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ABSTRACT: New and improved dielectric materials with
high dielectric breakdown strength are required for both high
energy density electric energy storage applications and
continued miniaturization of electronic devices. Despite
much practical significance, accurate ab initio predictions of
dielectric breakdown strength for complex materials are
beyond the current state-of-the art. Here we take an alternative
data-enabled route to address this design problem. Our
informatics-based approach employs a transferable machine
learning model, trained and validated on a limited amount of
accurate data generated through laborious first-principles computations, to predict intrinsic dielectric breakdown strength of
several hundreds of chemical compositions in a highly efficient manner. While the adopted approach is quite general, here we
take up a specific example of perovskite materials to demonstrate the efficacy of our method. Starting from several thousands of
compounds, we systematically downselect 209 insultors which are dynamically stable in a perovskite crystal structure. After
making predictions on these compounds using our machine learning model, the intrinsic dielectric breakdown strength was
further cross-validated using first-principles computations. Our analysis reveals that boron-containing compounds are of
particular interest, some of which exhibit remarkable intrinsic breakdown strength of almost 2 GV/m.

■ INTRODUCTION

Some of the critical challenges of our times are concerned with
designing novel and improved materials to meet the rapidly
rising demands for electric power and to sustain the ongoing
electrical/electronic device miniaturization trends. Increasing
the capacity of the electric power infrastructure to meet this
growing demand requires operation at higher electric fields
than is currently possible.1 Likewise, miniaturization of
electrical and electronic devices (while preserving or increasing
their performance or functionality) requires ever thinner
insulating dielectric layers that will soon experience enormous
electric fields.2 The present choices of materials, dimensions,
and fields are limited by the dielectric breakdown of the
insulation in operating conditions. Thus, novel materials with
improved electric field tolerance are required to push further
technological advancements in the fields of electrical
insulation3,4 and photovoltaic applications.5−10

The dielectric breakdown process is a highly complex
phenomenon that represents an example of a “weakest link”
problem. Breakdown strength of a material derives its
contributions from both intrinsic11−14 (i.e., dictated purely by
chemical constituents, details of the crystal structure, and
nature of the chemical bonding) and extrinsic15−21 (i.e., defects,
impurities, morphology, interfaces, field-induced aging, and
degradation) factors. While a precise quantification of the role
played by various extrinsic factors in determination of the

dielectric breakdown is still beyond the current state-of-the-art,
recently implemented quantum mechanical methods for the
calculation of electron−phonon scattering rates have allowed
for a completely first-principles quantitative determination of
the intrinsic breakdown field of any insulator.22 Within this
parameter free computational framework based on classical
theory formulated by von Hippel11 and Fröhlich,12,23,24 the
breakdown criterion can be formulated as the lowest field at
which the average electron energy gain from the field is greater
than the average energy loss to phonons for all electron
energies less than that which produces charge carrier
multiplication through impact ionization. Within this frame-
work, the computed dielectric breakdown strength of several
insulators has been shown to agree remarkably well with the
experimental results reported in the literature.22,25,26

In principle, one can use the aforementioned first-principles
framework to compute intrinsic breakdown strength of plethora
of materials in order to identify promising candidate materials.
However, in practice, the computational cost associated with
the formalism renders it highly inefficient for such high
throughput explorations in vast chemical spaces. To circumvent
this problem, we resort to a data-enabled informatics approach,
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where a machine learning method is first trained using a limited
amount of first-principles data on selected compounds to
establish a validated mapping between some easily accessible
key attributes (also referred to as features or descriptors) of
materials and the property of interestthe intrinsic breakdown
strength. In fact, such a mapping was successfully demonstrated
in our recent work on 82 octet AB-type crystalline solids, where
three independent machine learning models were employed to
give accurate predictions on the intrinsic breakdown strength
over 3 orders of magnitude.26 More interestingly, all the
machine learning models converged to a single most important
feature pair consisting of the band gap and the phonon cutoff
frequency (i.e., the maximum phonon frequency at the Γ-
point). The significance of this finding lies in the fact that the
two identified features can be computed at a much lower
computational cost for any given material crystal structure and
composition, allowing for an efficient pathway toward
predicting the intrinsic breakdown strength without explicitly
pursuing the expensive first-principles framework. In our
previous work we also demonstrated the generalizability of
the adopted machine learning framework by predicting the
breakdown strength of materials with different crystal structures
and chemical compositions than those in the original training
set.
In this contribution, we further build on our past work by

