
Chapter 8
Optimal Dopant Selection for Water Splitting
with Cerium Oxides: Mining and Screening
First Principles Data

V. Botu, A.B. Mhadeshwar, S.L. Suib and R. Ramprasad

Abstract We propose a powerful screening procedure, based on first principles
computations and data analysis, to systematically identify suitable dopants in an oxide
for the thermochemical water splitting process. The screening criteria are inspired by
Sabatier’s principle, and are based on requirements placed on the thermodynamics of
the elementary steps. Ceria was chosen as the parent oxide. Among the 33 dopants
across the periodic table considered, Sc, Cr, Y, Zr, Pd and La are identified to be
the most promising ones. Experimental evidence exists for the enhanced activity of
ceria for water splitting when doped with Sc, Cr and Zr. The surface oxygen vacancy
formation energy is revealed as the primary descriptor correlating with enhanced
water splitting performance, while the dopant oxidation state in turn primarily gov-
erns the surface oxygen vacancy formation energy. The proposed screening strategy
can be readily extended for dopant selection in other oxides for different chemical
conversion processes (e.g., CO2 splitting, chemical looping, etc.).
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8.1 Introduction

Utilizing dopants to optimize, enhance, or fundamentally change the behavior of a
parent material has been exploited in many situations ranging from material strength-
ening to electronics to electrochemistry. The search and identification of suitable
dopant candidates has been laborious though, and dominated either by lengthy trial-
and-error strategies (guided by intuition) or plain serendipity. We are entering an
era where such Edisonian approaches are gradually being augmented (and some-
times, replaced) by rational strategies based on advanced computational screening
[1]. Often these strategies rely on first principles methods, that provide a reasonably
accurate description of the underlying chemistry [2–4]. More recently, it has been
shown that supplementing first principles investigations with data-driven approaches
can help identify meaningful correlations within the data [5–13]. In the present con-
tribution, we offer such a prescription for the selection of suitable dopants within
cerium oxides in order to enhance the thermochemical splitting of water.

Complete gas phase thermolysis of water is highly endothermic (ΔH = +2.53 eV)
requiring temperatures in excess of 4000 K to be thermodynamically favorable, mak-
ing such reactions unviable for H2 synthesis [14, 15]. On the other hand, partial ther-
molysis via a multistep process in the presence of MO catalysts provides an attractive
practical alternative [15, 16]. The latter approach is performed at two distinct tem-
peratures (both well below 4000 K): a high-temperature (≈2200 K) reduction step
that involves creation of O vacancies in the MO (and the consequent evolution of
O2 gas), and lower-temperature (≈900 K) oxidation steps in the presence of steam,
which lead to the filling up of O vacancy centers (resulting in the evolution of H2

gas). Owing to this multistep procedure, an additional step to separate the H2 and O2

products is eliminated entirely. Equations (8.1)–(8.3) below represent a reordered
version (for ease of subsequent discussion) of the multiple steps involved in this
process.

MO-Vo (s)+ H2O(g) −→ MO-(H)(H)(s) (8.1)

MO-(H)(H)(s) −→ MO(s) + H2(g) (8.2)

MO(s) −→ MO-Vo (s)+ (1/2)O2(g) (8.3)

The (s) and (g) subscripts represent solid and gas phases, respectively. Equations
(8.1) and (8.2) are the low-temperature steps, with MO-Vo and MO-(H)(H) repre-
senting, respectively, the oxide containing an O vacancy and the oxide in which the
O vacancy is filled up by a H2O molecule (with ‘(H)(H)’ indicating that the H atoms
of H2O are adsorbed on the oxide surface). Equation (8.3) is the high-temperature
activation step that leads to the creation of MO-Vo.

