine learning (ML) models for the dielectric constant and elec-
tronic bandgap of a given chemical space of dielectric polymers.

In the referenced work, we proposed possible organic polymers
by using combinations of seven basic chemical building units: CH2,
NH, CO, C6H4, C4H2S, CS, and O [6,4]. Here, we refer to an n-block
polymer as one whose repeat unit is a block of n randomly chosen
from this pool of seven. We calculated the bandgaps and the
dielectric constants for all possible 4-block systems with Density
Functional Theory (DFT) and used machine learning to produce
regression models that fitted each computed physical property.
We parameterized our fit in such a way that we could use the
regression models as surrogates for the same physical properties
for 6-block and higher block models. Using these surrogates and
their predictions for each polymer in a complete enumeration of
possibilities, we could easily obtain the Pareto fronts. However,
here we are mainly interested in developing methods to estimate
such fronts when complete enumeration is too tedious or not even
possible. We present two simple Monte Carlo methods to make
such estimates.

Multi-objective optimization is a large active area of engineer-
ing research, spanning diverse fields. A variety of techniques exist,
examples of which are given in [10–20]. In most cases, the datasets
in these applications are much larger than those produced here,
and the various methods differ in the manner in which these data
are searched for the optimal set. In other cases, the cost of populat-
ing the dataset is the challenging factor, and the various methods
focus on efficiently adding data to the population. Recently, the
use of surrogate models has become prominent for such applica-
tions [21,22]. Of the methods we found in the literature, those
described by Suman and co-workers [14,15] and by Waldock and
Corne [17] most closely resemble ours. We differ from these
approaches in part by using surrogates. We feel what we propose
is simpler and more appropriate to our use of surrogates.

In Section 2, we summarize our modeling of n-block organic
polymers, and in Section 3 we describe two simple Monte Carlo
procedures for predicting the Pareto front from the surrogate mod-
els learned from our 4-block polymer models. In Section 4, we pre-
sent our predictions. There, we move from 4 to 6 and then to 8 and
10-block polymers. We benchmark our simulation methods by
comparison with their predicted fronts with those generated by
complete enumeration for the 4, 6, and 8 block cases. We give a
result for a 10 block system that we would be unable to obtain
by complete enumeration. For the 6-block case we also give a
result where our objectives are optimizing more than two physical
properties. Hence, we extend the concept of an Ashby plot to
dimensions higher than two. We conclude with a discussion of
both how to improve our methods and how to generalize them
to other multi-objective materials problems.
2. Background

We generated a dataset of 4-block polymers via DFT calcula-
tions (using VASP [23]) of the dielectric constants (divided into
the electronic and ionic parts) and the bandgap values (in eV).
The details of these calculations were explained in [6]. If we plot
these computed properties against each other (Fig. 2a), we see that
while the ionic contribution to the dielectric constant does not cor-
relate well with the bandgap, there is an inverse relationship
between the electronic (and consequently, the total) dielectric con-
stant and the bandgap. The Pareto front of the points colored
orange1 in Fig. 2a possesses the polymers of interest when it comes
to optimizing both properties.

Whereas 4-block polymers provided convenient atomic struc-
ture sizes for DFT calculations, moving to higher block polymers
leads to an exponential increase in computational expense. We
opted for the following: We developed machine learning (ML)
models for the 4-block polymer data, wherein we mapped an intu-
itive polymer ‘fingerprint’ to the properties by using a regression
algorithm. The fingerprint was a vector of numbers that quantified
the different kinds of triplets of blocks (for instance, CH2-NH-CO
constitutes a triplet) present in the given polymer, essentially the
unraveled 7 � 7 � 7 matrix, each non-zero element of which marks
a specific triplet of blocks. We then used the Kernel Ridge Regres-
sion (KRR) method [24] to map this fingerprint to the properties.
Training, validation, and testing yielded prediction models for
three properties: the electronic dielectric constant, the ionic dielec-
tric constant and the bandgap. The fingerprint chosen was inde-
pendent of the number of blocks in the repeat unit, meaning the
prediction models extend to 6-block, 8-block or even higher block
polymers, although we performed the training (fitting) by using
only data for 4-block polymers. In [6], we established the accuracy
and reliability of block predictions for polymers containing more
than 4 blocks in the repeat unit by showing that DFT calculations
for a selected assortment of 8-block polymers matched well with
the ML predictions.

