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ABSTRACT: Understanding the behavior (and failure) of
dielectric insulators experiencing extreme electric fields is
critical to the operation of present and emerging electrical and
electronic devices. Despite its importance, the development of
a predictive theory of dielectric breakdown has remained a
challenge, owing to the complex multiscale nature of this
process. Here, we focus on the intrinsic dielectric breakdown
field of insulatorsthe theoretical limit of breakdown
determined purely by the chemistry of the material, i.e., the
elements the material is composed of, the atomic-level
structure, and the bonding. Starting from a benchmark data set (generated from laborious first-principles computations) of
the intrinsic dielectric breakdown field of a variety of model insulators, simple predictive phenomenological models of dielectric
breakdown are distilled using advanced statistical or machine learning schemes, revealing key correlations and analytical
relationships between the breakdown field and easily accessible material properties. The models are shown to be general, and can
hence guide the screening and systematic identification of high electric field tolerant materials.

■ INTRODUCTION

Scientific inquiry begins with empirical or observational data,
which leads to an initial hypothesis. When consequences of the
hypothesis fail to agree with available data, the hypothesis is
revised. Successive iterations between the data and hypothesis
spaces lead to progressive refinement of the working
hypothesis, ultimately culminating in fundamental and precise
theories, such as quantum mechanics, gravitation, and electro-
dynamics.1−3 Alternatively, data can also lead to phenomeno-
logical theories via correlations revealed by statistical analysis.
Examples of such developments within the materials sciences
include the Hume−Rothery rules of solid solubility4 and the
Hall−Petch relation for materials strengthening.5,6 Although
not as precise as fundamental theories, phenomenological
models can be immediately used to screen and design materials
with practical value.7,8 Such models may also be viewed as
approximations to precise theories, in that several not-so-
relevant, unimportant, and unnecessarily complex features of a
fundamental theory are “integrated” out. The data that power
the discovery of phenomenological theories may be obtained
either from empirical sources, or from fundamental theories
(via modern high-throughput computational methods). These
notions are schematically captured in Figure 1.
The present contribution provides a systematic and inductive

approach by which a phenomenological theory of dielectric
breakdown is developed. The behavior of a material

experiencing enormous electric fields has long defied the
creation of a predictive theory. This is largely because the
dielectric degradation and breakdown process in real materials
is complexit is the result of the interplay between the
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Figure 1. Role of data in building predictive theories and
phenomenological models. For the purpose of identifying correlations
and building phenomenological models, data may be prepared in a
controlled manner, for instance via high-throughput methods, followed
by the analysis of the accumulated data using best-practices statistical
methods.
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magnitude of the electric field, the time span of imposition of
the field, the temperature, and the state of the material (i.e., its
defect content and morphology). Dielectric degradation (which
eventually culminates in breakdown) is difficult to track
empirically, and is essentially the progressive creation and
accumulation of atomic and nanoscale defects. The primary
focus of this contribution though is the intrinsic dielectric
breakdown field, determined solely by the material’s chemistry.
This quantity has a special significance as it is the highest
possible electric field that a “perfect” (i.e., defect-free) material
can tolerate; it is hence the theoretical limit of dielectric
breakdown.

The starting point for the present development is the
fundamental theory of intrinsic dielectric breakdown as
formulated by von Hippel9 and Fröhlich,10−12 and recently
implemented within a first-principles computational frame-
work.13 The intrinsic dielectric breakdown field, computed
from first-principles, for a benchmark set of 82 insulators
provides the data set for the discovery of a phenomenological
dielectric breakdown model (see Figure 2). This starting
pointbased on computed datais justified because exper-
imental values of the breakdown field are available only for a
small number of cases (and even for those cases, samples and
measurement methods are prone to enormous statistical
variation). It is also worth noting that the first-principles

