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Feature selection is the problem of identifying a subset of the most relevant features in the
context of model construction. This problem has been well studied and plays a vital role
in machine learning. In this paper we present three randomized algorithms for feature
selection. They are generic in nature and can be applied for any learning algorithm.
Proposed algorithms can be thought of as a random walk in the space of all possible
subsets of the features. We demonstrate the generality of our approaches using three
different applications. The simulation results show that our feature selection algorithms
outperforms some of the best known algorithms existing in the current literature.
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1. Introduction

Feature Selection is defined as the process of selecting a subset of the most relevant

features from a set of features. It involves discarding irrelevant, redundant and noisy

features. Feature selection is also known as variable selection, attribute selection or

variable subset selection in the fields of machine learning and statistics. The concept

of feature selection is different from feature extraction. Feature extraction creates

new features from the set of original features by employing a variety of methods

such as linear combinations of features, projection of features from the original space

into a transformed space, etc. We can summarize the usefulness of feature selection

as follows: (1) Shorter training times: When irrelevant and redundant features are

eliminated, the learning time decreases; (2) Improved model creation: The model

built is more accurate and efficient; and (3) Enhanced generalization: It produces

simpler and more generalized models.
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A generic feature selection algorithm employs the following steps: (1) Select a

subset of features; (2) Evaluate the selected subset; and (3) If the stopping condition

is met then terminate else repeat Steps 1 and 2. The algorithm generates candidate

subsets using different searching strategies depending on the application. Each of

the candidate subsets is then evaluated based on an objective function. In the

context of any learning algorithm, the objective function could be the accuracy.

Note that for any learning algorithm there are two phases. In the first phase (known

as the training phase), the learner is trained with a set of known examples. In

the second phase (known as the test phase), the algorithm is tested on unknown

examples. Accuracy refers to the fraction of test examples on which the learner

is able to give correct answers. In the feature selection algorithm, if the current

subset of features yields a better value for the objective function, the previous best

solution is replaced with the current one. If not, the next candidate is generated.

This process iterates over the search space until a stopping condition is satisfied.

Finally, the best subset is validated by incorporating prior knowledge.

In this paper we introduce a variety of randomized techniques for feature se-

lection. These techniques can be used in the context of any learning algorithm.

Consider the space of all possible subsets of features. We start with a random sub-

set s of the features and calculate its accuracy. We then choose a random neighbora

s′ of s and compute its accuracy. If the accuracy of s′ is greater than that of s, we

move to the new subset s′ and proceed with the search from this point. Otherwise,

we proceed our search depending on different techniques proposed in our algorithms.

Suppose if the accuracy of s′ is smaller than that of s, we can stay with the subset

s (with some probability p) or move to the subset s′ with probability 1 − p. We

proceed with the search from the point we end up with. This process of searching

the space is continued until no significant improvement in the accuracy can be ob-

tained. Our randomized search techniques are generic in nature. We have employed

it on three different applications and found that those are indeed scalable, reliable

and efficient. Note that our algorithms resembles many local searching algorithms

(such as Simulated Annealing (SA)). However, our algorithms are much simpler and

differs from the others. For example, we do not employ the notion of temperature

that SA utilizes.

The rest of this paper is organized as follows: Related works are summarized

in Sec. 2. Some background information and preliminaries are presented in Sec. 3.

In Sec. 4 we describe our proposed algorithms. Analyses of our algorithms such as

time complexity and convergence proof are presented in Sec. 5. The performance of

the algorithms and experimental results are presented in Sec. 6. Section 7 concludes

the paper.

aThe notion of a random neighbor is defined precisely in Sec. 4.
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2. Related Works

In this section we provide a summary of some well-known feature selection algo-

rithms. These algorithms differ in the way the candidate subsets are generated and

in the evaluation criterion used. Some examples of feature extraction methods can

be found in [34].

2.1. Selection of candidate subset

Subset selection begins with an initial subset that could be empty, the entire set of

features, or some randomly chosen features. This initial subset can be changed in a

number of ways. In forward selection strategy, features are added one at a time. In

backward selection the least important feature is removed based on some evaluation

criterion. Random search strategy randomly adds or removes features to avoid

being trapped in a local maximum. If the total number of features is n, the total

number of candidate subsets is 2n. An exhaustive search strategy searches through

all the 2n feature subsets to find an optimal one. Clearly, this may not be feasible

in practice [15]. A number of heuristic search strategies have been introduced to

overcome this problem. The branch and bound method [22] exploits exhaustive

search by maintaining and traversing a tree, but stops the search along a particular

branch if a predefined boundary value is exceeded. The branch and bound method

has been shown to be effective on many problem instances.

Greedy hill climbing strategies modify the current subset in such a way that

results in the maximum improvement in the objective function (see e.g., [25]).

Sequential forward search (SFS) [4, 5], sequential backward search (SBS), and

bidirectional search [18] are some variations to the greedy hill climbing method.

In these methods, the current subset is modified by adding or deleting features.

SFS sequentially searches the feature space by starting from the empty set and

selects the best single feature to add into the set in each iteration. On the contrary,

SBS starts from the full feature set and removes the worst single feature from

the set in each iteration. Both approaches add or remove features one at a time.

Algorithms with sequential searches are fast and have a time complexity of O(n2).

Sequential forward floating search (SFFS) and sequential backward floating search

(SBFS) [23] combine the strategies followed by SFS and SBS. Some feature selection

algorithms randomly pick subsets of features from the feature space by following

some probabilistic steps and sampling procedures. Examples include evolutionary

algorithms [8, 9], and simulated annealing [4]. The use of randomness helps in the

avoidance of getting trapped in local maxima.