Unfortunately, several MOs require temperatures in excess of 2700 K (leading to
poor H2 production efficiencies), leaving only a subset of oxides based on Zn, Fe and
Ce to be the most promising [17, 18]. Oxides of Zn and Fe are prone to sintering,
phase transformation or volatility due to the proximity of the high temperature step
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Fig. 8.1 Reaction pathway and energetics (red solid line) for the dissociation of H2O on an undoped
ceria surface. CeO2-Vo is an oxide with a vacancy, CeO2-(H)(H) is an oxide with vacancy filled by
a H2O molecule and CeO2 is a stoichiometric surface. The green dotted line shows the minimum
energy pathway for dissociation. Ce, O and H are represented by beige, red and white colors
respectively

to their melting points [19]. CeO2, on the other hand, displays high stability and high
melting temperature (≈2600 K), and is thus overwhelmingly favored [17].

Still, the efficiency of H2 production with CeO2 is quite low (<1 %) [18]. This low
efficiency is rooted in the high temperatures (>1900 K) required for the reduction
step (8.3), related directly to the large O vacancy formation energy of CeO2, along
with other operational difficulties [18, 20]. Figure 8.1 shows the energies E1, E2

and E3 of (8.1), (8.2) and (8.3), respectively, computed here using density functional
theory (DFT) (details below), and helps identify the causes of the low efficiency. The
dotted line indicates the uphill nature of the water splitting process. The ideal system
should display E1 and E2 close to zero (for facile H2 evolution at low temperatures),
and small E3 values (to alleviate the burden on the reduction step). In the case of
CeO2, E1 is too negative and E3 is too positive.

A pathway to circumvent these hurdles is to control the energetics of (8.1)–(8.3)
individually by the introduction of dopants (although, of course, the overall energet-
ics of H2O splitting cannot be altered). For instance, this strategy may be used to
destabilize O in CeO2 (and thus reduce the O vacancy formation energy) [17, 21–
27]. Doping CeO2 with a plethora of elements has been explored in the recent past
[28–40], and many dopants (e.g., Zr, Cr, Sc) have been shown to help significantly
increase the efficiency of H2 production by reducing the temperatures required to
accomplish (8.3) [32, 34, 35]. Nevertheless, a clear rationale for why a given dopant
is desirable, and a framework for the systematic (non-Edisonian) selection of dopants
is currently unavailable. This work attempts to fill that gap. First, we propose a frame-
work to systematically screen for dopants, based on guidelines inspired by Sabatier’s
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principle, then we identify the best candidates using first principles methods, and
finally we use data analysis methods, specifically feature selection, to identify the
primary factors that make these dopants attractive.

8.2 Screening Framework

In the present first principles/data-driven based work, we consider a host of dopants
in CeO2, including 33 elements spanning the 4th, 5th and 6th period of the Periodic
Table (specifically the alkali , alkaline earth and d series elements). Assuming
that the energetics of (8.1)–(8.3) determine whether a dopant is favorable or not, we
define the following screening criteria to be used in a successive manner:

• Criterion 1: 0 ≤ ED
3 ≤ E3

• Criterion 2: 0 ≤ ED
1 ≤ δ

• Criterion 3: 0 ≤ ED
1 + ED

2 ≤ δ

The superscripts D merely indicate that these are the energetics of doped ceria.
The rationale underlying this specific choice and sequence of screening criteria

stems from insights derived from Sabatier’s principle, and may be understood as
follows (cf. Fig. 8.1). Criterion 1 merely states that the O vacancy formation energy
(which is what ED

3 represents) should not be too small to prevent further water disso-
ciation nor too large (certainly not larger than that of undoped ceria (E3)) to mandate
higher activation temperatures. This criterion is listed first because ED

3 appears to
most strongly control the temperature requirement of the costly high-temperature
step, and also because ED

3 is the easiest quantity to compute (as it does not involve
the H2O species at all). Criterion 2 states that ED

1 should also be bracketed, but by
a smaller range. Noting that overall dissociation of water for undoped ceria is too
negative (see Fig. 8.1), thus potentially adding an energy penalty to subsequent steps,
we generously allow δ to be 1.5 eV, which is a reasonable choice considering energy
uncertainties within DFT and the neglection of entropy. Criterion 3 is specific to
thermochemical water splitting and bounds the overall oxidation process within δ,
ensuring that ED

1 or ED
2 occur at a lower temperature compared to ED

3 . In the case
where this no longer holds, the process fails to fall within the realm of thermochem-
ical water splitting.