Figure 2. Intrinsic dielectric breakdown field of elemental and binary insulators. (a) Validation of the computational data generation method by
comparison of the theoretical (DFT-computed) intrinsic dielectric breakdown field with available experimental results. Error bars span the minimum
and maximum known experimental values. In the cases of LiF and AgCl, the enthalpy of formation is much lower than the band gap indicating that
bond breakage will occur before impact ionization. When the enthalpy of formation is used as the impact ionization threshold for these materials
(instead of the band gap), the computed intrinsic dielectric breakdown field is in good agreement with experiments. (b) DFT-computed intrinsic
dielectric breakdown field for 82 reference insulators (including 79 binary compounds and 3 elemental materials). (c) DFT-computed intrinsic
dielectric breakdown field, the 8 primary features (expected to bear a cause-effect relationship with the breakdown field), and the structure of the 82
insulators plotted separately for various materials subclasses studied. All properties are obtained from first-principles calculations except the band gap
and structure for which experimental results are used. The size of the symbols in each plot is proportional to the magnitude of the intrinsic dielectric
breakdown field, to visually reveal correlations. It can be seen that larger dielectric breakdown field values are correlated with larger band gap and
phonon frequencies, and smaller dielectric constant and nearest neighbor distances. In the panel showing crystal structures, symbol sizes are
determined by the average magnitude of the intrinsic dielectric breakdown field for materials in the same structure and materials subclass. No
particular correlation of the breakdown field with structure appear to exist.

Chemistry of Materials Article

DOI: 10.1021/acs.chemmater.5b04109
Chem. Mater. 2016, 28, 1304−1311

1305

http://dx.doi.org/10.1021/acs.chemmater.5b04109


computational approach to predicting the intrinsic dielectric
breakdown field of an insulator is extremely computation time
intensive, and does not automatically reveal key correlations,
hence warranting a targeted search for simpler models.
A principled approach is then adopted to correlate the

computed breakdown field to a variety of far more easily
accessible material properties. The rationale for such a search
for correlations is provided by fairly (visually) obvious patterns
(see Figure 2b) and relationships between the breakdown field
and properties such as the band gap, dielectric constant,
phonon spectra, etc. (see Figure 2c). Data-driven models
employing advanced statistical learning routines, inspired by
Big Data concepts,14−19 were utilized to discover simple
predictive models of dielectric breakdown. Such techniques
have risen in popularity and have recently been applied
successfully to address several important materials and chemical
science problems.20−28 The present work differs from these
past efforts in the manner in which materials are represented;
“higher-level” attributes of the system (as mentioned above and
discussed in detail below) are used here, in contrast atomic or
molecular level attributes used in much of these recent past
studies. The models of dielectric breakdown discovered here
using data-driven approaches are then tested, and validated, on
new materials not in the original data set. This development is
as revealing as it is powerful, and has the potential to guide the
development of new electric field tolerant materials with high
breakdown strength.

■ METHODS
Computation of the Intrinsic Dielectric Breakdown Field. At

low applied electric fields and nonzero temperatures, the conduction
electron energy distribution reaches a steady state, since the energy
gain from the external electric field is balanced by energy loss from
collisions with phonons. However, at sufficiently large electric fields,
the electrons in the conduction band incessantly gain kinetic energy
from the external electric field until a thresholdequal to the band
gap energy of the insulatoris reached when a high-energy electron,
via impact ionization, leads to carrier multiplication signaling
breakdown. According to the Fröhlich-von Hippel dielectric break-
down criterion,9−12 the breakdown field is the lowest external field at
which the average electron energy gain from the field is greater than
the average energy loss to phonons for all electron energies less than
those which can give rise to carrier multiplication. Thus, the electron−
phonon interactions provide the only relevant scattering mechanism in
this theory. The Fröhlich-von Hippel criterion for intrinsic dielectric

breakdown has been recently implemented within a first-principles
density functional theory (DFT) framework.13 This criterion can be
written as