2.2. Evaluation of the generated subset

After selecting the subsets from the original set of features, they are evaluated us-

ing an objective function. One possible objective function is the accuracy of the

predictive model. Feature selection algorithms can be broadly divided into two
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categories: (1) wrapper, and (2) filter. In a wrapper method the classification or

prediction accuracy of an inductive learning algorithm of interest is used for evalu-

ation of the generated subset. For each generated feature subset, wrappers evaluate

its accuracy by applying the learning algorithm using the features residing in the

subset. Although it is a computationally expensive procedure, wrappers can find

the subsets from the feature space with a high accuracy because the features match

well with the learning algorithm. Filter methods are computationally more efficient

than wrapper methods since they evaluate the accuracy of a subset of features us-

ing objective criteria that can be tested quickly. Common objective criteria include

the mutual information, Pearson product-moment correlation coefficient, and the

inter/intra class distance. Though filters are computationally more efficient than

wrappers, often they produce a feature subset which is not matched with a specific

type of predictive model and thus can yield worse prediction accuracies. Some of the

filter-based methods are Chi-square [36], correlation-based (e.g., linear and rank),

and entropy-based (e.g., information and gain-ratio) [37] filters.

3. Background Summary

We demonstrate the applicability of our proposed algorithms using three different

applications. The applications of interest are: (1) the prediction of materials prop-

erties, (2) analysis of biological data, and (3) data integration. In this section we

provide a brief summary on these applications.

3.1. Materials property prediction

If one wants to determine properties of a given unknown material, the traditional

approaches are lab measurements or computationally intensive simulations (for ex-

ample using the Density Functional Theory). An attractive alternative is to employ

learning algorithms. The idea is to learn the desired properties from easily obtain-

able information about the material. In this paper we consider an infinite polymeric

chain composed of XY2 building blocks, with X = C, Si, Ge, or Sn, and Y = H,

F, Cl, or Br. We are interested in estimating different properties of such chains

including dielectric constant and band gap. We assume an infinite polymer chain

with a repeat unit containing 4 distinct building blocks, with each of these 4 blocks

being any of CH2, SiF2, SiCl2, GeF2, GeCl2, SnF2, or SnCl2. By plotting the total

dielectric constant (composed of the electronic and ionic contributions) and the

electronic part of the dielectric constant against the computed band gap, we find

some correlations between these three properties. While some correlations are self-

evident (and expected) — such as the inverse relationship between the band gap

and the electronic part of the dielectric constant, and the large dielectric constant of

those systems that contain contiguous SnF2 units — it is not immediately apparent

if these observations may be formalized in order to allow for quantitative property

predictions for systems (within this sub-class, of course) not originally considered.
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For example, can we predict the properties of a chain with a repeat unit contain-

ing 8 building blocks (with each of the blocks being any of the aforementioned

units)? In Sec. 5, we show that this can indeed be done with high-fidelity using our

randomized search method.

We use specific sub-structures, or motifs or scaffolds, within the main structure

to create the attribute vector. Let us illustrate this using the specific example

of the polymeric dielectrics created using XY2 building blocks. Say there are 7

possible choices (or motifs) for each XY2 unit: CH2, SiF2, SiCl2, GeF2, GeCl2,

SnF2, and SnCl2. The attribute vector may be defined in terms of 6 fractions,

|f1, f2, f3, f4, f5, f6〉, where fi is the fraction of XY2 type or motif i (note that

f7 = 1−Σ6
i=1fi). One can extend the components of the attribute vector to include

clusters of 2 or 3 XY2 units of the same type occurring together; such an attribute

vector could be represented as |f1, . . . , f6, g1, . . . , g7, h1, . . . , h7〉, where gi and hi are,

respectively, the fraction of XY2 pairs of type i and the fraction of XY2 triplets

of type i. In Sec. 5, we demonstrate that such a motif-based attribute vector does

a remarkable job of codifying and capturing the information content of the XY2

polymeric class of systems, allowing us to train our machines and make high-fidelity

predictions.

3.2. Gene selection

Gene selection is based on SVMs [14–18] (please, see Appendix B for more informa-

tion). It takes as input n genes {g1, g2, g3, . . . , gn}, and l vectors {v1, v2, v3, . . . , vl}.

As an example, each vi could be an outcome of a microarray experiment and each

vector could be of the following form: vi = {x1
i , x

2
i , x

3
i , . . . , x

n
i , yi}. Here xj

i is the

expression level of the jth gene gj in experiment i. The value of yi is either +1 or

−1 based on whether the event of interest is present in experiment i or not. The

problem is to identify a set of genes {g1i , g
2
i , g

3
i , . . . , g

m
i } sufficient to predict the

value of yi in each experiment. Given a set of vectors, the gene selection algorithm

learns to identify the minimum set of genes needed to predict the event of interest

and the prediction function. These vectors form the training set for the algorithm.

Once trained, the algorithm is provided with a new set of data which is called the

test set. The accuracy of gene selection is measured in the test set as a percentage

of microarray data on which the algorithm correctly predicts the event of interest.

The procedure solely relies on the concept of SVM.