employing the developed machine learning framework by
screening a large number of perovskite materials in order to
identify candidates with high intrinsic dielectric breakdown.
Given the fact that about 90% of the periodic table can be
synthesized in a stable perovskite crystal structure, and given
that a number of perovskites have already been suggested as
potential next-generation dielectric materials,3,5,7,8,10 these
materials naturally lend themselves as ideal candidates for
such a high throughput exploration. We start with a target
chemical space containing ∼19 000 ABX3 type perovskites
which were reported previously,27 where A and B represent
metal cations and the motif X3 can take one of the seven
possibilities, viz., N3, O2F, O2N, O2S, O3, OFN, and ON2 (cf.
Figure 1). Out of these 19 000 compounds, only 735 materials
were found insulating (based on the CMR reported GLLB-SC
band gaps). For each of these materials a structure
reoptimization was performed using density functional theory

(DFT) computations and their dynamical stability was assessed
by computing phonon dispersions. Subsequently, 209 dynam-
ically stable ABX3 compounds were identified, for which
accurate band gaps were predicted using the hybrid Heyd−
Scuseria−Ernzerhof (HSE06) exchange-correlation function-
al.28 As depicted in Figure 1, these dynamically stable insulating
perovskites reveal a rich spectrum of theoretical band gaps
(from slightly larger than 0 eV to less than 7 eV) and maximum
phonon frequency (up to 44 THz), the two descriptors relevant
for the prediction of the intrinsic breakdown strength. For
completness, although they are not relevant to the present
study, histograms of the atomization energies, lattice constants,
and material densities are also presented in Figure 1 for these
209 compounds.
Finally, our trained and validated machine learning model is

employed on this downselected set of 209 compounds to make
instant predictions of the intrinsic dielectric breakdown
strength. The predictions on a set of most promising
compounds (i.e., those exhibiting the highest predicted intrinsic
dielectric breakdown strength) are further cross-validated via
our first-principles framework relying on explicit computation
of electron−phonon scattering rates. As a general finding, our
analysis reveals that boron containing compounds exhibit
remarkable electric field tolerance and are of particular interest.
The overall workflow adopted in this study is outlined in Figure
2. In what follows, we describe our findings in greater detail.

■ THEORETICAL METHODS
In this work, we used first-principles DFT computations to
optimize perovskite crystal structures and to compute the band
gaps and the phonon frequencies in a high-throughput manner.
The DFT calculations were performed using the projector-
augmented wave formalism with the local density approx-
imation (LDA)29 functional as implemented in the Vienna Ab
initio Simulation Package (VASP).30 The basis set used
included plane waves with kinetic energies up to 450 eV. For

Figure 1. Perovskite crystal structure with rocksalt ordering of both A-
and B-site cations. Histogram of band gap, maximum phonon
frequency at Γ point, atomization energy, lattice constant, and density
of perovskites used in the prediction of intrinsic breakdown field.

Figure 2. Overall workflow for screening high breakdown field
perovskites by the prediction model based on machine learning built
on binary dielectrics. The Prediction Model Development procedure is
described in ref 26.
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structural optimizations, a Γ-centered Monkhorst−Pack k-point
mesh of 6 × 6 × 6, giving the Kohn−Sham total energy
converged up to 0.5 meV, was used.31 Relaxations of both the
cell shape and internal atomic coordinates were allowed until
atomic forces on each of the atoms were smaller than 0.01 eV/
Å.
The band gaps of the relaxed structures were computed using

the hybrid HSE06 exchange-correlation functional. While spin
unpolarized calculations were performed for the close shell
systems (identified based on the most commonly exhibited
oxidation states of the constituent atoms), spin polarization
computations were carried out for the following 14 open-shell
compounds, viz. Si2O3, SiGeO3, TiLiO2N, SiNbO2N, InReON2,
CsIrN3, GaTaO2S, SiHfO2S, BSiO2F, SiInO2F, AlZrO2F,
SiBO2F, GaHfO2F, and GaTaONF.
The lattice vibrational spectra at the center of the Brillouin