>A E F B E E CBM E( , ) ( ) for all in { , }i (1)

where A(E,F) is the rate of the energy gain of an electron of energy E
at an electric field F, and B(E) is the rate of energy loss. The threshold
energy for impact ionization, Ei, is assumed to be CBM + Eg, where
CBM is the conduction band minimum and Eg is the band gap (see
Figure S1). The rate of energy gain of the electron can be evaluated as

τ=A E F
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m
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where e and m are the electronic charge and mass, respectively. τ(E) is
the electron relaxation time due to phonon scattering. Determination
of both τ(E) and B(E) requires a knowledge of the electron−phonon
coupling function as explained in previous studies.13,29 Both τ(E) and
B(E) were evaluated at a temperature of 300 K. All relevant quantities
and the intrinsic dielectric breakdown field were computed using DFT
within the local density approximation (LDA) and norm conserving
pseudopotentials30,31 as implemented in the Quantum ESPRESSO
code.32 Electron−phonon coupling function was computed in the
linear response regime using density functional perturbation theory
(DFPT). A Monkhorst−Pack k-point mesh of 32 × 32 × 32 (to
sample the electronic states) and q-point mesh of 4 × 4 × 4 (to sample
the phonon states) was used for all materials to obtain converged
results.33

Computation of Properties Expected to Be Correlated to
Breakdown. In an effort to identify correlations between the
breakdown field and other more easily accessible properties, we
considered eight material properties that are expected to bear a cause-
effect relationship with the breakdown field. This set of “primary
features” included the band gap, the average and maximum (cutoff)
phonon frequency, the dielectric constant (electronic and total), and
attributes that may control the behavior of phonons and their
scattering propensity (such as the nearest neighbor distance, mass
density, and the bulk modulus).

The average phonon frequency, phonon cutoff frequency, nearest
neighbor distance, mass density, and bulk modulus were computed
using Quantum ESPRESSO, and the electronic part of the dielectric
constant and the total dielectric constant were determined using the
Vienna Ab initio Simulation Package,34 using projector augmented
wave (PAW)35,36 frozen core potentials. All DFT computations for all
materials except the 4 transition metal oxides MnO, FeO, CoO, and
NiO were performed at the LDA level of theory. For these oxides,
spin-polarized LDA+U37 calculations were performed, with the
effective U parameters being 2.1, 4.3, 7.0, and 7.1 for Mn, Fe, Co,
and Ni, respectively. Owing to the significant uncertainties in the DFT

Figure 3. Schematic workflow used in the data-driven discovery of a phenomenological model of intrinsic dielectric breakdown. Of the three learning
models adopted, kernel ridge regression, and random forest regression attempt to predict the intrinsic dielectric breakdown field of a material given a
set of 8 material property features (but without resorting to actual functional forms), whereas the linear least-squares pathway discovers the
functional relationship between the intrinsic dielectric breakdown field and a set of compound (nonlinear) features identified by the least absolute
shrinkage and selection operator (LASSO). See the Supporting Information S2 for detailed workflow of model discovery.
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band gap predictions (regardless of the exchange-correlation
interaction treatment), experimental band gap data was used uniformly
for all cases.
Statistical Learning Methods. Our goal is to discover general

mathematical relationships between the property of interest Pi (i.e., the
intrinsic dielectric breakdown field) of material i, and an
Ω-dimensional representation (or descriptor or feature vector) di of
the material i. A suitable initial choice of di, and the rules by which this
initial choice is contracted and manipulated to lead to predictive
models Pi(di) is at the heart of modern machine learning methods.
Here, we pursue three fundamentally distinct strategies for model
discovery. The overall workflow adopted is outlined in Figure 3.
The first of these schemes is kernel ridge regression (KRR), capable

of handling complex nonlinear relationships.16,38,39 The KRR method
works on the principle of similarity. By comparing di of material i with
those of a set of reference cases for which the property values are
known (say, via a distance measure such as the Euclidean norm), an
interpolative prediction of Pi can be made.
The second learning scheme adopted is random forest regression