The gene selection algorithm of Song and Rajasekaran [27] is based on the ideas

of combining the mutual information among the genes and incorporating correlation

information to reject the redundant genes. The Greedy Correlation Incorporated

Support Vector Machine (GCI-SVM) algorithm of [27] can be briefly summarized

as follows: The SVM is trained only once and the genes are sorted according to

the norm of the weight vector corresponding to these genes. Then the sorted list of

genes are examined starting from the second gene. The correlation of each of these

genes with the first gene is computed until one whose correlation with the first one



June 22, 2015 16:49 IJFCS S0129054115500185 page 326

326 S. Saha, S. Rajasekaran & R. Ramprasad

is less than a certain predefined threshold is found. At this stage this gene is moved

to the second place. Now the genes starting from the third gene are examined and

the correlation of each of these genes with the second gene is computed until a gene

whose correlation with the second gene is less than the threshold is encountered.

The above procedure is repeated until end of the list of the sorted genes is reached.

In the last stage, genes based on this adjusted sorted genes are selected. GCI-SVM

brings the concept of sort-SVM and RFE-SVM [9] altogether which makes it more

efficient. In a nutshell, GCI-SVM works as follows:

• Compute the correlation coefficient for each pair of genes.

• Train the SVM using the training data set.

• Sort the genes based on their weight values.

• Go through the sorted genes, pick those genes whose correlation with the previ-

ously picked genes is less than a threshold.

• Move in order all picked genes to the front of the sequence; correspondingly,

unpicked genes are moved to the end.

We incorporate gene selection algorithm in our RFS1 algorithm to effectively

find the best subset of features from the entire set of features. We calculate the

accuracy of the selected subset of features returned by RFS1 with the help of GSA.

The search for the best subset of features proceeds based on the accuracy as stated

in Algorithm 1 until a desired convergence is achieved. Please see Sec. 5 for more

details.

3.3. Data integration

Data integration involves combining data residing in different sources and providing

users with a unified view of these data [3]. As an example, the same person may

have health care records with different providers. It helps to merge all the records

with all the providers and cluster these records such that each cluster corresponds

to one individual. Such an integration, for instance, could help us avoid performing

the same tests again and hence save money. Several techniques [22–25] have been

proposed to solve the data integration problem. Tian et al. [20] have proposed sev-

eral space and time efficient techniques to integrate multiple datasets from disparate

data sources. They employ agglomerative hierarchical clustering techniques [35] to

integrate data of similar types and avoid the computation of cross-products. It can

cope up with some common errors committed in input data such as typing distance

and sound distance. Furthermore, it can deal with some human-made typing errors

e.g., reversal of the first and last names, nickname usage, and attribute truncation.

We incorporate the data integration technique of [20] in our RFS1 algorithm. At

each iteration RFS1 returns a subset of features such as name, sex, postal code, etc.

from the different databases. Based on the selected features the data integration

scheme of Tian et al. integrates data of similar types into clusters and calculates

the accuracy of the clusters. RFS1 then proceeds with the search by exploiting the

accuracy. Please, see Sec. 5 for details.
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4. Our Algorithms

If we can identify a subset of the features that are the most important in determining

a property, it will lead to computational efficiency as well as a better accuracy. It

is conceivable that some of the features might be hurtful rather than helpful in

predictions. Let ~A = |a1, a2, . . . , an〉 be the set of features under consideration. One

could use the following simple strategy, in the context of any learning algorithm, to

identify a subset of ~A that yields a better accuracy in predictions than ~A itself. For

some small value of k (for example 2), we identify all the
(

n

k

)

subsets of ~A. For each

such subset we train the learner, figure out the accuracy we can get, and pick that

subset ~S that yields the best accuracy. Now, from the remaining features, we add

one feature at a time to ~S and for each resultant subset, we compute the accuracy

obtainable from the learner. Let ~S′ be the set (of size k+1) of attributes that yields

the best accuracy. Next, from the remaining attributes, we add one feature at a

time to ~S′ and identify a set of size k+2 with the best accuracy, and so on. Finally,

from out of all of the above accuracies, we pick the best one.

4.1. Randomized feature selector 1 (RFS1)

We can think of the above simple technique as a greedy algorithm that tries to find

an optimal subset of attributes and it may not always yield optimal results. On the

other hand, it will be infeasible to try every subset of attributes (since there are 2n

such subsets). We propose the following novel approach instead: Consider the space

of all possible subsets of attributes. We start with a random point p (i.e., a random

subset of the features) in this space and calculate the accuracy q corresponding

to this subset. We then flip an unbiased three sided coin with sides 1, 2, and 3.

If the outcome of the coin flip is 1, we choose a random neighbor p′ of this point

by removing one feature from p and adding a new feature to p. After choosing p′,

we compute its accuracy q′. If q′ > q then we move to the point p′ and proceed

with the search from p′. On the other hand, if q′ < q, then we stay with point p

(with some probability u) or move to point p′ with probability (1 − u). This step

is done to ensure that we do not get stuck in a local maximum. If the outcome of

the coin flip is 2, we choose a random neighbor p′ by removing one feature from p

and compute its accuracy q′. The next steps are the same as stated in the case of 1.