It was possible to enumerate and fingerprint all possible
6-block and 8-block polymers and to predict the properties for
each using the ML models. At first glance, there are 7n possibilities
for an entire population of n-block polymers. However, many are
related by translational symmetry; that is, CO-O-C6H4-CH2 is the
same polymer as C6H4-CH2-CO-O.We framed our surrogate models
to account for this symmetry. Additionally, chemical intuition and
domain knowledge tells us that certain adjoining pairs of chemical
blocks, such as O-O, CS-CS, CO-CO and NH-NH will form unstable
systems, and all such polymers were thus eliminated. These factors
led to a reduction in the number of 4-block polymers to 284,
6-block polymers to �6000, and 8-block polymers to �130,000.
this article.
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Fig. 2. Electronic, ionic and total dielectric constants predicted from DFT and ML for 4-block, 6-block and 8-block polymers, plotted against the predicted bandgaps.
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Without exploiting translational invariance, chemical intuition and
domain knowledge, enumeration all 6-block cases would have
been tedious and all 8-block cases not possible. The predicted
properties for these much smaller numbers are shown in Fig. 2b.
The prediction errors on average are �0.3 eV for the bandgaps,
�0.3 for the electronic dielectric constants and �0.2 for the ionic
dielectric constants. We established these errors for the 4-block
polymers by comparing their surrogate values against their DFT
estimated values.

We observed that the requirement of any polymer to occupy
the Pareto front is susceptible to these errors: ML predictions
varying from the actual DFT results by even with just a 0.5% rela-
tive error can make the crucial difference as to whether a given
point dominates the remaining points or not. This discrepancy is
noticeable even when populating the Pareto front for 4-block
polymers. For example, Fig. 3a shows the front obtained by using
the DFT computed values and the front obtained with the ML pre-
dicted values. DFT calculations yielded 19 polymers on the front
whereas the front from ML predictions contained 18 polymers;
closer examination reveals that there were only 12 systems pre-
sent common to the two fronts. This situation is in some ways a
weakness of using surrogates to optimize materials for multiple
properties; however, the actual errors are still small enough
(and acceptable in a statistical treatment) for us to claim that
our algorithms find polymers very close to the Pareto front if not
actually on them. This is very valuable information for materials
design and discovery.

From Fig. 2b, while using just the data generated for 4-block
polymers, we also see that since now there is an exponentially lar-
ger number of polymers, the Pareto front is much more populated
than before. We easily obtained hundreds of Pareto optimal poly-
mer solutions for 6-block and 8-block polymers. However, the enu-
meration still involves listing and predicting properties of several
thousands of polymers, unnecessarily substantial numbers consid-
ering our interest is restricted to a mere fraction of them. Thus, the
question arises, Is there a way of predicting just the Pareto front for
a given n-block polymer family?
3. Methods

Here, we describe two new Monte Carlo based methods for
multi-objective optimization in the context of their application to
the problem of designing polymers with the optimal dielectric con-
stant and bandgap. We refer to these two methods as ‘Monte Carlo
Multi-Objective Optimization Algorithms’ or as MCMO algorithms.

In multi-objective optimization, we have a set of functions
ff 1ðxÞ; f 2ðxÞ; . . . ; f mðxÞg;
each member of which specifies a material property as a function of
the same multi-featured variable x ¼ ðx1; x2; . . . ; xnÞ. In the applica-
tion at hand, these objective functions are the machine learning fits
of the electronic and the ionic contributions to the dielectric con-
stant and the bandgaps of any n-block polymer as described earlier.
The variable x is a vector that specifies the n-block polymer with
each xi equal to one of seven possible motifs: CH2, NH, CO, C6H4,
C4H2S, CS, and O. With respect to determining attractive dielectric
polymers, one could define our objective as ‘minimizing the nega-
tive of the bandgap’ or ‘minimizing the negative of the dielectric
constant’ instead of maximizing such quantities. Given this, we
assume a convenient connection to published work by saying that
the task is to find an x that minimizes each objective.