(RFR), which involves creation of an ensemble of decision trees.
Predictions from the forest are then made by averaging over
predictions from the individual trees. In both learning approaches,
the components of di were drawn from the set of the eight primary
property features, namely, band gap, average phonon frequency,
phonon cutoff frequency, electronic part of the dielectric constant,
total dielectric constant, nearest neighbor distance, mass density, and
bulk modulus.
The third adopted learning strategynamely, least absolute

shrinkage and selection operator (LASSO)-based model selection
was fundamentally different from the first two, and in the end, proved
to be the most revealing, powerful, and accurate. Although KRR and
RFR provided predictions of the dielectric breakdown field (i.e., Pi),
and identified the most relevant subset of the 8 primary features that
determine the dielectric breakdown field, they are not constructed to
provide the actual functional relationship between Pi and the relevant
features. LASSO, on the other hand, offers a pathway for this explicit
functional relationship determination. In order to exploit this
capability, conjunctiveor compoundfeatures were built explicitly
in a controlled manner, starting with the 8 primary features in the
following way: 12 prototypical functions, namely, x, x−1, x1/2, x−1/2, x2,
x−2, x3, x−3, ln x, (ln x)−1, ex, and e−x, with x being one of the 8 primary
features were considered. This immediately leads to 96 features. Cross
multiplying these features of single functions taken either two or three
at a time leads to additional 4480 and 183 368 features, respectively.
The sum total of these provided us with 187 944 compound features,
each of which is a function involving up to three primary features.
From this large set of compound features, our goal was to look for

the Ω-dimensional (preferably, for a small Ω value) descriptor that
gives the best linear fit with the intrinsic dielectric breakdown field.
Here, by Ω-dimensional descriptor we mean a descriptor composed of
Ω number of compound features. The LASSO algorithm helps solve
this nondeterministic polynomial-time (NP)-hard problem (whose
computational solution is infeasible), by recasting it into a convex
minimization problem.16,40 This strategy of creating a large number of
initial compound features and down-selecting to the most relevant
ones using LASSO has recently been successfully employed for the
first time to identify new descriptors to classify binary AB-octet crystal
structures.20 A somewhat related recent development involved
identification of lower-dimensional representations of alloy cluster
expansions.41 Further details on the KRR, RFR, and LASSO
methodology are provided in the Supporting Information S3.

■ RESULTS AND DISCUSSION
Intrinsic Dielectric Breakdown Field and Feature

Properties. Figure 2a compares our computed theoretical
intrinsic dielectric breakdown field with available experimental
values for a number of elemental and binary dielectrics. As can
be seen, the breakdown field spans 3 orders of magnitude for
this set of materials considered, with favorable agreement

between calculations and experiments over this entire range.
The theoretical intrinsic dielectric breakdown field for a much
broader data set of 82 elemental and binary dielectric materials
that occur in a variety of crystal structures (but all with two
atoms per primitive cell) including the zinc blende (ZB), rock
salt (RS) and cesium chloride (CC) structures is shown in
Figure 2b, subdivided in terms of materials subclasses. Clear
self-evident periodic trends in the values of the breakdown field
can be seen, with more ionic binary compounds (i.e., those with
a highly electronegative anion) displaying larger breakdown
field values. See, for instance, the monotonic decrease in the
breakdown field along the LiF, LiCl, LiBr, LiI series, followed
by a jump at NaF, and then another pattern of monotonic
decrease, etc. This is the first clue that elementary correlations
between the breakdown field and other attributes of the
systems exist.
All eight properties along with the computed intrinsic

dielectric breakdown field for the 82 compounds of our data set
are tabulated in Supporting Information S4. The ranges of
possible values the breakdown field and each of the 8 properties
can take (clustered in terms of materials subclasses) are
captured in Figure 2c. Each plot in this figure corresponds to a
specific property, and the size of the symbol used for a material
is chosen to be proportional to its breakdown field value, to
reveal correlations. It can be seen immediately that larger
dielectric breakdown field values are correlated with larger band
gap and phonon frequencies, and smaller dielectric constant
and nearest neighbor distances. The advantage of this feature
set of eight properties over properties such as the ionicity
discussed above is that the former applies to any material (i.e.,
not just binaries), and so any learning or phenomenological
model of dielectric breakdown that one may arrive at on the
basis of these features is potentially generalizable to a new
material (and thus testable).