Consider the last case where the outcome of the coin flip is 3. We choose a random

neighbor p′ by adding one feature to p and compute its accuracy q′. The rest of the

steps are the same as above. If q′ > q then we move to the point p′ and proceed

with the search from p′. On the other hand, if q′ < q, then we stay with point p

(with some probability u) or move to point p′ with probability (1− u). We proceed

with the search from the point we end up with. This process of searching the space

is continued until no significant improvement in the accuracy can be obtained. A

relevant choice for u is exp(−c(q − q′)) for some constant c. In fact, the above

algorithm resembles the simulated annealing (SA) algorithm of [13]. Note that our

algorithm is very different from SA. In particular, our algorithm is much simpler

than SA. Details of our algorithm can be found in Algorithm 1.
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4.2. Randomized feature selector 2 (RFS2)

Another variation of the RFS1 algorithm is RFS2. It is based on pure random walk

on the search space. In RFS1 if q′ < q, then we stay with the point p (with some

probability u) or move to point p′ with probability (1 − u) as described above.

Instead in RFS2 if q′ < q we always stay with point p and restart the search from

that point. Details of our algorithm can be found in Algorithm 2. Please, see line

19 which differentiates RFS2 and RFS1.

4.3. Randomized feature selector 3 (RFS3)

RFS3 is another variation of RFS1. In RFS3 we iterate the search from different

points in the search space. In each iteration if q′ < q we randomly select a brand

new subset from the search space and proceed with the search as described in RFS1.

Details of our algorithm can be found in Algorithm 3. Please see lines 19–22 which

differentiate RFS3 and RFS1.

5. Analysis of Our Algorithms

In this section we illustrate runtime analysis and convergence proof of RFS1 algo-

rithm. The same analyses can be applied to RFS2 and RFS3 algorithms with some

minor modifications. In the RFS1 algorithm it is easy to see that each run of the

repeat loop takes O(n) time (please, see the pseudocode of Algorithm 1). This can

be reduced to O(log n) by keeping F − F ′ as a balanced tree (such as a red-black

tree). An important question is how many runs will be needed for convergence. In

this section we answer this question. The analysis is based on representing the steps

of the algorithm as a time homogeneous Markov chain. The analysis is similar to

the one in [24].

We can conceive of a directed graph G(V,E) for the feature selection problem as

follows: Every subset of the n features is a node in G. From any node p ∈ V , there

will be edges to its neighbors. Clearly, in the Algorithm RFS1, for every node p,

there are three kinds of neighbors: Let p′ be a neighbor of p. If p′ is of the first kind,

then the number of features in p and p′ will be the same. Thus there are N1
p ≤ n

such neighbors. If p′ is of the second type, then p′ will have one more feature than

p. Finally, if p′ is of the third type, then p′ will have one less feature than p. As

a result, it follows that there will be ≤ 3n neighbors for any node in the graph

G(V,E). Let the number of neighbors of p of the second and third types be N2
p and

N3
p , respectively.

Algorithm RFS1 starts from a random node p in G and performs a random walk

in this graph. The next node visited can be of type 1, 2, or 3 all with equal proba-

bility. The next node visited depends only on the current node. We can thus model

RFS1 as a time homogeneous Markov chain. In contrast, the simulated annealing

algorithm has been modeled as a time inhomogeneous Markov chain (see e.g., [21]

and [24]).
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Algorithm 1: Randomized Feature Selector (RFS1)

Input: The set F of all possible features and an Inductive Learning

Algorithm L

Output: A near optimal subset F ′ of features

begin

1 Randomly sample a subset F ′ of features from F .

2 Run the inductive learning algorithm L using the features in F ′.

3 Compute the accuracy A of the concept C learnt by L. (Note that

any learning algorithm leanrs a function (of the attributes). This

function is what we refer to as the concept learnt).

4 repeat

5 Flip an unbiased three sided coin with sides 1, 2, and 3.

6 if (the outcome of the coin flip is 1){

7 Choose a random feature f from F − F ′ and add it to F ′.

8 Remove a random feature f ′ from F ′ to get F ′′.

9 } else if (the outcome of the coin flip is 2){

10 Choose a random feature f from F − F ′ and add it to F ′

to get F ′′.

11 } else if (the outcome of the coin flip is 3){

12 Remove a random feature f from F ′ to get F ′′.

13 }

14 Run the inductive learning algorithm L using the features in F ′′.

15 Compute the accuracy A′ of the concept C′ learnt by L.

16 if (A′ > A ){

17 F ′ := F ′′ and A := A′; Perform the search from F ′.

18 } else{

19 With probability u perform the search from F ′ and

with probability 1− u perform the search from F ′′

with A := A′.

20 }

until no significant improvement in the accuracy can be obtained ;

21 Output F ′.

Note that for any two nodes p and p′ in G, there is a directed path from p to p′

and hence G is strongly connected. For any node p in G, let q(p) be the accuracy
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Algorithm 2: Randomized Feature Selector 2 (RFS2)

Input: The set F of all possible features and an Inductive Learning

Algorithm L

Output: A near optimal subset F ′ of features

begin

1 Randomly sample a subset F ′ of features from F .

2 Run the inductive learning algorithm L using the features in F ′.

3 Compute the accuracy A of the concept C learnt by L.

4 repeat

5 Flip an unbiased three sided coin with sides 1, 2, and 3.

6 if (the outcome of the coin flip is 1){

7 Choose a random feature f from F − F ′ and add it to F ′.

8 Remove a random feature f ′ from F ′ to get F ′′.

9 } else if (the outcome of the coin flip is 2){

10 Choose a random feature f from F − F ′ and add it to F ′

to get F ′′.