8.3 First Principles Studies

8.3.1 Methods and Models

To measure the thermodynamic quantity, ED
i , where i is 8.1, 8.2 or 8.3, DFT cal-

culations were performed using the VASP code with the semi-local Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional and a cutoff energy of 400 eV to



8 Optimal Dopant Selection for Water Splitting … 161

accurately treat the valence O 2s, 2p and Ce 5s, 5p, 4f, 5d, 6s states [41–43]. The
electron-core interactions were captured by projector-augmented (PAW) potentials,
and all calculations were spin polarized to ensure the true electronic state of O and
reduced Ce was captured [44]. The computed lattice parameter of bulk CeO2 (5.47 Å)
is in good agreement with the corresponding experimental value (5.41 Å) [38].
A 96-atom bulk 2×2×2 supercell model and a 60-atom (2×2) surface model
(5 O-Ce-O trilayers) cleaved along the (111) plane were used in all calculations.
The bottom 3 trilayers of the slab were fixed to recover the bulk nature of the mate-
rial, and a vacuum of 15 Å along the c axis ensured minimal spurious interactions
between periodic images. A Γ -centered k-point mesh of 3×3×3 and 3×3×1 were
used for the bulk and surface calculations, respectively. The Hubbard (U) correc-
tion was not applied as no universal U value captures the true electronic state of all
elements. Also, given that we consider a dilute vacancy limit, the effect of electron
localization is insignificant as shown previously [45, 46].

8.3.2 Enforcing the 3-Step Criteria

Dopants were introduced by replacing a single Ce atom at the center of the bulk model
and at the 1st trilayer of the surface model. Our analysis indicated that the majority
of the dopants favored the surface site to the bulk by ≈0.3 eV. Upon exploring the
local coordination environment, a surface dopant was found to be 6-fold coordinated
whereas a bulk dopant was 8-fold coordinated. Given the preference of a surface site,
all dopants are assumed to occupy the surface unless specified otherwise.

The primary effect of introducing dopants is to induce a local perturbation to
disrupt bonding between the metallic and O atoms, thereby altering its ability to
form surface O vacancies, as measured by ED

3 (cf. Fig. 8.1), computed here as

ED
3 = ED

CeO2-Vo
− ED

CeO2
+ 1

2
μO2 (8.4)

where ED
CeO2-Vo

and ED
CeO2

are, respectively, the DFT energies of a doped surface with
and without an O vacancy, and μO2 is the chemical potential of O, taken here to be
the DFT energy of an isolated O2 molecule. In all cases, the O vacancy is created
adjacent to the dopant. Figure 8.2 shows ED

3 for various choices of the dopants, with
the dot-dashed horizontal line indicating the corresponding value for the undoped
case. Dopants adopting a low valence state compared to Ce (e.g., alkali, alkaline
earth and late transition series metals) display low O vacancy formation energy,
consistent with the observed high O2 yield by ceria doped with Mn, Fe, Ni and Cu
[47]. Conversely, dopants adopting a similar or higher valence state than Ce lead to
high ED

3 values (e.g., Mo, Tc, and Ta). These trends are not entirely surprising, and
have been noted before in CeO2 as well as BaTiO3 [48–50].