Data-Driven Model Discovery. Perhaps the most
important (and practical) reason for seeking to develop a
phenomenological model of intrinsic dielectric breakdown is
that the DFT approach to predicting this property, although
general and accurate, is exceedingly computation-time intensive
even for the simple elemental or binary dielectrics (composed
of just two atoms per primitive cell) considered here. The DFT
route will be impractical for widespread studies of systems
involving larger unit cells. Furthermore, a brute-force
application of the DFT methodology will not automatically
allow us to understand the underlying factors that control
breakdown. Hence, we aim to discover quantitative and
verifiable relationships between the breakdown field and
other easily accessible (or computable) materials properties
(such as the eight properties discussed above) using the data
accumulated for the 82 benchmark compounds. Indeed, such
attempts have been undertaken in the past based on empirical
breakdown data,42,43 but have met with marginal success
because of the significant uncertainties and statistical variation
associated with the data, and the limited repertoire of data-
mining methods used.
The performance of the three adopted learning models,

namely, KRR, RFR and LASSO, was evaluated by their ability
to “learn” the intrinsic dielectric breakdown field using an Ω-
dimensional descriptor, which is composed of either the
primary features (for KRR and RFR models) or the compound
features (for LASSO-based model). Since the breakdown field
spans almost 3 orders of magnitude (see Figure 2b), the
logarithm of this quantity was used in all learning models as the
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target property. In the two models that employ primary
features, Ω was varied from 1 to 8. For each choice of Ω, all
possible Ω-tuples of the primary features were considered. In
the third strategy, LASSO was used to down-select from the
∼190 000 compound features to a set of the top 36 compound
features. Again, for each choice of Ω (which in this case was
allowed to range from 1 to 3), all possible Ω-tuples of the
contracted 36 compound features were considered. These were
then used in a linear least-squares model to fit to the intrinsic
dielectric breakdown field.
To quantify learning performance, we performed a system-

atic analysis in terms of various metrics. One such metric,
namely, the coefficient of determination (R2) is shown (and

defined) in Figure 4a for each of the three learning models for
various choices of Ω, both with and without cross-validation.
Cross-validationan essential statistical tool to combat
overfitting and to ensure model generality16was accom-
plished by breaking up the data set of 82 compounds into
random training (90%) and test (10%) set splits, training the
learning models on the training set, applying the model on the
test set, and determining the corresponding R2. For each choice
of Ω, results corresponding to the best performing Ω-tuple is
shown. Other performance measures were also considered
(presented in the Supporting Information S5 and S6) but
provided similar results.

Figure 4. Performance and utility of phenomenological prediction models obtained by data-driven statistical learning. (a) Coefficient of
determination (R2) of the models with and without cross-validation, for Ω-dimensional descriptors (or feature vectors). Ω ranges from 1 to 8 in the
case of the kernel ridge regression (KRR) and random forest regression (RFR) models, while it ranges from 1 to 3 in the case of the least absolute
shrinkage and selection operator based least-squares fit (LASSO-LSF) model. In order to clarify that the LASSO-LSF model utilizes compound
features, the number of features for this case is represented as nC with n = 1−3. The LASSO-LSF procedure leads to two different 1-dimensional
feature vector with equal predictive power, and these are indicated as 1C and 1C′. By definition, R2 = 1− Σ (yi − yi, pred))

