Density-functional description of polymer crystals: A comparative study of recent van der Waals functionals

Thinh H. Pham, Rampi Ramprasad, and Huy-Viet Nguyen

Citation: The Journal of Chemical Physics 144, 214905 (2016); doi: 10.1063/1.4953170

View online: http://dx.doi.org/10.1063/1.4953170

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/144/21?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Van der Waals density functional study of the structural and electronic properties of La-doped phenanthrene
J. Chem. Phys. 139, 204709 (2013); 10.1063/1.4832699

A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications

A van der Waals density functional study of ice Ih

Hydrostatic and uniaxial compression studies of 1,3,5-triamino-2,4,6-trinitrobenzene using density functional theory with van der Waals correction
J. Appl. Phys. 107, 113524 (2010); 10.1063/1.3361407

Density-functional study of van der Waals forces on rare-gas diatomics: Hartree–Fock exchange
Density-functional description of polymer crystals: A comparative study of recent van der Waals functionals

Thinh H. Pham,1 Rampi Ramprasad,2 and Huy-Viet Nguyen3,4,a)
1School of Electrical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
2Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, USA
3Institute of Research and Development, Duy Tan University, K725 Quang Trung, Danang, Vietnam
4Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

(Received 6 April 2016; accepted 18 May 2016; published online 6 June 2016)

Due to the lack of treatment of long-range dispersion energies, density functional theory with local and semilocal approximations of exchange-correlation energy is known to fail in describing van der Waals complexes, including polymer crystals. This limitation can be overcome by using a different class of functionals, called van der Waals density functional (vdW-DF), originally developed by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. In this work, we performed a systematic study of structural properties of polymeric crystals using the original vdW-DF functional by Dion et al. and its variants and refinements. Our study shows that this class of functional outperforms the conventional LDA or PBE functionals and gives results with similar accuracy to that of empirical dispersion-corrected schemes such as DFT-D. This study suggests the use of vdW-DF2 functional — a revised version of vdW-DF functional — to obtain a high-fidelity prediction of structural and other properties of polymeric materials. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4953170]

I. INTRODUCTION

In recent years, density functional theory (DFT) has become the standard workhorse for simulations of materials at the atomic level. The theory is formally exact for ground-state properties, but approximations must be employed in practical calculations.1,2 Although local and semilocal approximations of the exchange-correlation (xc) functionals provide many spectacular successes for a variety of materials, they have been known to be deficient in describing certain classes of materials, including van der Waals bonded systems. Over the last ten years, many attempts have been made to overcome this shortcoming of DFT. These attempts mainly belong to two approaches. The first one is the so-called DFT-D approach where the interatomic dispersion-energy contributions to the DFT total energies are included as simple parametrized pairwise additive terms. This makes the method computationally as favorable as that of standard DFT with local-semilocal functionals, but at the price of being empirical as fitting parameters are employed in the construction of pairwise dispersion energies. Actually, the idea of the DFT-D approach was first used in quantum chemistry almost 40 years ago in the context of Hartree-Fock theory.3,4 A decade ago, the scheme has been adapted to DFT framework by Grimme,5 and later on the accuracy of DFT-D calculations has been much improved by including the environment-dependence of dispersion coefficients that are needed for the evaluation of dispersion energies.6,7 In the second approach, a different class of exchange-correlation functionals where long-range dispersion energies are taken into account in the functional itself has been developed. The theoretical basis for the development is the adiabatic-connection fluctuation dissipation formalism in which an exact xc-energy expression is written in terms of interacting linear response functions at different coupling strengths of Coulomb interaction. Direct evaluation of exact-exchange and correlation energies within the random phase approximation (RPA), the so-called EXX/RPA scheme, has been used to successfully describe a wide range of molecular and crystalline van der Waals systems.8-10 However, application of the EXX/RPA method is still limited to relatively small systems due to its high computational demand. An approach that requires less computational expense was first developed by Dion et al. in Ref. 11 and was termed van der Waals density functional (vdW-DF). In this approach, an approximation of interacting response functions in terms of electronic density was developed to evaluate nonlocal correlation energy—the component of total energy responsible for long-range dispersion forces. Thus, similar to standard local or semilocal functionals, this nonlocal correlation energy can be expressed as a functional of charge density via a double integral where the charge density at two spatial points is correlated by a nonlocal kernel depending on the density and density gradient at those two points. In fact, vdW-DF by Dion et al. was constructed by combining the nonlocal correlation energy with the exchange and local-correlation energies treated in usual local-density and generalized-gradient approximations (GGAs). As a result, vdW-DF can be used just as other standard functionals in DFT electronic structure codes.