162 V. Botu et al.

Fig. 8.2 Oxygen vacancy formation energy (ED
3 ) of doped ceria with elements from the (a) 4th,

(b) 5th and (c) 6th period of the Periodic Table. Dot-dashed maroon line indicates ED
3 for undoped

ceria. Light green region indicates dopants that survived Criterion 1, while � identifies dopants that
survived the 3 screening criteria

ED
1 helps assess the impact of dopants on the dissociative adsorption of water on

the doped surface, and is computed as

ED
1 = ED

CeO2-(H)(H) − ED
CeO2-Vo

− μH2O (8.5)

where ED
CeO2-(H)(H) is the DFT energy of a doped surface upon the dissociative adsorp-

tion of water at the vacancy site. Upon dissociation, OH fills the vacancy site, while H
has two possible adsorption sites; atop an adjacent O or a dopant atom. Interestingly,
dopants exhibiting spontaneous vacancy formation (ED

3 < 0 eV) fail to accommodate
a H atop a dopant, while those dopants that do facilitate H atop a dopant have an
alternative lower energy pathway for dissociation. μH2O is the chemical potential of
water, taken here to be the DFT energy of an isolated H2O molecule.

With ED
1 and ED

3 at hand (and ED
2 given byΔH−ED

1 −ED
3 ), a plot that is equivalent

to Fig. 8.1 but for the case of doped ceria surfaces is shown in Fig. 8.3. We now enforce
Criterion 1, namely, 0 ≤ ED

3 ≤ E3, with E3 = 3.3 eV (this value is consistent with
past work [45]). Of the 33 dopants originally considered, 19 dopants (Sc, Ti, V, Cr,
Mn, Co, Y, Zr, Nb, Ru, Rh, Pd, La, Hf, Re, Os, Ir, Pt and Au) satisfy this criterion
(given by the dopants within the shaded region in Fig. 8.2). Criterion 1 picks out
those dopants that alter the surface reducibility in just the appropriate manner.

Next, we enforce Criterion 2, namely, 0 ≤ ED
1 ≤ δ, with δ = 1.5 eV, on the 19

dopants that pass Criterion 1, resulting in the selection of Sc, V, Cr, Co, Y, Zr, Pd,
La, Hf and Au. Lastly, enforcing Criterion 3 on the 10 dopants results in the down
selection of 4 promising candidates (Sc, Cr, Zr and La). Inspection of Fig. 8.3 shows
that Pd and Y, although they do not pass Criterion 3, can be viewed as ‘near misses’.
These are hence included in our final list of favored candidates. Figure 8.4 summarizes
the list of dopants that passed each stage of the screening process. The 6 dopants
identified, namely, Sc, Cr, Zr, La, Pd and Y, lead to desired energetic profiles, with
ED

1 and ED
2 low enough to allow for reasonable H2O dissociation yields at moderate

temperatures, and with ED
3 significantly smaller than undoped ceria allowing for low

reduction temperatures (c.f., Fig. 8.3). Dopants such as Mn, Fe, Ni, Cu, Sr, Ag, and
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Fig. 8.3 Reaction pathway and energetics for the multistep thermochemical splitting of H2O on a
doped ceria surface. CeOD

2 -Vo is a doped surface with vacancy, CeOD
2 -(H)(H) is a doped surface

with vacancy filled by a H2O molecule and CeOD
2 is a doped stoichiometric surface. Color solid lines

identify the 4 promising dopants and undoped CeO2. Grey dashed lines identifies the non feasible
dopants, while partly colored and greyed dashed lines identifies dopants that pass Criterion 1

Fig. 8.4 A hierarchical chart showing the list of dopants before and after each stage of the screening
process. Sc, Cr, Zr and La were identified as the promising dopant elements, whilst Pd and Y can
be viewed as the near miss cases

Ca, which display small or negative ED
3 , do not pass our tests. Although low ED

