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Calculation of the field-emission current from a surface
using the Bardeen transfer Hamiltonian method

R. Ramprasad, L. R. C. Fonseca, and Paul von Allmen
Motorola Inc., Flat Panel Display Division, 7700 South River Parkway, FPD22, Tempe, Arizona 85284

~Received 1 October 1999; revised manuscript received 23 February 2000!

We have developed a method for calculating the field-emission current from a clean or adsorbate-covered
metal surface using the transfer Hamiltonian method of Bardeen. The present formalism can be incorporated in
accurate atomistic electronic structure methods, and so is capable of addressing system specific band structure
effects, adsorbate-induced resonances, and is amenable to accurate treatments of the exchange-correlation
potential close to as well as far from the metal surface. It therefore goes beyond the conventional Fowler-
Nordheim treatment of field emission from a metal surface. We illustrate the utility of our method by calcu-
lating the field-emission current from a model jellium surface, using a local-density approximation exchange-
correlation potential, modified to include the correct;1/4x asymptotic behavior in the vacuum region. We find
that the Fowler-Nordheim behavior can be recovered in the limit of low fields; in the limit of high fields, where
the details of the self-consistent effective potential in the neighborhood of the surface become important,
meaningful deviations from the Fowler-Nordheim current result.
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I. INTRODUCTION

The field-assisted emission of electrons from a metal s
face is well described by the Fowler-Nordheim~FN! theory,1

which is based on the free-electron theory of metals. Wit
this theory, the potential energy of an electron on the vacu
side of the metal-vacuum interface~measured relative to th
bottom of the conduction band! is approximated byEF1f
2e2/4x2eFx, where the four terms are the Fermi energ
the work function, theclassicalimage potential, and the po
tential due to an external electric field, respectively;x is the
distance perpendicular to the surface on the vacuum sidee is
the electronic charge andF is the electric field. The FN
theory leads to a very simple relationship between the em
sion current density and the applied electric field, in terms
just the work function of the metal surface.1

The above expression for the potential ‘‘seen’’ by an
caping electron is, however, valid only asymptotically~for
x.3 Å or so!. The detailed shape of the barrier forx
,3 Å depends on the metal surface under consideration,
is not well represented in the FN treatment.2 Calculation of
the field-emission current using an accurate electronic st
ture method with proper treatment of the exchan
correlation interaction not only remedies this problem, b
also incorporates system and surface specific band-stru
effects~which are absent in the FN treatment!. In the present
study, we derive an expression for the field emission curr
using the Bardeen transfer Hamiltonian~BTH! method,3 ap-
plicable to electronic structure treatments of the metal s
face. The advantage of using the BTH formalism~as op-
posed to the calculation of the tunneling current us
intensive scattering-theoretic techniques4! is that just thesta-
tionary statesof the isolated field-freeemitting system can
be used to calculate the field-emission current.

As an illustrative example, we use the BTH method
calculate the field-emission current from a jellium surface
the jellium model, the bulk solid is represented by a unifo
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electron gas moving in a neutralizing uniform positive bac
ground, while at the surface, although the positive ba
ground is rigid, the electrons are allowed to relax and le
out into the vacuum in order to minimize their kinet
energy.5 The jellium model provides us with a simple situ
tion wherein the present method can be used to recove
sults already known in certain limiting cases~viz., the
Fowler-Nordheim description in the low-field limit!. The
wave functions and potential of the jellium system are de
mined self-consistently5 using a modified version of the
local-density approximation6 ~LDA ! within density-
functional theory7 ~DFT!. Although LDA has been widely
and successfully used in treating many bulk and surf
properties,6 it has the incorrect asymptotic behavior of exp
nential decay~rather than the correct;1/4x image behavior!
outside of a surface in the vacuum region.8 Hence, we use a
modification suggested earlier by Serenaet al.9 in which the
LDA potential inside the metal is interpolated smooth
~henceforth referred to as ILDA! to the classical image po
tential outside in the vacuum region. Thus, electron-elect
correlations close to the surface are treated more realistic
here than in the FN treatment, which, as we had mentio
earlier, accounts correctly only for the correlations far fro
the surface.