In general, a unique solution satisfying all objectives simultane-
ously does not exist and attention is instead paid to the Pareto
optimal solutions. These solutions are based on the following def-
inition of dominance, where a feasible solution x is said to Pareto
dominate another solution x0 if

f iðxÞ 6 f iðx0Þ; for all i 2 f1;2; . . . ;mg
and

f jðxÞ < f jðx0Þ; for at least one j 2 f1;2; . . . ;mg
that is, x is as good as x0 in all objectives and is strictly better than it
in at least one. An x not dominated by any other is called Pareto
optimal, and the set of all Pareto optimal solutions constitutes the
Pareto front. Our methods are designed to return the Pareto front,
as well as additional useful information, as we discuss later. The
core of the methods is the notion of an archive of possible members
of the front. New polymers x are proposed by a Monte Carlo move
and added to the current archive A if

f ðxÞ ¼ max
x j2A; j¼1;2;...;jAj

min
i2f1;2;...;mg

ðf iðxÞ � f iðx jÞÞ
� �

< 0

This is a necessary but not sufficient condition for x being on the
Pareto front.

The simulation starts by seeding the archive with a number of
polymers whose n blocks are selected randomly. The archive is
now scanned one member at a time. For each archive member,
every constituent block is scanned, and its current motif is replaced
by one randomly chosen. If the proposed polymer is not in the
archive and if its f ðxÞ < 0, then this new polymer is added to the
archive. If not added, the next block of the current polymer is ran-
domly changed. If added, the current polymer becomes the one
added, and its next block is randomly changed. These processes



Fig. 4. On the top, the points marked by thick dots constitute a Pareto set for the
simultaneous maximization of f 1ðxÞ and f 2ðxÞ. The solid line connecting the points is
the Pareto front. If a point is added to the shaded rectangles, it augments the
number of points in the set. If the point marked by + is added, it changes the Pareto
set to the one shown in the bottom, causing it to be added to the front and a point to
be removed from the previous front.
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Fig. 3. Two-objective Pareto front for 4-block polymers obtained from DFT, and from using MCMO1, MCMO2 and enumeration.
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are repeated for each block and for each polymer until every mem-
ber of the original archive is visited once. We call these steps a
sweep: A sweep is the attempt to change each unit in the blocks
of all members of the current archive. Then a sweep of the new
archive is performed, repeating the steps just stated. A few tens
of sweeps are performed in this fashion. We refer to this part of
the method as its warm-up phase.

While admission to the archive requires f ðxÞ < 0, once in the
archive, the addition of a new member can change whether a pre-
vious member still satisfies the condition f ðxÞ < 0 (Fig. 4). After the
warm-up phase, the archive membership is reset, eliminating
those members that do not satisfy f ðxÞ < 0. The sweep of the
archive is now repeated on the order of a hundred times. The
archive size now grows slowly, if at all. We refer to this part of
the algorithms as its equilibrium phase. When the equilibrium
phase is completed, the final front is computed, and the simulation
is terminated. We used the cull algorithm to compute the front
[25].

The intent of this method (MCMO1) is to maintain an archive of
polymers that are on or are near the front, and to identify from
them new members that are more optimal than ones chosen ran-
domly. Temporarily including those systems whose f ðxÞ becomes
non-negative keeps the archive membership diverse and promotes
access to the entire hypersurface of the front.

We also developed a second algorithm (MCMO2) based on the
method of simulated annealing. Here, we need to specify temper-
atures Tstart and Tend such that Tstart > Tend. We perform the
warm-up phase of the simulation at some temperature T ¼ Tstart.
We sweep the archive and change the motifs as before, but this
time, if the new polymer x0 is not in the archive, we compute
Df ¼ f ðx0Þ � f ðxÞ and accept or reject the changed polymer accord-
ing to the Metropolis algorithm. In other words, we accept the new
polymer with a probability minð1; expð�Df=TÞÞ. If accepted, the
new polymer is added to the archive; this step can also add poly-
mers with f ðxÞ > 0 to the archive. In the equilibrium phase, we per-
form a number of sweeps of the archive at a given temperature
that is chosen at successively lower values, starting with Tstart

and ending with Tend. The temperature is lowered according to a

power law decay where Tdecay ¼ ðTstart=TendÞN=M , where N < M is
the number of times we sweep the archive and M is the total num-
ber of times the sweeps are performed. This number is roughly the
same as the number of sweeps used in the equilibrium phase of
MCMO1.

As we discuss in the next section, the fronts predicted by the
two methods differ by at most one or two members, if they differ
at all. The simulated annealing method creates larger archives and
increases the archive sizes (and current front sizes) more rapidly.
In general, with this method, the archive sizes can become so large
that adding an extra archive reduction step at the end of each tem-
perature step is useful for reducing the computation time.