2/Σ (yi − yavg)
2 with yi, yi, pred

and yavg being the DFT computed intrinsic dielectric breakdown field, model-predicted breakdown field and average of DFT values in the training or
test set. Estimation of R2 for 4 new compounds (Li2S, Na2S, SrCl2, and ZrO2) not already included in original data set are shown as well. (b) Parity
plots comparing DFT-computed intrinsic dielectric breakdown field against predicted intrinsic breakdown field obtained by KRR, RFR and LASSO-
LSF, for the training and test sets (drawn from the set of 82 original compounds), as well as for the 4 new compounds not included during the model
development stage. (c) Design maps for the prediction of intrinsic dielectric breakdown field using the band gap and phonon cutoff frequency. The
corresponding values of these two properties of the 82 benchmark materials are indicated using dots, and further highlighted by the shading. The 4
new compound materials, namely, Li2S, Na2S, SrCl2 and ZrO2, are also included. The DFT-computed intrinsic dielectric breakdown field are 462.5,
132.7, 293.4, and 1253.0 MV/m, respectively, for these cases.
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It can be concluded based on Figure 4a that the performance
of the models generated by KRR and RFR with the best 1-
dimensional descriptor is not impressive. In contrast to the 1-
dimensional descriptor, the performance of the best 2-
dimensional descriptor for both KRR and RFR is significantly
better, and almost as good as descriptors with higher
dimensionality. The best performing 2-dimensional descriptors
within both the KRR and RFR involved the band gap and the
phonon cutoff frequency. In the case of LASSO-based
prediction model, two different 1-dimensional compound
descriptors, namely ωEg max and ω ωE /ln( )max g mean , were

equally good, where Eg, ωmax, and ωmean are, respectively, the
band gap, phonon cutoff frequency, and mean phonon
frequency. Both of these 1-dimensional descriptors were
competitive in performance compared to descriptors with
higher dimensionality. We favor the simpler of the two, namely,

ωEg max . Interestingly, all three learning models single out the

same two properties, namely, Eg and ωmax, as most relevantin
the end, not surprising, as the former is related to electronic
excitations and the latter to the scattering of the excited
electrons by phonons. Moreover, the LASSO approach, via a
least-squares fit (LSF) of the logarithm of the breakdown field,
Fb, versus ωEg max , provides an explicit functional form (after

cross-validation),

ω=F E24.442exp(0.315 )b g max (3)

with Fb, Eg, and ωmax specified in units of MV/m, eV, and THz,
respectively. The LASSO-LSF procedure is reminiscent of
symbolic regression, a technique in which such functional forms
are discovered by searching the mathematical space of symbolic
operations involving the variables (or features, in the current
parlance) via evolutionary algorithms.44 See the Supporting
Information S7 for other functional forms with 1-dimensional
compound descriptors.
Figure 4b shows the performance of our three prediction

models via parity plots by comparing the DFT-calculated and
model-predicted intrinsic dielectric breakdown field. The
predictions using the KRR and RFR models were performed
by taking just the {Eg, ωmax} as the features, whereas eq 3 was
used to make the LASSO-LSF model predictions. The
parameters that enter all three prediction models were obtained
after cross-validation. Contour plots that directly reveal the
dependence of the breakdown field on {Eg, ωmax} are shown in
Figure 4c. Although the general aspects of all three prediction
models, as captured in Figure 4c, are qualitatively similar, the
RFR model appears to lead to significant corrugations of the
breakdown field contours (the LASSO-LSF model, on the
other hand, leads to smoother contours owing to its simple and
clearly defined functional form, namely, eq 3). These contour
plots may be viewed as “design maps” that can aid in the rapid
screening and identification of new materials with high
dielectric breakdown strength, provided that their band gap
and phonon cutoff frequencies are known and fall within the
ranges of the data set materials. Given the similar errors
underlying the predictions of the three models, we recommend
that all three models be consulted, and the results used as
estimates of the intrinsic breakdown field of a new material.
Still, the LASSO-LSF approach has an edge in that an analytical
form (eq 3) to predict the intrinsic breakdown field is at hand.
This outlook is consistent with the notion that ‘all models are
wrong, but some are useful’.45