zone, Γ, for these structures were calculated within the density
functional perturbation theory (DFPT) formalism as imple-
mented in VASP. The maximum phonon frequencies at the Γ
point were then extracted to be used for the prediction of the
intrinsic dielectric breakdown. For the band gap and phonon
computations, a finer k-point mesh of a prespecified spacing
parameter hk = 0.20 Å−1 in the reciprocal space was used to
adequately handle the Brillouin zones integrations for perov-
skites with different cell geometries. All DFT results for the
ABX3 compounds considered here are provided in the
Supporting Information.
The intrinsic dielectric breakdown field of the most

promising perovskites (based on predictions of the machine
learning model) was further verified using a recently
implemented fully first-principles computational framework.
Based on the Fröhlich−von Hippel criterion, the condition for
the intrinsic dielectric breakdown field within this framework
can be written as

>A E F B E E E( , ) ( ) for all in {CBM, }i (1)

where A(E,F) is the rate of the energy gain of an electron of
energy E at an electric field F, and B(E) is the rate of energy
loss. The threshold energy for impact ionization, Ei, is assumed
to be CBM + Eg, where CBM is the conduction band minimum
and Eg is the band gap. The intrinsic dielectric breakdown field
is the lowest possible field F for which the above condition is
satisfied.
The rate of energy gain of the electron can be evaluated as

τ=A E F
e E F

m
( , )

( )
3

2 2

(2)

where e and m are the electronic charge and mass, respectively.
τ(E) is the electron relaxation time due to phonon scattering.
Determination of both τ(E) and B(E) requires a knowledge of
the electron−phonon coupling function as explained in
previous studies.22,32

In the present study, both τ(E) and B(E) were evaluated at
300 K. All relevant quantities including the intrinsic dielectric
breakdown field were computed using DFT within LDA and
norm conserving pseudopotentials33,34 as implemented in the
Quantum ESPRESSO code.35 Electron−phonon coupling
function was computed in the linear response regime using
density functional perturbation theory (DFPT). A Monkhorst−
Pack k-point mesh of 16 × 16 × 16 (to sample the electronic
states) and q-point mesh of 4 × 4 × 4 (to sample the phonon
states) were used for all materials to obtain converged results.

■ RESULTS AND DISCUSSION

We start with a data set of 18 928 perovskites reported in the
CMR database, each with a prototypical 5-atom ABX3 unit cell
where the motif X3 ∈ {N3, O2F, O2N, O2S, O3, OFN, and
ON2}. Here both A- and B-cation sites are allowed to be
occupied by 52 different atomic species. For each of these
compounds the CMR database reports band gaps computed
using DFT as implemented in the GPAW code36 with the
Gritsenko, van Leeuwen, van Lenthe, and Baerends potential
(GLLB),37 further optimized for solids (-SC) by Kuisma and
co-workers.38 Within this functional, the derivative disconti-
nuity is computed and added back to the Kohn−Sham band
gap to correct for the well-known deficiency of conventional
local and semilocal DFT that leads to an underestimated band
gap. In fact, the GLLB-SC band gaps for several single metal
oxides and complex metal oxides have been found in excellent
agreement with the corresponding values obtained through
direct experimental measurements or using the more advanced
and demanding eigenvalue-self-consistent GW approach.39,40

Since we are primarily interested in insulators, our first
screening step simply consists of selecting compounds with a
nonzero GLLB-SC band gap. This screening step itself leads to
a significant reduction in the total number of compounds with
only 735 perovskites (only ∼4% of the entire data set) meeting
the downselection criterion.
These 735 insulating cubic perovskites are next subjected to

DFT-based structural optimizations, where both cell shape and
internal coordinates are allowed to relax. Anticipating that even
for a five-atom unit cell a lowered symmetry phase can be more
stable, we explicitly relaxed each of these compounds in three
different symmetries, namely cubic, tetragonal and rhombohe-
dral crystal symmetries. In addition to choosing an appropriate
starting cell geometry for each case, the central B-site cation
was given a small (1% of the cubic lattice constant) off-center
displacement either along the [001] (for the tetragonal phase)
or the along [111] (for the rhombohedral phase) direction. The
most favorable cell geometry and the atomic arrangement are
then determined by comparing the energetics of the relaxed
structures obtained from these three starting geometries.
In our next screening step, we assess dynamical stability of