We remark that a sequence of n motifs specifying a polymer
does not directly serve as its ‘‘id” because the requirement of trans-
lational invariance associates several different sequences with
the same polymer. What id’s a polymer are its objective values:
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transitionally equivalent sequences return the same objective val-
ues. Our surrogate models ensure this equivalence within floating
point error. In searching the archive to determine whether a pro-
posed polymer would be a newmember, we used the objective val-
ues as id’s. To avoid establishing equivalence via the comparison of
floating point numbers, we id’ed each polymer by multiplying its
objective values by one million (a somewhat arbitrary number)
and truncating the results to integers.

Besides returning the front, the two methods return other use-
ful information. At the end of the simulation, the archive has few, if
any, members that have f ðxÞ non-negative. Accordingly, it returns a
set possible polymers whose behavior is comparable to those on
the front. Additionally, it returns f ðxÞ for each polymer. How nega-
tive this quantity is can serve as a rough ranking of the relevance of
the members of the archive.

4. Results

In the results presented below, we seeded the archive by ran-
domly generating 100 polymers, adding to the archive only those
whose f ðxÞ < 0. It is convenient to define other inputs to the algo-
rithms in terms of the number of sweeps. For the warm-up phase
we used 25 sweeps, and for the equilibrium phase we used 40
sweeps. In this phase we found it convenient to split this number
into 4 batches, where at the end of each batch we reduce the size
of the archive. The maximum archive size was 750. If after a sweep
this size was exceeded, the archive was reduced to the Pareto front.
For 4 and 6 block sizes, the Pareto front rarely grew beyond the
warmup phase. For 8 and 10 blocks, it grew by a couple. For
MCMO2, we chose Tstart ¼ 1 and Tend ¼ 0:0316. Only for MCMO2
did we observe the archive size exceeding the stated maximum.
In general, for MCMO1 the archive size was close to the current
front size, while for MCMO2, it generally exceeded the front size.
With the exception of the 10-block case, the computations times
for the results we present ranged from a few seconds to a few tens
of minutes. For 10 blocks the computation time was nearly an hour.

As seen in Fig. 5, the two algorithms did not always predict the
same front, and the front from any one algorithm could differ if
restarted with a different random number seed. The differences
were at most 1 or 2 members. We compensated for these differ-
ences by repeating the simulations with each Algorithm 10 times,
starting with different random number seeds, combining the fronts
from each simulation, and then finding the front of the composite.

Using the two strategies just detailed, we determined the 2 and
3 objective Pareto fronts for 6-block polymers built out of the same
seven basic blocks as the 4 block case. The 2 objective front consid-
ers the total dielectric constant and the bandgap as the objectives
to be optimized, whereas the 3 objective front breaks the dielectric
constant into its components and considers the electronic dielec-
tric constant, ionic dielectric constant, and bandgap as the objec-
tives. The 2 objective Pareto fronts obtained for 4-block polymers
and 6-block polymers using MCMO1, MCMO2 and simple enumer-
ation (wherein we choose the Pareto optimal polymers out of the
blue points and the purple points in Fig. 2b respectively) are plot-
ted in Figs. 3b and 5a respectively. The 3 objective Pareto fronts
obtained from MCMO1, MCMO2 and enumeration for 6-block
polymers are shown in Fig. 5b.

Whereas MCMO1, MCMO2 and enumeration all yield the exact
same fronts for the 4-block polymers, as shown in Fig. 3b, in Fig. 5a,
we see that the enumeration strategy reveals 5 points that the
optimization algorithms did not determine. These 5 points have
very close neighbors on the front, which could lead the MCMO
algorithms to miss them while capturing the neighboring points
correctly. Regardless, these numbers tell us that the MCMO
algorithms have computed the 2 objective Pareto fronts with a
�90% accuracy with respect to complete enumeration, which is
encouraging.

The 3 objective front, as shown in Fig. 5b, has a much higher
population than the 2-objective front, and is valuable if both com-
ponents of the dielectric constant need optimization as opposed to
just the overall value. Given that the electronic dielectric constant,
ionic dielectric constant and the bandgap are all optimized here,
we display the 3 objective front by plotting both the electronic
and total dielectric constants against the bandgap. Whereas
MCMO1 and MCMO2 yield 166 points in the front, enumeration
(choosing from the purple points in Fig. 2b) leads to 192 points;
this can be seen from the plot in Fig. 5b. Once again, while the
points obtained through enumeration are slightly higher in
number, the MCMO algorithms produce the front with �90%
accuracy.