11 } else if (the outcome of the coin flip is 3){

12 Remove a random feature f from F ′ to get F ′′.

13 }

14 Run the inductive learning algorithm L using the features in F ′′.

15 Compute the accuracy A′ of the concept C′ learnt by L.

16 if (A′ > A ){

17 F ′ := F ′′ and A := A′; Perform the search from F ′.

18 } else{

19 Perform the search from F ′

20 }

until no significant improvement in the accuracy can be obtained ;

21 Output F ′.

of the feature set corresponding to p. If p is any node and p′ is a neighbor of p of

type k (1 ≤ k ≤ 3), then the transition probability Ppp′ from p to p′ is given by:

Ppp′ =

{

0 if p′ 6∈ N(p) & p′ 6= p
1

3Nk
p
min(1, exp{c(q(p′)− q(p))}) if p′ is a neighbor of p of type k
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Algorithm 3: Randomized Feature Selector 3 (RFS 3)

Input: The set F of all possible features and an Inductive Learning

Algorithm L

Output: A near optimal subset F ′ of features

begin

1 Randomly sample a subset F ′ of features from F .

2 Run the inductive learning algorithm L using the features in F ′.

3 Compute the accuracy A of the concept C learnt by L.

4 repeat

5 Flip an unbiased three sided coin with sides 1, 2, and 3.

6 if (the outcome of the coin flip is 1){

7 Choose a random feature f from F − F ′ and add it to F ′.

8 Remove a random feature f ′ from F ′ to get F ′′.

9 } else if (the outcome of the coin flip is 2){

10 Choose a random feature f from F − F ′ and add it to F ′

to get F ′′.

11 } else if (the outcome of the coin flip is 3){

12 Remove a random feature f from F ′ to get F ′′.

13 }

14 Run the inductive learning algorithm L using the features in F ′′.

15 Compute the accuracy A′ of the concept C′ learnt by L.

16 if (A′ > A ){

17 F ′ := F ′′ and A := A′; Perform the search from F ′.

18 } else{

19 Randomly sample a subset F ′ of features from F .

20 Run the learning algorithm L using the features in F ′.

21 Compute the accuracy A of the concept C learnt by L.

22 Perform the search from F ′.

23 }

until no significant improvement in the accuracy can be obtained ;

24 Output F ′.
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and

Ppp = 1−
∑

p′∈N(p)

Ppp′ .

RFS1 is said to have converged if the underlying Markov chain had been in a

globally optimal state at least once. Let p be the starting node (i.e., start state) of

the Markov chain and let p′ be a globally optimal state. Then there is a path from

p to p′ of length ≤ n.

Let ∆ = maxp∈V, p′∈N(p){q(p) − q(p′)}. Also, let the degree and diameter of

G(V,E) be d and D, respectively. Clearly, d ≤ 3n and D ≤ n. If p′ is a neighbor of

p, then Ppp′ is ≥ 1
3d exp(−c∆). We can derive a time bound within which the RFS1

algorithm will converge as stated in the following Lemma.

Lemma 1. If p is any state in V , then the expected number of steps before a global

optimal state is visited starting from p is ≤
(

1
3d exp(−c∆)

)−D
.

Proof. Let g be any globally optimal state. Then there exists a directed path from

p to g in G(V,E) of length ℓ ≤ D. Let e1, e2, . . . , eℓ be the sequence of edges in the

path. The probability that g is visited starting from p is greater than or equal to the

probability that each one of the edges ei, 1 ≤ i ≤ ℓ is traversed in succession. The

later probability is at least
[

( 1
3d) exp(−c∆)

]ℓ
≥

[

( 1
3d) exp(−c∆)

]D
. As a result, the

expected number of steps before g is visited is ≤ [3d exp(c∆)]D.

Theorem 2. RFS1 converges in time ≤ 2m[3d exp(c∆)]D, with probability ≥

(1 − 2−m), independent of the start state (for any integer m ≥ 1).

Proof. Let E = 2[3d exp(c∆)]D. We prove by induction (on m) that the proba-

bility of a global optimal state g not being visited in mE steps is ≤ 2−m.

Induction Hypothesis. Independent of the start state, probability that g is not

visited in mE steps is ≤ 2−m.

Base case (for m = 1) follows from Lemma 1 and Markov’s inequality.

Induction step. Assume the hypothesis for all m ≤ (r − 1). We’ll prove the

hypothesis for m = r. Let pE, p2E , . . . , p(r−1)E be the states of the Markov chain

during time steps E, 2E, . . . , (r − 1)E, respectively. Let A be the event: g is not

visited during the first E steps, and B be the event: g is not visited during the next

(r − 1)E steps.

The probability P that g is not visited in rE steps is given by

P = Prob.[B/A] × Prob.[A].

Since Prob.[B/A] depends only on what state the Markov chain is in at time step

E and the time duration (r − 1)E, we infer:

P = Prob.[A]
∑

p∈V

Prob.[B/pE = p]× Prob.[pE = p].
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Applying the induction hypotheis, Prob.[A] is ≤ 1/2 and Prob.[B/pE = p] is ≤

2−(r−1) for each p ∈ V . Therefore, we have,

P ≤
1

2
2−(r−1) = 2−r.

6. Results and Discussions

We have employed our randomized feature selection algorithms on three different

application domains. These applications include but not limited to the prediction

of properties of materials, processing of biological data, and data integration. Our

algorithms are generic and can be used in conjunction with any learning algorithm.

6.1. Materials property prediction

We consider polymeric dielectrics created using the XY2 blocks as described in

Sec. 3. If we assume that our repeat unit consists of 4 building blocks, and that

each building block can be any of 7 distinct units (namely, CH2, SiF2, SiCl2, GeF2,

GeCl2, SnF2, and SnCl2), we have a total of 175 distinct polymer chains (accounting

for translational symmetry). Of these, we set 130 to be in the training set, and the

remainder in the test set to allow for validation of the machine learning model.