a) Electronic mail: nhviet@iop.vast.vn

THE JOURNAL OF CHEMICAL PHYSICS 144, 214905 (2016)
Although vdW-DF has been proved to describe structural and energetic properties of various van der Waals complexes rather accurately, see, e.g., the review in Ref. 12, there remain two unsatisfactory issues, namely, the consistent overestimation of intermolecular distances, and the error in the binding energy (BE) which in many important circumstances is still outside the so-called “chemical accuracy” of 1 kcal/mol (~43 meV). The origin of these shortcomings was attributed to the inaccurate revised Perdew-Burke-Ernzerhof exchange functional (revPBE) incorporated within the vdW-DF. To improve the performance of vdW-DF, Cooper has developed a new enhancement factor for the generalized gradient approximation (GGA) of the exchange functional that reduces the short-range exchange repulsion in the limit of low reduced density gradient — defined as $s = |\nabla n|/(2k_F n)$, with $k_F = (3\pi^2 n)^{1/3}$ and $n$ is the electronic density — and is an asymptote to that of the revPBE upper bound in the large $s$ limit. The test on S22 dataset — the set of 22 weakly interacting dimers — showed that, when the revPBE exchange functional in vdW-DF was replaced by the one developed by Cooper, the binding energy (BE) was in better agreement with the CCSD(T) benchmark results and intermolecular distances were improved as well. Klimeš et al. took a somehow more empirical approach by tuning parameters of several GGA exchange functionals so as to make the calculated binding energies fit best with the CCSD(T) benchmarks. As a result, optimizing B88 and B86b GGA exchange functionals originally developed by Becke leads to significantly reduced mean absolute deviations (MADs) of binding energies of S22 dataset (to about ~10 meV). These functionals are termed DF-optB88 and DF-optB86b in this work.

Recently two considerable elaborations of vdW-DF have been introduced. The first one was the second version of vdW-DF, named vdW-DF2, and was proposed by the main developers of the first vdW-DF. In this improved functional, a refitted version of PW86 exchange functional was used instead of the revPBE exchange and the nonlocal kernel was also modified by using the large-$N$ asymptote gradient correction. For the S22 dataset, the vdW-DF2 functional showed a considerable improvement over its precursor with a MAD of binding energies less than 50 meV and the MAD of equilibrium distances reduced from 0.23 to 0.13 Å. Hamada has showed that B86b GGA exchange functionals can also be revised and replaced PW86 in vdW-DF2 (termed revDF2 in this work) to make the functional more accurate. The second development was the VV10 functional introduced by Vydrov and van Voorhis. Unlike vdW-DF and vdW-DF2 functionals, the nonlocal kernel in VV10 is approximated by a simple model. Consequently, there remains an arbitrary parameter for controlling the short range damping in the kernel. This parameter was fixed by fitting on binding energies of S22 dataset. Applications of the VV10 functional have shown remarkable improvements of binding energies and equilibrium intermolecular separations. We note that very recently the VV10 functional has been revised to utilize a very efficient integration scheme of Román-Pérez and Soler in a plane-wave implementation.