3
values imply facile surface reduction (this is in fact what is observed experimentally
for Mn and Fe) [47], such a tendency would not be appropriate for the multistep ther-
mochemical water splitting process targeted here (lower yields were observed for Ni,
Cu and Fe doped CeO2 compared to undoped CeO2) [28]. Criterion 1, as mentioned
above, is imposed precisely to eliminate such candidates. However, dopants that lead
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to small or negative ED
3 may be appropriate for photocatalytic water splitting which

require surface reduction to occur low temperatures (≈300 K) [51].
Of the 6 promising dopants identified, experimental evidence exists for the

enhanced performance of ceria when doped with Sc, Cr and Zr for the thermo-
chemical water splitting process. Cr doped CeO2 is known to lower the reduction
and oxidation temperature to 750 and 350 K, respectively [35]. Zr and Sc dopants
increase the H2 yield 4-fold and almost 2-fold, respectively, with respect to the
undoped situation [28, 29, 38]. Lastly, although not conclusive, La doping appears
to improve H2 yield [39, 52]. The observed performances are strong functions of
the synthesis, processing and measurement details. The present work ignores such
complexities, and probes only the dominant and primary chemical factors that may
control performance.

Irrespective of these difficulties, such a guided screening strategy has led us to
some promising candidates, shown as stars in Fig. 8.2. Clearly, the best candidates
display an O vacancy formation energy in the 1–2.5 eV range, i.e., neither too high
nor too low, thereby respecting Sabatier’s principle. It thus appears that the O vacancy
formation energy may be used as a ‘descriptor’ of the activity of doped ceria. This
conclusion is consistent with an earlier similar proposal which was based on phase
boundaries in surface phase diagrams of ceria exposed to an oxygen reservoir [45].

Thus far, by relying on first principles methods we are able to recognize whether
a dopant increases or decreases the O vacancy formation energy, with respect to the
undoped material, followed by its corresponding impact on the dissociation of water.
However, an understanding of the complex dependence of the chemical attributes
of a dopant and the O vacancy formation energy is absent. In the next section, with
the help of data analysis methods we attempt to understand the results of the first
principles computations for the spectrum of dopants considered.

8.4 Data Analysis

The mining and extraction of information forms the core of the field of data analysis,
which lies under a broader umbrella of methods known as machine learning (ML)
[53]. Within data analysis a subset of methods, known as feature selection, allows us
to unearth correlations between variables [10, 13, 53–56]. In the context of this work,
the variables are the chemical factors characterizing a dopant and the corresponding
O vacancy formation energy of doped ceria. Given the strong correlation between
the O vacancy formation energy and the activity, as discussed above, by identifying
the key dopant factors that contribute to the O vacancy formation energy, a more
educated guess on its impact on the corresponding thermodynamic activity can be
made.

In order to discover such patterns, firstly, each dopant element needs to be repre-
sented numerically by a vector of numbers (also referred to as features or fingerprint
in the ML community) that uniquely identifies the dopant element. Our choice of
features stems from fundamental chemical factors, that are often used to describe
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elements in the periodic table. The 7 factors considered in this work are; atomic
radius (AR), ionic radius (IR), covalent radius (CR), ionization energy (IE), elec-
tronegativity (EN), electron affinity (EA) and oxidation state (OS). To eliminate any
bias induced by the spread of the feature values, the dataset was normalized to a
mean of 0 and variance of 1. On these set of chemical factors we use two feature
selection methods: (i) principal component analysis and (ii) random forests, to nar-
row down the dominant factors that govern the descriptor (O vacancy formation
energy). In the sections to follow we provide a brief overview of these methods and
discuss the insights gained. We refer the readers to [53, 57–61] for a more exhaustive
description. The data analysis routines used were implemented within the MATLAB
statistical toolkit and Scikit-learn python module [62, 63].