Attribute vectors may be chosen in different ways. Consider the motif-

based one as described in Sec. 3, i.e., our attribute vector, ~Ai = |f i
1, . . . ,

f i
6, g

i
1, . . . , g

i
7, h

i
1, . . . , h

i
7〉, where f i

j , g
i
j and hi

j are, respectively, the fraction of XY2

units of type j, the fraction of pair clusters of XY2 units of type j and the fraction

of triplet clusters of XY2 units of type j. Once our machine has learned how to map

between the attribute vectors and the properties using the training set, we make

predictions on the test set (as well as the training set). Furthermore, we considered

several 8-block repeat units (in addition to the 175 4-block systems), and performed

our machine learning scheme.

We have tested the above techniques on the KRR scheme presented in Appendix

A with the systems represented using the motif-based attribute vectors. We refer

to the greedy extension as the modified greedy KRR (mg-KRR) approach and

the modified optimization version as mo-KRR. mg-KRR and mo-KRR are based

on Sequential Forward Search (SFS) and Randomized Feature Selector (RFS1)

algorithms, respectively. In each iteration of each of the algorithms (e.g. mg-KRR

and mo-KRR) the accuracy of the selected subset is measured by employing the

KRR scheme. Based on the accuracy it proceeds with the search until a desired

accuracy/convergence achieved. An assessment of the improvement in the predictive

power when mg-KRR and mo-KRR are used for the three properties of interest

(namely, the band gap, the electronic part of the dielectric constant and the total

dielectric constant) is presented in Table 1. As can be seen, the level of accuracy

of the machine learning schemes is uniformly good for all three properties across

the 4-block training and test set, as well as the 8-block test set, indicative of the

high-fidelity nature of this approach. In particular, note that the mo-KRR method,
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Table 1. KRR and modified KRR (mg-KRR and mo-KRR) schemes.

Bandgap Electric DC Total DC

System Method Accuracy Features Accuracy Features Accuracy Features

4-Block
KRR 92.98% 20 93.75% 20 96.49% 20

mg-KRR 93.07% 19 94.22% 11 97.23% 14
mo-KRR 93.43% 16 94.23% 18 97.63% 14

8-Block
KRR 96.95% 20 90.58% 20 95.81% 20

mg-KRR 96.95% 20 90.64% 15 95.99% 19

mo-KRR 97.45% 17 95.17% 12 97.68% 13

Table 2. KRR, modified KRR, distributed KRR, and randomized KRR (mo-KRR, dis-KRR,

and ran-KRR) schemes.

Bandgap Electric DC Total DC

Method Accuracy Features Accuracy Features Accuracy Features

KRR 92.85% 162 89.30% 162 87.01% 162
mo-KRR 94.07% 127 92.01% 125 88.57% 127
dis-KRR 93.56% 111 91.18% 118 87.63% 113
ran-KRR 96.48% 105 95.68% 102 94.47% 102

in general, leads to better accuracy. More importantly, typically, the number of

attribute components decreases significantly. This means a significant reduction in

the run times of the algorithm while predicting parameter values for an unknown

material.

Furthermore to demonstrate the practical applicability we have tested all the

versions of our algorithm under KRR scheme with the systems represented using

the motif-based attribute vectors. Each vector contains 162 components of 6 units,

23 pairs, and 133 triplets. We refer to the modified optimization version as mo-KRR

(based on RFS1 algorithm), modified randomized version as ran-KRR (based on

RFS2 algorithm), and distributed version of mo-KRR as dis-KRR (based on RFS3

algorithm). In dis-KRR we iterate the search from different points in the search

space. In each iteration we randomly select a brand new subset of components from

162 components and proceed with the search by executing mo-KRR. The number

of iterations is selected in such a way that the run time of dis-KRR is the same

as that of mo-KRR. When all the iterations are complete, dis-KRR outputs the

best one from all the iterations. The results are shown in Table 2. In general all

the versions of our algorithm lead to a better accuracy with a significant decrease

in the number of attributes. Please note that real datasets are used to perform all

the experiments to predict materials property.

6.2. Gene selection

We have used the gene selection algorithm to identify some of the best features that

can together identify two groups. The gene selection algorithm has two phases. In

the first phase, the algorithm is trained with a training dataset. In this phase the

algorithm comes up with a model of concept. In the second phase of the algorithm
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Table 3. GSA and modified GSA (GSA and mo-GSA) schemes.

GSA Modified GSA

System Method Accuracy Features Accuracy Features

Dataset 1
GAUSSIAN 50% 15 54% 10
LINEAR 49% 15 62% 12

Dataset 2
GAUSSIAN 52% 20 60% 13
LINEAR 53% 20 65% 13

Dataset 3
GAUSSIAN 49% 25 58% 9
LINEAR 50% 25 58% 11

Dataset 4
GAUSSIAN 50% 30 59% 13
LINEAR 56% 30 62% 13

a test dataset is presented. The model learned in the first phase is used to classify

the elements residing in the test dataset. As a result, the accuracy of the model

learned can be computed. At first, we generated 4 simulated datasets each having

200 subjects with 15, 20, 25, and 30 features, respectively. Each of the features has

been given a random value in the range [0, 99]. We then randomly assigned a class

label to each of the subjects residing in each dataset. Specifically, each subject is

assigned to group 1 with probability 1
2 and it is assigned to group 2 with probability

1
2 . We trained the classifier using a training set which consists of 50 percent of data

from each of group 1 and group 2 (data being chosen randomly). The test set is

formed using the other 50 percent from group 1 and group 2, respectively.