Polymeric crystals are an important class of materials with many applications not only in daily life products but also in low-cost electronic devices and in capacitors for electrostatic energy storage. Having both strong covalent interactions along the intrachain direction and weak van der Waals interactions between polymer chains, polymer crystals also form a stringent test case for any theoretical schemes dealing with van der Waals interactions. In a recent publication, Liu et al. have studied structural properties of 10 polymeric crystals with reliable crystallographic data using several DFT-D schemes. The obtained results showed that overall the performance of these dispersion-corrected functionals is considerably improved when compared with that of (semi)local functionals and better accuracy is obtained for corrected schemes that take into account the environment-dependence of dispersion coefficients, i.e., DFT-D3 by Grimme et al. and DFT-TS by Tkatchenko and Scheffler. While van der Waals density functionals have been extensively applied to study vdW complexes such as molecular and layer systems, molecular crystals, and absorption of molecules on surfaces [see, e.g., the recent review by Berland et al. in Ref. 27], application to polymer crystals is still rather limited. Indeed, we are aware of only a few studies, namely, the polyethylene (PE) crystal structure by the original vdW-DF and the recent applications of vdW density functionals in developing a dataset of polymers and related materials for designing, in particular but not limited to, high dielectric constant polymers, based on computation- and data-driven approaches. Thus, a thorough investigation of the performance of different vdW density functionals for polymer crystals is needed. In this paper, we systematically investigate the performance of the aforementioned state-of-the-art ab initio van der Waals density functionals for 10 polymeric crystals studied in Ref. 26, namely, polyethylene (PE), polyacetylene (PA), poly(glycolic acid) (PGA), poly(phenylene oxide) (PPO), poly(oxyethylene) (POM), poly(p-phenylene sulfide) (PPS), two forms of poly(vinylidene fluoride) (P-VDF and a-PVDF), poly(tetrafluoroethylene) (PTFE), and poly(vinyl chloride) (PVC). The functionals employed in this study include vdW-DF by Dion et al., DF-C09 by Cooper, DF-optB88 and DF-optB86b by Klimeš et al., vdW-DF2 by Lee et al., revDF2 by Hamada, and rVV10—a revised version of VV10 functional by Vydrov and van Voorhis.

II. COMPUTATIONAL DETAILS

All calculations in our study were performed using the PWSCF code of the QUANTUM ESPRESSO distribution in which several flavors of van der Waals density functionals are implemented in a plane-wave pseudopotential (PP) approach, including the self-consistent evaluation of the nonlocal potential. The calculation of forces and stress tensor corresponding to the nonlocal correlation part was also made possible recently and this feature allows one to perform automated geometry optimizations. Since no pseudopotential generated with nonlocal correlation functionals is available to date, we employ pseudopotentials generated using the PBE xc-functional in the Vanderbilt’s ultrasoft framework as published in the GRBV pseudopotential library. Although these PPs
FIG. 1. Cohesive energy of PE crystal as a function of distance \(d\) between two polymer chains computed using PBE and several van der Waals density functionals. The black solid square indicates the experimental result.

were designed to be used with a relatively low plane-wave cutoff—40 Ry for the wave functions and a charge-density cutoff of 200 Ry, we used rather high cutoffs—70 Ry for the former and 700 Ry for the latter—to achieve good energy and stress\(^{35}\) convergences. For each system, Brillouin zone sampling was carried out on a Monkhorst–Pack k-point grid generated with the same set of parameters reported in Ref. 26.

To determine the equilibrium structures of polymer crystals, we employed the standard procedure for geometry optimization where atomic and unit cell shape converge to a specific value. The optimization was then performed using those configurations. We observed that the final results are in good agreement with each other for most of the cases. There are, however, a few cases with odd results indicating that the optimization procedure is trapped on a local minimum. We ensured that these cases can be adequately handled by using slightly tighter thresholds.