8.4.1 Principal Component Analysis

Principal component analysis (PCA) is a common dimensionality reduction tech-
nique, often used to identify the dominant subset of features from a larger pool. By
transforming the original features into uncorrelated and orthogonal pseudo variables,
that are a linear combination of the original features (as done in this work, although
non-linear combinations have been recently developed), it allows us to pin point the
dominant contributions [10, 55–58]. The new transformed variables are referred to as
principal components (PCs), which are solutions to the eigen-transformation of the
covariance matrix. As with any eigen-transformation problem, the eigenvalues and
eigenvectors play a critical role. The eigenvalue of a PC indicates the % of variance
captured within the original dataset, whilst the eigenvector provides the coefficients
that dictate the linear transformation. We shall make use of this information to down
select the dominant chemical factors of a dopant.

First, we plot the transformation coefficient values of the 7 features for the first
and second PCs in Fig. 8.5a. Such a plot is referred to as the loadings plot, in which
correlated features cluster together. Only the first and second PCs are used as it
captures ≈80 % of the variance within the original dataset (c.f., inset of Fig. 8.5a).
Clearly, the dopant’s OS is strongly correlated with the O vacancy formation energy.
The CR, AR, IE and EN are close to orthogonal to the O vacancy formation energy,
suggesting a negligible contribution to the descriptor. On the other hand, the IR and
EA are not truly orthogonal, thus their contribution towards the descriptor cannot
be ignored. Another interesting phenomena is the congregation of subsets of the 7
features. This isn’t entirely surprising, as one would recognize that the AR, CR are
similar quantities, and their grouping in the loadings plot further validates this notion.
Similarly, the IE and EN group together and appear negatively correlated to the AR
and CR, given their ≈180◦ separation. By looking at the relative position of all the
features in Fig. 8.5a, we can conclude that of the original 7 features considered only
3 are important; OS, IR and EA, in governing the O vacancy formation energy.

Next, we use the linear transformation coefficients of the PCs to transform the
original dopant dataset (also referred to as the scores plot) and plot the first and
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Fig. 8.5 a PCA loadings plot showing the correlated dopant features. The features are; atomic
radius (AR), ionic radius (IR), covalent radius (CR), ionization energy (IE), electronegativity (EN),
electron affinity (EA) and oxidation state (OS). Evac is the O vacancy formation energy. The inset
shows the % contribution of each PC to the variance in the dataset. The oxidation state (OS) is the
dominant feature governing the O vacancy formation energy. b PCA scores plot for the first and
second principal components. The dopant elements group together based on their features and the
O vacancy formation energy. � represents the final 6 dopants after the 3 step screening processes.
The 6 dopants occupy a sub-space of the scores plot as highlighted by the grey region

second PCs in Fig. 8.5b. Each dopant element in Fig. 8.5b has further been classified
according to its relative location in the periodic table (as indicated by the different
marker type) and the corresponding O vacancy formation energy (marker fill color).
Firstly, dopants of similar type, groups 1–2, 3–7 and 8–12 can be seen aggregating
together. In particular, dopants that adopt a low valence state lie predominantly in the
top/left quadrants, whilst the high valence dopants lie in the bottom/right quadrants,
giving rise to an increasing O vacancy formation energy in the direction of the bottom
right quadrant. Not surprisingly, amongst the low valence dopants, the alkali and
alkaline earth metals further segregate from the late transition series metals, based on
their differences of atomic size, amongst others. Now, upon highlighting the location
of the 6 promising candidates (Sc, Cr, Y, Zr, Pd and La), as indicated by the stars,
they can be seen to occupy only a small subspace of the plot (highlighted by the grey
region of Fig. 8.5b). This suggests that in the high dimensional transformation these
elements have similar traits, and equivalentaly a similar thermodynamic activity.
Therefore, if one could identify other possible dopants that populate the grey region
in Fig. 8.5b, we can further extend the chemical space to achieve improved water
dissociation.