Similarly, we obtained the 2-objective Pareto fronts for 8-block
polymers using MCMO1 andMCMO2 as well as using enumeration,
and these results are presented in Fig. 6a. We note that there are
nearly130,000 total 8-blockpolymers,whichmakes thePareto fron-
tierpopulation twiceasbig as for6-blockpolymers, aswell as amore
computationally demanding estimation. The same observations
from the 6-block polymers hold here: The two algorithms predict
nearly the same Pareto fronts (65 and 66 points respectively) and
capture around 90% of the front predicted by enumeration.

Fig. 6b shows the 2-objective Pareto front obtained with the
two Monte Carlo algorithms for 10-block polymers, of which there
are � 2� 107 possibilities. This number is so large that enumera-
tion would take an unreasonably long time, whereas the Pareto
front was obtained in a few hours of computing time on a laptop
computer. In these simulations we used 50 warmup sweeps, based
on our observations that 25 seemed too few for the 8-block case to
be at the front size within minor fluctuations.

From 6-block to 8-block to 10-block polymers, the total number
of possibilities increases exponentially, and enumeration becomes
extremely computationally extensive. However, the fraction of the
Monte Carlo steps needed (or consequently, the fraction of time
saved) for determining the Pareto front with an approximate
>90% confidence is successively reduced, indicating that the MCMO
algorithms are indeed very valuable when we go to large popula-
tions in material possibilities.

We have thus utilized machine learning prediction models
trained using purely 4-block polymer data, in combination with
two flavors of multi-objective optimization, to populate the Pareto
front of 6-block, 8-block and 10-block polymers. We can similarly
obtain Pareto fronts for polymer populations with any number of
blocks in the repeat unit, as well as for combinations of many
different n-block polymer populations. We can now critically
examine the fronts for 4, 6, 8 and 10-block polymers for under-
standing the kind of polymers (in terms of their constituent blocks)
that make Pareto optimal solutions. Given the 28 different types of
building block pairs that exist in this chemical space of polymers,
an analysis of the Pareto front with respect to the polymer con-
stituent blocks can reveal what kinds of blocks and neighbors are
required for optimal polymer solutions.

Fig. 7a shows the Pareto fronts for 4, 6, 8 and 10-block poly-
mers; considering an archive with all these polymers from differ-
ent respective fronts, a combined Pareto front can be obtained by
eliminating the specific points that no longer satisfy the front
requirements. The combined front has been superimposed on the
other fronts in Fig. 7a – this front contains 101 points, which is a
reduction of over a 100 points out of the four individual fronts. Fur-
ther, 80% of these points are 10-block polymers and the remaining
are 8, 6 and 4-block polymers, indicating that lower block poly-
mers gradually lose Pareto front prominence as we move towards
higher block polymers.
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Fig. 6. Two-objective Pareto front for 8-block polymers and 10-block polymers using MCMO1 and MCMO2.
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In Fig. 7b, we plotted the fraction of occurrence of different
building block pairs in the combined Pareto front of the polymers.
The specific pairs of blocks that dominate the front have been
shown, such as CH2-CH2, CH2-O, NH-CO, NH-CS, NH-O and
C4H2S-C4H2S. This follows from the correlations drawn in [6]
between different block pairs and the properties: the dielectric
constants and the bandgaps. While CH2-CH2 and CH2-O pairs con-
tribute to high bandgap values, C4H2S-C4H2S and C4H2S-CS blocks
lead to high values of electronic dielectric constant whereas NH-
CO, NH-O and NH-CS blocks lead to high ionic dielectric constant
values. The Pareto front can said to be occupied by three kinds of
polymers: high dielectric constant and low bandgap polymers,
high dielectric constant and high bandgap polymers, and low
dielectric constant and high bandgap polymers. Thus, it is reason-
able that these blocks exist in great numbers in the polymers on
the front. The key to further populating the front or regions near
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it with new n-block polymers is in increasing the population of
these pairs of blocks in the polymers.