III. RESULTS AND DISCUSSION

A. Single polymer chain

Nonlocal vdW density functionals were developed specifically for describing weakly bonded systems. A successful vdW functional should, besides its ability to capture the essence of dispersion interactions, at least not degrade the

TABLE I. \(c\)-lattice constants (in Å) of 10 polymers obtained from calculations for a single isolated chain with different vdW density functionals. The results from PBE functionals and experimental values are also included for comparison. Mean deviations (MD), mean absolute deviations (MAD), and mean absolute relative deviations (MARD) are indicated in the last three lines.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Expt.</th>
<th>PBE</th>
<th>vdW-DF</th>
<th>DF-C09</th>
<th>DF-optB88</th>
<th>DF-optB86b</th>
<th>vdW-DF2</th>
<th>revDF2</th>
<th>rVV10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>2.55</td>
<td>2.563</td>
<td>2.575</td>
<td>2.552</td>
<td>2.562</td>
<td>2.557</td>
<td>2.580</td>
<td>2.559</td>
<td>2.566</td>
</tr>
<tr>
<td>PA</td>
<td>2.46</td>
<td>2.477</td>
<td>2.481</td>
<td>2.473</td>
<td>2.474</td>
<td>2.474</td>
<td>2.484</td>
<td>2.475</td>
<td>2.479</td>
</tr>
<tr>
<td>β-PVDF</td>
<td>2.56</td>
<td>2.596</td>
<td>2.609</td>
<td>2.580</td>
<td>2.588</td>
<td>2.586</td>
<td>2.610</td>
<td>2.588</td>
<td>2.594</td>
</tr>
<tr>
<td>PTFE</td>
<td>2.62</td>
<td>2.663</td>
<td>2.674</td>
<td>2.637</td>
<td>2.647</td>
<td>2.645</td>
<td>2.672</td>
<td>2.647</td>
<td>2.654</td>
</tr>
<tr>
<td>PVC</td>
<td>5.08</td>
<td>5.112</td>
<td>5.138</td>
<td>5.087</td>
<td>5.105</td>
<td>5.098</td>
<td>5.147</td>
<td>5.101</td>
<td>5.116</td>
</tr>
</tbody>
</table>

|          | MD (Å) | 0.049 | 0.056 | 0.007 | -0.011 | -0.006 | -0.067 | -0.015 | -0.035 |
|          | MAD (Å) | 0.049 | 0.058 | 0.023 | 0.030   | 0.028   | 0.067   | 0.030   | 0.040 |
|          | MARD (%) | 1.06  | 1.38  | 0.41  | 0.65    | 0.58    | 1.52    | 0.66    | 0.91  |

The fact that the internal structure of PE chain is relatively simple compared to other crystals studied in this work might question the reliability of the automated geometry optimization procedure when applied to study other complex systems. To reduce the uncertainty in the obtained results, we performed a further verification procedure namely that for each system, 5 different starting atomic configurations were constructed by randomly varying the lattice parameters within 10% of experimental values and automated geometry optimization was then performed using those configurations. We observed that the final results are in agreement with each other for most of the cases. There are, however, a few cases with odd results indicating that the optimization procedure is trapped on a local minimum. We ensured that these cases can be adequately handled by using slightly tighter thresholds.
performance of traditional functionals for strong ionic-covalent interactions such as covalent bonds along the chain direction of polymers. We therefore investigate in this part the performance of vdW density functionals for single polymer chains. Table I presents \( c \)-lattice constants of 10 single polymer chains computed using different vdW functionals. The obtained results show that in general vdW density functionals give similar accuracy to PBE in describing the bond length along the polymer chains. The combination of C09 exchange with Cooper with the first generation of vdW-DF is most accurate with MAD as small as half of that of PBE, while both vdW-DF and vdW-DF2 are slightly worse than PBE.