At first GSA is trained with the training set and it builds a model for the con-

cept being learnt using SVMs [27]. We have used LINEAR, and GAUSSIAN RBF

kernel functions in SVM to build the model. Using the test data we have mea-

sured the accuracy by employing the model built. We then employ our randomized

feature selection algorithm RFS1 on each of the datasets. We call this scheme as

modified GSA (mo-GSA). In each iteration mo-GSA selects a subset of features

as described in Algorithm 1. The accuracy of the selected subset is measured by

GSA. Based on the accuracy, mo-GSA proceeds with the search until a desired ac-

curacy/convergence achieved. From the results shown in Table 3 it is evident that

after employing mo-GSA the accuracy has greatly improved and at the same time

the number of features has decreased significantly with respect to GSA.

6.3. Data integration

Data integration technique of Tian et al. [20] is used to detect similar types of data

from a set of databases. To test the performance of our approach, we generated 4

artificial datasets each having 10,000 subjects where each subject has 5 features.

The features consist of a person’s first name, last name, date of birth, sex, and

zip code. In general, each person has multiple records. Since errors are introduced

randomly in the features, instances of the same individual may differ from each

other. Accuracy of any data integration method is calculated as the fraction of

persons for whom all the instances have been correctly identified to be belonging

to the same person.
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Table 4. DI and modified DI (DI and mo-DI) schemes.

Data Integrator Modified Data Integrator

System Accuracy # of Features Accuracy # of Features

Dataset 1 46.72% 5 89.71% 2

Dataset 2 85.50% 5 90.31% 3

Dataset 3 85.51% 5 90.32% 4

Dataset 4 85.50% 5 86.61% 3

At first we execute the algorithm proposed by [20] directly on each of the

datasets and calculate the accuracy as defined above. We call this scheme as Data

Integrator (DI). We then employ our randomized feature selection algorithm RFS1

on each of the datasets. We call this scheme as modified Data Integrator (mo-DI).

In each iteration mo-DI randomly selects a subset of features as described in Al-

gorithm 1. The accuracy of the selected subset is measured by [20]. Based on the

accuracy mo-DI proceeds with the search until a desired accuracy/convergence is

achieved. From the results shown in Table 4 it is evident that after employing mo-

DI the accuracy has greatly improved and at the same time the number of features

has also decreased with respect to DI.

6.4. The comparisons

We compared RFS1 algorithm with both of wrapper and filter-based schemes. At

first, we generated a simulated dataset having 200 subjects with 15 features. Each

of the features was given a random value in the range [0, 99]. We then randomly

assigned a class label to each of the subjects residing in the dataset. Specifically,

each subject was assigned to class 1 with probability 1
2 and it was assigned to class

2 with probability 1
2 . We further divided the dataset into two parts namely control

and test sets. Control set consists of 50 percent of data from each of group 1 and

group 2 (data being chosen randomly). The test set was formed using the other 50

percent from group 1 and group 2, respectively.

The comparison procedure had two phases. In the first phase, the feature selec-

tion algorithm of interest selected the best feature subset from the control set. In

the second phase the accuracy was calculated with the help of GSA from the test

set considering only the subset of features given by the first phase. In the case of

filter-based methods, we took the best subset of features in such a way that the size

of the subset was identical to the size of the subset returned by mo-GSA. On the

other hand wrapper-based methods gave the best subset from the entire space of

features. In our comparisons, the filter-based methods we had employed Chi-square,

correlation-based (e.g., linear and rank), and entropy-based (e.g., information and

gain-ratio) filters. The wrapper methods used is CFS [38]. This algorithm makes

use of best first search for searching the attribute subset space. Information on the

implementation details of these algorithms can be found in [6]. The comparison re-

sults show that our feature selection algorithm (specifically, mo-GSA) outperforms

some of the best known algorithms existing in the current literature. Please see
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Table 5. The Comparisons.

Method Name Class % Accuracy # of Features

mo-GSA wrapper 54% 10

Chi-squared Filter filter 48% 10

Linear Correlation-based Filter filter 51% 10

Rank Correlation-based Filter filter 51% 10

Information Gain-based Filter filter 46% 10

Gain Ratio-based Filter filter 46% 10

CFS Filter wrapper 50% 2

Table 5 for details. As the datasets and the class labels were randomly generated

from a uniform distribution. The correlations among the subjects in the same class

are very low. The accuracies of the selected features given by the feature selection

algorithms of interest reflect this fact. As the correlations are very low, the predic-

tion model built by the learning algorithms will also not be sufficiently accurate to

classify the subjects from unseen data.