8.4.2 Random Forest

Another important class of feature selection algorithms are random forests (RF).
Unlike PCA, random forests work by constructing a regression (or classification)
model first, in this case between the 7 features and the O vacancy formation energy,
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Fig. 8.6 Relative feature importance arranged in descending order for the developed RF model. The
features are; atomic radius (AR), ionic radius (IR), covalent radius (CR), ionization energy (IE),
electronegativity (EN), electron affinity (EA) and oxidation state (OS). Evac is the O vacancy
formation energy. The inset shows a parity plot, comparing the density functional theory (DFT) and
RF predicted O vacancy formation energy (Evac). The regression model has an R2 value of 0.94.
The oxidation state (OS) is the dominant feature governing the O vacancy formation energy

following which the important features are then extracted as a by-product. The frame-
work is built upon an ensemble of individual regression models, also known as deci-
sion trees [53, 59–61]. The prediction of each individual tree is then averaged across
the ensemble, resulting in the final or true predicted value. Given our limited dataset
size (based on 33 dopant elements), we selected a 75 % split for training, with the
remaining kept aside as validation/testing. Each decision tree in the model is then
trained on a subset of the original training dataset, a procedure known as bootstrap-
ping. The combination of bootstrapping and ensemble averaging makes RF models
robust and devoid of overfitting, a common issue in ML. We generate a forest of 250
trees, based on the 7 dopant features described earlier and the O vacancy formation
energy. The final regression model we obtained has an R2 value of 0.95 (c.f., inset
Fig. 8.6), suggesting a good fit. Then by using mean decrease impurity metric, we
estimate the relative importance of each feature in the regression model [61].

In Fig. 8.6, we plot the relative importance of the 7 features in descending order.
Clearly, the role of a dopant’s OS supersedes all others. This observation is consistent
with the PCA analysis above. Also, it can be seen that IR and EA rank 2nd and
3rd in feature importance in the regression model, once again suggesting a small
contribution towards the descriptor.

Both the PCA and RF methods result in similar conclusions, leading us to believe
that the dopant’s OS primarily governs the role of the descriptor, i.e., O vacancy
formation energy, followed by a much smaller contribution of the IR and the EA.
Upon revisiting the OS of the 6 promising dopants, they adopt either a +3 or +4
state. Therefore as a first measure, by understanding the coordination environment of
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the dopant within the surface one can hazard a reasonable guess on its corresponding
impact on the O vacancy formation energy. Even though many other elements such
as Ti, V, Mn, Fe, Nb, Mo, Tc, Ru, Rh, Hf, Ta, Os, Ir adopt a similar OS state, the
combination of the OS, IR and EA skews them out of the optimal regime.

8.5 Summary and Outlook

In this work, we considered a host of dopants in cerium oxide, that span the 4th, 5th
and 6th period (specifically the alkali , alkaline earth and d series elements) of
the Periodic Table, in order to understand the impact on the dissociation of water.
Using a screening framework based on a first principles strategy augmented with
data analysis methods, we successfully identified 6 promising dopants (Sc, Cr, Y,
Zr, Pd and La), consistent with past experimental results, that are worthy of further
inquiry. A dopant’s oxidation state, ionic radius and electron affinity are found to be
the dominant chemical factors that primarily govern the oxygen vacancy formation
energy, which in turn governs the activity. The overall framework, we believe, can
be easily extended for dopant selection in ceria and other oxides as well as for dif-
ferent chemical conversion processes (e.g., thermochemical CO2 splitting, chemical
looping, etc.).

Nevertheless, some open questions remain on the true measure of activity. First,
kinetic factors, such as activation barriers, have been completely ignored in the
present work. All the screening criteria were based on the thermodynamic require-
ments of the elementary steps, and serve as necessary but not sufficient conditions.
Second, it is unclear what the impact of non-zero temperatures and gas phase compo-
nent pressures would be on the computed quantities and final outcomes. Preliminary
assessment based on first principles thermodynamics indicates that our main conclu-
sions will be largely unchanged even when such factors are accounted for. However,
by incorporating more of such metrics, along with the guidelines from the data analy-
sis methods, we can systematically refine the screening framework.
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