### B. Polymer crystals

Structural properties of ten polymer crystals considered in this work have been studied using different variants of van der Waals density functional. The results are shown in Table II in comparison with experimental values (if available). The cohesive energy, \( E_c \), per unit cell has been computed as

\[
E_c = N_{\text{chain}} F_{\text{chain}} - E_{\text{bulk}},
\]

(1)

where \( E_{\text{bulk}} \) is the total energy of bulk unit cell with \( N_{\text{chain}} \) single chains and \( F_{\text{chain}} \) is the total energy of the unit cell containing the single isolated chain. Bulk modulus at zero

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Method</th>
<th>( a ) (Å)</th>
<th>( b ) (Å)</th>
<th>( c ) (Å)</th>
<th>Density (g/cm(^3))</th>
<th>( E_c ) (eV)</th>
<th>( B_0 ) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>Expt.</td>
<td>7.12(^{a}) 4.85(^{b}) 2.55(^{b})</td>
<td>0.997 (^{a}) 0.32(^{b}) 6.4(^{a})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vDW-DF</td>
<td>7.34 5.19 2.58 0.948 0.43 7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-C09</td>
<td>6.84 4.76 2.55 1.122 0.51 12.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-optB88</td>
<td>6.93 4.85 2.56 1.083 0.49 11.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-optB86b</td>
<td>6.95 4.86 2.56 1.077 0.50 10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vdW-DF2</td>
<td>7.05 4.98 2.58 1.029 0.40 10.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>revDF2</td>
<td>6.97 4.88 2.56 1.070 0.37 9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rVV10</td>
<td>6.90 4.77 2.56 1.106 0.45 13.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>Expt.</td>
<td>4.24 7.32 2.46 1.130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vDW-DF</td>
<td>4.24 7.70 2.48 1.068 0.50 8.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-C09</td>
<td>3.91 7.17 2.47 1.249 0.60 13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-optB88</td>
<td>3.99 7.29 2.47 1.204 0.59 12.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-optB86b</td>
<td>3.99 7.29 2.47 1.204 0.59 11.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vdW-DF2</td>
<td>4.11 7.49 2.48 1.133 0.48 11.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>revDF2</td>
<td>4.01 7.32 2.47 1.193 0.47 10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rVV10</td>
<td>3.96 7.23 2.47 1.123 0.54 14.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPO</td>
<td>Expt.</td>
<td>8.07 5.54 7.92 1.408</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vDW-DF</td>
<td>8.30 5.58 9.93 1.330 2.04 9.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-C09</td>
<td>7.47 5.43 9.87 1.528 2.46 14.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-optB88</td>
<td>7.68 5.45 9.90 1.476 2.43 14.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-optB86b</td>
<td>7.65 5.46 9.88 1.482 2.41 13.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vdW-DF2</td>
<td>7.96 5.54 9.98 1.390 1.89 12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>revDF2</td>
<td>7.66 5.52 9.90 1.461 1.83 12.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rVV10</td>
<td>7.56 5.48 9.93 1.487 2.21 15.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POM</td>
<td>Expt.</td>
<td>4.77 7.65 5.36 1.540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vDW-DF</td>
<td>4.81 7.90 3.65 1.438 0.79 10.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-C09</td>
<td>4.64 7.27 3.54 1.670 0.92 16.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-optB88</td>
<td>4.66 7.39 3.58 1.618 0.93 16.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-optB86b</td>
<td>4.69 7.40 3.57 1.610 0.91 15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vdW-DF2</td>
<td>4.68 7.65 3.65 1.526 0.76 15.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>revDF2</td>
<td>4.69 7.44 3.57 1.601 0.69 14.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rVV10</td>
<td>4.61 7.35 3.60 1.635 0.85 18.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPS</td>
<td>Expt.</td>
<td>8.67 5.61 10.26 1.440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vDW-DF</td>
<td>8.78 5.77 10.47 1.354 2.27 8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-C09</td>
<td>7.96 5.50 10.39 1.579 2.81 13.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-optB88</td>
<td>8.17 5.56 10.43 1.516 2.75 13.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF-optB86b</td>
<td>8.16 5.56 10.41 1.521 2.72 12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vdW-DF2</td>
<td>8.53 5.65 10.50 1.420 2.16 11.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>revDF2</td>
<td>8.20 5.57 10.40 1.512 2.13 11.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rVV10</td>
<td>8.08 5.54 10.47 1.533 2.57 14.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Reference 45.*