the 735 compounds and further downselect 209 compounds
that do not exhibit any soft mode instability at the Γ-point. For
computational efficiency of our high throughput exploration,
here we operate under the assumption that the zone center
modes are representative of the entire Brillouin zone and
therefore limit our exploration of phonon frequencies to the Γ-
point alone. However, it is important to note that there are
known cases where this assumption does not hold true; for
example, cubic SrTiO3 is known to have a zero frequency at the
Γ-point but imaginary frequencies at at the M- and R-points
existing at the boundary of the Brillouin zone.
A classification summary based on the lattice and point group

symmetries of the optimized structures for the 209 dynamically
stable insulating perovskite is provided in Table 1. Only 5% of
compounds favor the cubic lattice (Pm3m) as their stable
structure, while 27% and 34% of the compounds converged to
monoclinic and tetragonal lattices, respectively. The overall
workflow described in this section is schematically illustrated in
Figure 2. Further details on the machine learning model
development can be found in our previous work.26 The
complete data set including structural information, band gap,
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and phonon frequency can be found in the Supporting
Information.
In our previous study, the prediction models for the intrinsic

dielectric breakdown field were developed using three machine
learning methods: kernel ridge regression (KRR),41−43 random
forest regression (RFR),41 and least absolute shrinkage and
selection operator (LASSO)41,44 methods, using a data set of 82
octet crystalline insulators. After an exhaustive search, the most
relevant features controlling the intrinsic dielectric breakdown
field were determined to be the band gap and the global
maximum of phonon frequencies (phonon cutoff frequency).
Of the three machine learning methods used, the LASSO

approach provides an explicit functional form for the intrinsic
dielectric breakdown field in terms of the two key descriptors

ω=F E24.442 exp(0.315 )b g max (3)

where Fb is the predicted intrinsic dielectric breakdown field, Eg
is the band gap, and ωmax is the maximum phonon frequency,
specified in units of MV/m, eV, and THz, respectively. In order
to apply this prediction model to 209 perovskite dielectrics, we
prepared the data set of required features, namely, the band gap
and phonon frequency. As the HSE06 band gap is known to
predict band gaps with acceptable accuracy, and the maximum
phonon frequency typically occurs at the Γ point, these values
were used in eq 3. These are reasonable approximations in a
first line of screening.
Figure 3 shows the graphical summary of the predicted

intrinsic dielectric breakdown field in the property space of
HSE06 band gap versus maximum phonon frequency at Γ. The
contour for the predicted intrinsic breakdown field, plotted in
the Figure 3 using eq 3, may be viewed as a design map that can
aid in the rapid screening and identification of dielectrics with
high breakdown strength. As presented by eq 3, materials with
larger band gap and maximum phonon frequency tend to have
larger intrinsic breakdown field. The 209 selected perovskite
dielectrics are shown in the figure and distinguished in terms of
their crystal structures. Compounds that display the triclinic,
monoclinic, and trigonal display the highest breakdown fields.
We further analyzed the correlation between the predicted

intrinsic breakdown field and the composition of the 209
perovskites dielectrics. As shown in Figure 4, we show the
number of times the 38 elements appear at the two cation (i.e.,
A and B) sites. For each cation that occurs in the 209 cases, the
size of the upper (lower) triangle indicates the number of times
it occurs in the A-site (B-site), and the color represents the
average breakdown field. From this figure, it is visually obvious
that boron, especially when it occurs in the B-site, leads to high

breakdown fields. Among all cases, we identify BaBO2F,
SrBO2F, and BSiO2F as candidates worthy of further inquiry.
Before proceeding further, we make the following important

observation, concerning the applicability of the LASSO-based
breakdown field prediction model to the perovskites class of
materials. The shaded region of Figure 3 (bound by a dashed
line) shows the Eg−ωmax regime within which the dielectric
breakdown field is “predictable”. This is the regime of the two
descriptors (namely, Eg and ωmax) occupied by the original 82
binary octet compounds using which the machine learning
model of dielectric breakdown field was developed in the first
place. It can be seen that several ABX3 cases fall outside this
regime, indicating that the machine learning predictions of the
breakdown field for these cases must be viewed with caution.
In particular, the three boron-containing cases, namely,

BaBO2F, SrBO2F, and BSiO2F, occur very close to the
“predictable” regime boundary. It is thus important to validate
the machine learning prediction for these cases, e.g., through
direct computation of the breakdown field using DFT. In
addition to these cases, we also consider three other cubic
perovskites, namely, CaSiO3, CaGeO3, and BaSnO3, which
occur well within the predictable regime for additional
validation. DFT computations of the breakdown field were
performed for all six cases, and these DFT predictions are
compared with the machine learning predictions in Figure 5.
While the agreement is reasonable for four of the six cases, the
two cases, BaBO2F and SrBO2F, which occur farthest from the
predictable regime boundary, lead to the highest discrepancies.
The important finding of this study, nevertheless, is that

boron-containing cases may be tolerant to high electric fields,
and among those, BSiO2F and SrBO2F display breakdown
fields of almost 2 GV/m. These compounds may be worthy of
further experimental studies.