How Generalizable Is the Model? The strength of the
above claim, namely, that the learned phenomenological
models will have broad applicability, may be tested by
considering new compounds not already part of the original
data set of 82 insulators, whose band gaps and phonon cutoff
frequencies lie in the range used for statistical learning (see the
shaded regions of Figure 4c). Toward that end, the intrinsic
dielectric breakdown field of Li2S, Na2S, SrCl2, and ZrO2 that
consist of 3 atoms in Fm3 ̅m structure was computed using DFT
(see the Supporting Information S8 for these results, along with
the corresponding 8 primary property features). On the basis of
the primary property features of these insulators, their
breakdown field was predicted as well using the three learning
models. Figure 4 captures the performance of these predictions.
The R2 corresponding to these new compounds is comparable
to that of the original test set within all three models for all
choices of the descriptor dimensionality (see Figure 4a).
Comparison of predicted breakdown field (using the 2 features,
Eg and ωmax) with the DFT results also shows fair agreement as
shown in Figure 4b, meaning that these 2 features play an
important role in determining the dielectric breakdown field of
the new compounds as well. For completeness, and to highlight
the utility afforded by the contour maps of Figure 4c, the results
corresponding to the 4 new compounds are also placed in those
plots.

■ CONCLUSION

The present development has specific and broad implications.
It has been demonstrated that the intrinsic dielectric break-
down fieldthe theoretical limit of catastrophic breakdown of
a material subjected to high electric fieldsmay be computed
from first-principles for a variety of insulators. More
importantly, statistical or machine learning based protocols
have been developed to systematically and rationally distill out
materials property features that are most correlated with the
intrinsic dielectric breakdown field. These efforts have led to
predictive and analytical phenomenological models of dielectric
breakdown that are revealing, accurate, and enormously faster
than the fundamental first-principles approach. The focal point
of this work has been the intrinsic dielectric breakdown field
determined purely by the chemistry of the material (i.e., the
elements the material is composed of, the atomic-level
structure, and the bonding); extrinsic factors (such as defects
and their dynamical evolution) expected to play important roles
in determining real engineering breakdown catalyzed by gradual
dielectric degradation have not been considered. Nevertheless,
the models developed here may be used in a first line of
screening aimed at identifying high electric field tolerant
materials. It is worth noting that the present choices of
materials, dimensions and fields encountered in electrical and
electronic systems in this age of ultraminiaturization are limited
by the dielectric breakdown of the insulations. More broadly,
we have demonstrated that the power of high throughput
computing (for data generation) and the available repertoire of
Big Data analytics tools may be harnessed and aimed at the
discovery of simple models of complex materials problems.
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(35) Blöchl, P. E. Projector Augmented-wave Method. Phys. Rev. B:
Condens. Matter Mater. Phys. 1994, 50, 17953−17979.
(36) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the
Projector Augmented-wave Method. Phys. Rev. B: Condens. Matter
Mater. Phys. 1999, 59, 1758−1775.
(37) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.;
Sutton, A. P. Electron-energy-loss Spectra and the Structural Stability
of Nickel Oxide: An LSDA+U Study. Phys. Rev. B: Condens. Matter
Mater. Phys. 1998, 57, 1505−1509.
(38) Müller, K. R.; Mika, S.; Ratsch, G.; Tsuda, K.; Scholkopf, B. An
Introduction to Kernel-based Learning Algorithms. IEEE Trans. Neural
Networks 2001, 12, 181−201.
(39) Hofmann, T.; Scholkopf, B.; Smola, A. J. Kernel Methods in
Machine Learning. Ann. Statist. 2008, 36, 1171−1220.
(40) Tibshirani, R. Regression Shrinkage and Selection via the Lasso.
J. R. Stat. Soc., Ser. B 1996, 58, 267−288.
(41) Nelson, L. J.; Hart, G. L. W.; Zhou, F.; Ozoliņs,̌ V. Compressive
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