*Reference 36.*

*Reference 40.*

**Table II.** Lattice parameters, densities, cohesive energies (\( E_c \)), and bulk moduli (\( B_0 \)) for ten polymer crystals (PE, PA, PPO, POM, PPS, PGA, \( \beta \)-PVDF, \( \alpha \)-PVDF, PTFE, PVC) calculated using different van der Waals density functionals. Available experimental values are also included for comparison.
pressure, $B_0$, was obtained using a finite difference of the equation

$$B_0 = -V_0 \frac{dP}{dV}.$$  \tag{2}$$

To this end, we performed two additional geometry optimizations where the unit cell parameters were relaxed under a small external pressure of $P_{\text{ext}} = \pm 0.1 \, \text{GPa}$. It is anticipated that the presence of other polymer chains in bulk systems only has minor effect on the $c$-lattice constant of isolated chains because they interact via dispersion forces which are very small compared to strong covalent bonds along the chain. This is indeed the case as showed in Table II where relaxed $c$-lattice constants in bulk systems are only slightly changed when compared to the values in Table I. For $a$, $b$-lattice constants, unit cell volumes, and densities at equilibrium, the results predicted by all vdWDFs considered in this work are overall in good agreement with experimental values as can be seen in Figs. 2(a)–2(c). They are also closer to experiments than that of local/semi-local functionals. In particular, while the largest deviation from experiments for LDA and GGA reported in Ref. 26 is 15%, it is reduced by a factor of 2 (to 8%) for the case of vdWDFs which is comparable to that of dispersion-corrected functionals. Fig. 2(a) also shows that in general vdW-DF and vdW-DF2 tend to overestimate the $a$, $b$-lattice constants which leads to an overestimation of unit cell volume (Fig. 2(b)) and underestimation of density (Fig. 2(c)). Other functionals show the opposite trend. This behavior of vdW-DF and vdW-DF2 is consistent with the fact that these two functionals also give overestimation of intermolecular distances.14,22

To compare the results obtained using different levels of theory, we have computed mean deviations (MDs), mean absolute deviations (MADs), mean absolute relative deviations (MARDs), and root-mean-square errors (RMSEs) of $a$, $b$-lattice constants from our calculations, as well as the $a$, $b$-lattice constants reported by Liu et al. (obtained using local/semi-local and dispersion-corrected functionals), with respect to the available experimental values. The data are summarized in Table III and are also graphically represented in Fig. 3. It is observed that, among different vdW density functionals considered, vdW-DF and vdW-DF2 give the most accurate results for $a$, $b$-lattice constants. The errors of energy-optimized functionals (DF-optB88, DF-optB86b) and revDF2 are similar and slightly larger than that of vdW-DF and vdW-DF2. The DF-C09 and rV10 give largest errors. Compared to the results of dispersion-corrected functionals, the accuracy of vdW density functionals is similar. Overall, the vdW-DF2 gives the smallest error compared to other vdW functionals as well as the dispersion-corrected ones.

Experimental values for cohesive energy, $E_c$, and bulk modulus, $B_0$, are only available for a few systems. Indeed, we are only aware of $E_c$ for PE crystal and it was reported to be $0.32 \pm 0.01 \, \text{eV}$ at zero temperature.36 For PE crystal, both vdW and dispersion-corrected functionals predict $E_c$ in the range between 0.4/0.5 eV, except for the case of revDF2 where $E_c$ is 0.37 eV. This number compares well with the experimental value if one takes into account the zero-point energy correction which was estimated to be about 0.04 eV.28

![Figure 2](image-url)

**TABLE III.** Mean deviations (MD), mean absolute deviations (MAD), mean absolute relative deviations (MARD), and root-mean-square errors of $a$, $b$-lattice constants predicted by using different levels of theory with respect to the experimental values. Values for local/semilocal and dispersion-corrected functionals were obtained using results reported by Liu and co-workers.26