The natural measure of efficiency of our proposed methods is
the number of objective function evaluations needed relative to
the total number needed to evaluate all possibilities with the sur-
rogates. For MCMO1, we can estimate efficiency in the following
manner: In a sweep we have n-blocks � archive-size evaluation
steps. Let us say that the total number of sweeps (warmup and
equilibrium phases) is 50. In the warmup phase, the size of the
archive is steadily growing but it is nearly constant in the equilib-
rium phase. Let us assume for each sweep, the archive size is a con-
stant and on average equal to half the size of the Pareto front. For
4-block case, we would need about 2300 evaluations; for the
6-block case, 64,500; and for 8 blocks, 144,000. Thus, direct enu-
meration is more efficient for 4 blocks and is about the same as
the Monte Carlo for 6 and 8 blocks, after symmetry and other fac-
tors are used to significantly reduce the number of possibilities. We
note that the front found did not include any polymers excluded by
these physical arguments. For 10 blocks, the Monte Carlo would
require about 500,000 evaluations, clearly besting direct enumera-
tion. For MCMO2, if we were to make similar estimates using the
maximum archive size instead of using the front size as the aver-
age archive size, we would similarly find that for block sizes 10
and higher the MCMO2 algorithm would be more efficient than
direct enumeration. We also note that translational symmetry,
chemical intuition or domain knowledge was not used to restrict
the size of the space the Monte Carlo sampled.

Efficiency is a different issue than the cost (time) of calculation.
We wrote our program in a high level language (Python), and
hence a significant reduction in computation time is likely if we
instead used the computationally more efficient Fortran 2008 or
C++. Likely the biggest reductions in cost would have occurred by
using a binary search of the archive sets instead of the linear search
used to determine whether the proposed polymer was already a
member of the archive and by using a different proposal method
for a new archive member. Here, we made the proposal by replac-
ing each unit in the block with one of the seven motifs chosen ran-
domly. Possibly more efficient would have been proposing to
replace the motif by the one above or below it in an ordered list
of possible motifs. We were mainly concerned with proof of prin-
ciple and not efficiency.
5. Concluding remarks

We presented two Monte Carlo multi-objective optimization
algorithms to find the Pareto front of a selected chemical space
of dielectric polymers, the subset of polymers that are of most
interest with respect to optimizing both the dielectric constant
and the bandgap. While one algorithm involves random modifica-
tions of polymer blocks and updating of the Pareto frontier archive
based on a dominance definition, the other algorithm uses simu-
lated annealing and updates the archive on the basis of a prede-
fined probability of dominance. The properties of any new
polymer are obtained via machine learning models previously
trained and developed to predict dielectric constants and bandgaps
of these polymers. Combining these learning models with the
MCMO algorithms enables us to populate the polymer Pareto front
for the larger block polymers in much fewer steps than enumerat-
ing all polymer possibilities and predicting their properties.

We benchmarked the effectiveness of the methods by compar-
ing the Pareto fronts they predicted with those the fitted models
predicted for the complete enumeration of all possible 4, 6, and
8-block polymers built from our seven basic chemical motifs. We
could make this benchmark because we were able to a priori
reduce the number of possibilities and the machine learning
models execute very quickly for a given input. For the 6-block case
there were only 5 points from the fitted set not sampled by the
Monte Carlo methods, whereas there were 9 such points for the
8-block case.

As previously noted, the prediction errors associated with the
machine learning models lead to different Pareto fronts than those
found using the actual DFT computed data (Fig. 3). We attempted
other regression methods, such as support vector machines, Gaus-
sian processes, and Bayesian kernel ridge regression, to increase
the accuracy of the surrogate models without noticeable success.
The regression models proved very valuable for providing a quick
and efficient determination of optimal polymer solutions even for
long polymer chains. Whereas machine learning makes it possible
to predict properties of large systems in an on-demand fashion
[6,26–29], the MCMO techniques negate the need for traversing
through significant portions of polymer chemical subspaces in
order to obtain the desired polymers that lie on the Pareto front.
We comment that the DFT calculations have unknown errors of
their own. Consequently, what is the true Pareto front is likely
something that will always be unknown. In some sense, one does
not need optimization methods more accurate than the surrogates:
One does not need a precise Pareto front but rather a Pareto neigh-
borhood bordering the front. Having methods such as the ones pre-
sented, which estimate the front plus materials nearby, is
particularly appropriate for materials design and discovery.

In closing, we remark the basic ideas of the presented Monte
Carlo methods are useful for multi-objective materials design
and discovery for materials other than dielectric polymers. Alloy
and solid solutions would be naturals for the use of the approaches
presented. As here, the first step would be to generate the surro-
gates. In contrast to the present case, where the design space vari-
ables have discrete values, these problems have continuous
variables. Proposed changes in the material would correspond to
small changes in the concentrations of the constituents.
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