7. Conclusions

We have presented three novel randomized search techniques which are generic in

nature and can be applied to any inductive learning algorithm for selecting a subset

of the most relevant features from the set of all possible features. The proposed

schemes fall into the class of wrapper methods where the prediction accuracy in

each step is determined by the learning algorithm of interest. To demonstrate the

validity of our approaches, we have applied it in three different applications, namely,

biological data processing, data integration, and materials property prediction. It is

evident from the simulation results shown above that our proposed techniques are

indeed reliable, scalable, and efficient. Our experiments also reveal that our feature

selection algorithms perform better than some of the best known algorithms existing

in the current literature.
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Appendix A. Kernel Ridge Regression (KRR)

Kernel ridge regression is a data-rich non-linear forecasting technique. It is applica-

ble in many different contexts ranging from optical character recognition to business

forecasting. KRR has proven to be better than many well-known predictors. It is

not much different from ridge regression rather it employs a clever algebraic trick

to improve the computational efficiency. The central idea in kernel ridge regression

is to employ a flexible set of nonlinear prediction functions and to prevent over-

fitting by penalization. It is done in such a way that the computational complexity

is reduced significantly. This is achieved by mapping the set of predictors into a

high-dimensional (or even infinite-dimensional) space of nonlinear functions of the

predictors. A linear forecast equation is then estimated in this high dimensional

space. It also employs a penalty (or shrinkage, or ridge) term to avoid over-fitting.

It is called kernel ridge regression since it uses the kernel trick to map the set of

predictors into a high dimensional space and adds a ridge term to avoid over-fitting.

Assume that we are given N observations (x1, y1), (x2, y2), . . . , (xN , yN ) with

xi ∈ ℜd and yi ∈ ℜ, for 1 ≤ i ≤ N . Our goal is to find a function f such that f(xi)

is a good approximation of yi for 1 ≤ i ≤ N . Once we identify such a function we

can use it on any unknown observation x′ ∈ ℜd to estimate the corresponding y′ as

f(x′). Ridge regression calculates the parameter vector w ∈ ℜd of a linear model
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f(x) = w.x by minimizing the objective function:

WRR(w) =
1

2
‖ w‖2 +

γ

N

N
∑

i=1

(yi − wi.xi)
2. (A.1)

The objective function used in ridge regression (1) implements a form of Tikhonov

regularisation [29] of a sum-of-squares error metric, where γ is a regularization

parameter controlling the bias-variance trade-off [7].

A non-linear form of ridge regression [26] can be obtained by employing the ker-

nel trick. Here a linear ridge regression model is constructed in a higher dimensional

feature space induced by a non-linear kernel function defining the inner product:

K(xa, xb) = ϕ(xa).ϕ(xb). (A.2)

The kernel function can be any positive definite kernel. One of the popular

kernels is Gaussian radial basis function (RBF) kernel:

K(xa, xb) = exp

(

−
‖ xa − xb‖

2

2σ2

)

(A.3)

where σ is a tunable parameter. The objective function minimized in kernel ridge

regression can be written as:

WKRR(w) =
1

2
‖ w‖2 +

γ

N

N
∑

i=1

ξ2i (A.4)

subject to the constraints:

ξi = yi − w.ϕ(xi), ∀i ∈ {1, 2, . . . , N}.

The output of the KRR model is given by the equation:

f(x) =

N
∑

i=1

αiϕ(xi).ϕ(x) =

N
∑

i=1

αiK(xi, x). (A.5)

Appendix B. Support Vector Machine (SVM)

Support Vector Machine has been developed by Vapnik et al. at AT&T Bell Lab-

oratories [2, 30] which is the basis of any gene selection algorithm. Kernel-based

techniques (such as support vector machines, Bayes point machines, kernel princi-

pal component analysis, and Gaussian processes) represent a major development in

machine learning algorithms. Support vector machines (SVMs) are a group of su-

pervised learning methods that can be applied to classification or regression. They

represent an extension to nonlinear models of the generalized portrait algorithm.

The basic idea is to find a hyperplane which separates any given d-dimensional data

perfectly into two classes. Assume that we are given l training examples {xi, yi},

where each example has d inputs (xi ǫ ℜ
d), and a class label yiǫ{−1, 1} (1 ≤ i ≤ l).
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Now, all the hyperplanes in ℜd are parameterized by a vector (w), and a constant

(b), expressed in the equation:

w · x+ b = 0 . (B.1)

Here x is a point on the hyperplane, w is a n-dimensional vector perpendicular to

the hyperplane, and b is the distance of the closest point on the hyperplane to the

origin. Any such hyperplane (w, b) that separates the data leads to the function:

f(x) = sign(w · x+ b) . (B.2)

The hyperplane is found by solving the following problem:

Minimize J = 1
2 ‖ w‖2; subject to yi(w · xi + b)− 1 ≥ 0, where i = 1, . . . , l.

To handle datasets that are not linearly separable, the notion of a “kernel in-

duced feature space” has been introduced in the context of SVMs. The idea is to

cast the data into a higher dimensional space where the data is separable. To do

this, a mapping function z = φ(x) is defined that transforms the d dimensional

input vector x into a (usually higher) d′ dimensional vector z. Whether the new

training data {φ(xi), yi} is separable by a hyperplane depends on the choice of the

mapping/kernel function. Some useful kernel functions are “polynomial kernel” and

“GAUSSIAN RBF kernel”. The polynomial kernel takes the form:

K(xa, xb) = (xa · xb + 1)p (B.3)

where p is a tunable parameter, which in practice varies from 1 to ∼ 10. Another

popular one is the Gaussian RBF Kernel:

K(xa, xb) = exp

(

−
‖ xa − xb‖

2

2σ2

)

(B.4)

where σ is a tunable parameter. Using this kernel results in the classifier:

f(x) = sign

[

∑

i

αiyi exp

(

−
‖ x− xi‖

2

2σ2

)

+ b

]

(B.5)

which is a Radial Basis Function, with the support vectors as the centers. More

details and applications of SVM can be found in [8, 12, 17].