<table>
<thead>
<tr>
<th>Functional</th>
<th>MD (Å)</th>
<th>MAD (Å)</th>
<th>MARD (%)</th>
<th>RMSE (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>-0.42</td>
<td>0.42</td>
<td>6.18</td>
<td>0.47</td>
</tr>
<tr>
<td>PBE</td>
<td>0.44</td>
<td>0.44</td>
<td>7.13</td>
<td>0.52</td>
</tr>
<tr>
<td>PW91</td>
<td>0.42</td>
<td>0.42</td>
<td>6.93</td>
<td>0.30</td>
</tr>
<tr>
<td>PBE-D2</td>
<td>-0.25</td>
<td>0.27</td>
<td>4.21</td>
<td>0.29</td>
</tr>
<tr>
<td>PBE-D3</td>
<td>-0.14</td>
<td>0.15</td>
<td>2.46</td>
<td>0.23</td>
</tr>
<tr>
<td>PBE-TS</td>
<td>-0.11</td>
<td>0.15</td>
<td>2.36</td>
<td>0.19</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>0.11</td>
<td>0.14</td>
<td>2.19</td>
<td>0.18</td>
</tr>
<tr>
<td>DF-C09</td>
<td>-0.28</td>
<td>0.29</td>
<td>4.20</td>
<td>0.34</td>
</tr>
<tr>
<td>DF-optB88</td>
<td>-0.20</td>
<td>0.21</td>
<td>3.11</td>
<td>0.25</td>
</tr>
<tr>
<td>DF-optB86b</td>
<td>-0.19</td>
<td>0.21</td>
<td>3.01</td>
<td>0.25</td>
</tr>
<tr>
<td>vdW-DF2</td>
<td>-0.07</td>
<td>0.12</td>
<td>1.83</td>
<td>0.15</td>
</tr>
<tr>
<td>revDF2</td>
<td>-0.17</td>
<td>0.19</td>
<td>2.71</td>
<td>0.23</td>
</tr>
<tr>
<td>rV10</td>
<td>-0.25</td>
<td>0.26</td>
<td>3.77</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Overall, vdW density functionals overestimate the cohesive energy up to 150%. Similar trend was also observed for the case of molecular crystals.\textsuperscript{37,38} Although experimental cohesive energies for other polymers are not available to compare with, we plot in Fig. 2(d) the values of $E_c$ for all polymers calculated using different vdW density functionals to see the trend. The figure shows the consistent behavior that vdW-DF, vdW-DF2, and revDF2 give smaller cohesive energies than other functionals do. It is worth to mention that for most molecular complexes in the S22 dataset the vdW density functionals are consistently larger (by a factor ranging from 1.5 to 3) compared to experiments.

In this work, we investigated the performance of state-of-the-art \textit{ab initio} van der Waals functionals in describing structural properties for a variety of representative polymer crystals. The tested functionals are vdW-DF by Dion \textit{et al.}, DF-C09 by Cooper, DF-optB88 and DF-optB86b by Klimeš \textit{et al.}, vdW-DF2 by Lee \textit{et al.}, revDF2 by Hamada, and a revised version of VV10 by Vydrov and van Voorhis as implemented in PWscf code. Our obtained results show that all vdW density functionals considered in this work can describe structural properties of polymer crystals reasonably well and among them vdW-DF2 gives the most accurate results compared to experiments. In general, the accuracy of these \textit{ab initio} van der Waals functionals is similar to that of dispersion-corrected functionals which is much better than conventional LDA/GGAs. Since \textit{ab initio} van der Waals functionals have been implemented efficiently and they work in more or less the same manner as local/semilocal functionals, our study suggests that these vdWDFs should be used to study other properties, e.g., electronic or defect, of polymeric materials.

ACKNOWLEDGMENTS

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.99-2012.68. We thank Liem T. Bui and Ha N. Do for initial contributions to this work. The suggestion to take into account the temperature effect on bulk moduli by an anonymous referee is gratefully acknowledged.

The calculation of stress tensor is needed in geometry optimization and complications due to Pulay stresses in a plane-wave implementation may arise. However, this problem can be practically eliminated by using sufficiently high plane-wave cutoffs as we used in our calculations.