■ CONCLUSIONS
The intrinsic dielectric breakdown strength of insulators is a
key property that dictates performance of electrical and
electronic devices. Determination of the breakdown strength

Table 1. Classification of Lattice and Point Group
Symmetries Obtained by Group Theoretical Analysis for the
Dynamically Stable Optimized Perovskite Insulators

lattice point group space group (number) count

triclinic C1 P1 (1) 20
monoclinic Cs Pm (6) 4

Cs Cm (8) 51
orthorhombic C2v Pmm2 (25) 24

C2v Amm2 (38) 4
tetragonal C4v P4mm (99) 63

D4h P4/mmm (123) 7
trigonal C3v R3m (160) 25
cubic Oh Pm3m (221) 11

Figure 3. Feature (band gap and maximum phonon frequency at Γ)−
property (predicted intrinsic breakdown field) map for 209 perovskites
in six crystal structure subclasses. Of the 209 cases, SrBO2F, BaBO2F,
and BSiO2F are identified as promising and worthy of further in-depth
studies owing to their high breakdown strength. The shaded region
bound by dashed line (given as per eq 3) represents the domain of
applicability of the employed interpolative machine learning model
within which the dielectric breakdown field is deemed predictable.
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via a fully first-principles route, although possible, is highly
computational-time intensive and therefore impractical for any
high throughput screening effort targeted toward identifying
promising candidate materials starting from a relatively large set
of compounds. Here we have demonstrated that machine
learning-based data-enabled approaches can be of particular
interest in such situations, providing an efficient alternative
pathway for zeroing in on materials of interest. More
specifically, in this contribution we screened a large chemical
space containing ∼19 000 ABX3, X3 ∈ {N3, O2F, O2N, O2S, O3,
OFN, and ON2}, perovskite compounds. Filtering out metallic
and dynamically unstable compounds in a hierarchal down-
selection process led to a set of 209 compounds for which the
intrinsic breakdown strength was estimated by employing our
recently developed machine learning model, which uses the
band gap and the maximum phonon cutoff frequency of a given
compound to predict its breakdown strength. Further cross-

validation of the estimated dielectric breakdown field for the
most promising compounds via first-principles DFT computa-
tions reveals a reasonable agreement for the compounds that
occur well within the predictable regime of the interpolative
machine learning model, while discrepancies are found for the
compounds occurring out side this domain. An important
insight that comes out of this study is that the boron-containing
perovskites may be extremely tolerant toward high electric
fields; among those, BSiO2F and SrBO2F are predicted to
display breakdown fields of almost 2 GV/m and therefore
worthy of further experimental studies.
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Figure 4. Frequency count for appearance of elements at A- or B-site of 209 dynamically stable insulating perovskites. The largest size of triangle
corresponds to the maximum number of appearance, 21, and the smallest size corresponds to the minimum, 1. The elements that are not found from
209 perovskites are shown in gray boxes without triangles. Average of predicted intrinsic breakdown field ranged from 30 to 2497 MV/m is
illustrated by the color variation of the triangles.

Figure 5. Parity plot comparing the DFT computed intrinsic dielectric
breakdown field against the predicted intrinsic breakdown field for
three boron-containing cases (BaBO2F, SrBO2F, and BSiO2F)
occurring very close to the boundary of the predictable regime and
three cubic perovskites (CaSiO3, CaGeO3, and BaSnO3) occurring
well within the regime of predictability. The machine learning
predicted values for the two perovskites out of predictable regime
(i.e., the domain of applicability of the interpolative machine learning
model), viz. SrBO2F and BSiO2F, lead to the highest discrepancies
while the other four exhibit a reasonable agreement with the
corresponding DFT computed intrinsic dielectric breakdown field.
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