Although the ILDA is constructed in anad hocmanner,
we note that it is adequate for the illustration of the utility
the BTH method we are attempting here. Besides, the IL
functional is easy to implement. For these reasons, we pr
the ILDA to other more sophisticated exchange-correlat
functionals~e.g., the weighted-density approximation10! that
naturally have the correct asymptotic behavior. It is wo
mentioning that the present work is a first step toward
quantitative study of field emission from surfaces cove
with adsorbates or coatings, or even nonplanar surfaces
emphasize, though, that such quantitative studies require
alistic treatment of surfaces, using atomistic electronic str
ture methods and exchange-correlation potentials more
phisticated than ILDA.
5216 ©2000 The American Physical Society
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This paper is organized as follows. In the next section,
derive an expression for the field-emission current using
BTH formalism in terms of jellium wave functions, eige
values, and the self-consistent effective one-electron po
tial, and generalize it for use within atomistic plane-wav
based electronic structure methods. Our results for a m
jellium system are presented and discussed in Sec. III,
we conclude with a brief summary. Details about the jelliu
calculations specific to the present implementation are gi
in the Appendix.

II. BARDEEN TRANSFER HAMILTONIAN METHOD FOR
CALCULATING THE FIELD-EMISSION CURRENT

Within the BTH formalism,3 the left-hand side~cathode!
and right-hand side~anode! systems are considered sep
rately and the eigenfunctions and eigenvalues determi
The tunneling current from the left to right is then calculat
using information about both the right- and left-hand s
systems in the barrier region. We now derive an expl
expression for the tunneling or field-emission current ass
ing that the left-hand side system is modeled as a jelli
slab. We then generalize our result for use in plane-wa
based atomistic electronic structure methods.

The wave functions and the energy eigenvalues of
left-hand side jellium system are determined in the abse
of an electric field, as described in the Appendix. The ext
sion of the wave functions into the barrier region in the pr
ence of an electric field is obtained by using the WKB a
proximation. The right-hand side system in the case of fi
emission is composed of electrons that have tunne
through the barrier. The wave functions of this system in
barrier region are also determined using the WKB appro
mation. Assuming that the jellium surface normal~and the
electron emission direction! are along thex axis, the left- and
right-hand side wave functions,CL,R(x,y,z), can be written

as c l ,r(x)ei (ky
L,Ry1kz

L,Rz) (L and R index the left- and right-
hand side systems, i.e.,L[$ l ,ky

L ,kz
L% and R[$r ,ky

R ,kz
R%),

whereky
L,R andkz

L,R are the wave vectors along they andz
directions. The left- and right-hand side eigenvaluesEL,R

may be written ase l ,r1(ky
L,R)21(ky

L,R)2, wheree l ,r are the
‘‘normal’’ energies. We then have the following expressi
for c l ,r(x) in the barrier region within the WKB
approximation:11

c l ,r~x!5
Cl ,r

2
uk l ,r u21/2expS a l ,rE

xl ,r

x

uk l ,r udxD , ~1!

where k l ,r5A(2m/\2)@ve f f(x)2eFx2e l ,r #, m and e are
the electron mass and charge, respectively,\5h/(2p),
whereh is Planck’s constant,ve f f(x) is the effective poten-
tial ‘‘seen’’ by an electron,F is the electric field,a l521
anda r511, andxl ,r are the (e l ,r-dependent! turning points
of ve f f(x). Cl ,r are normalization constants, which for th
right-hand side system is expressed in terms of its densit
states,11 u r(e r), i.e., Cr5A(2m/\2)/@pu r(e r)]. Cl is deter-
mined by matchingc l(x) to the jellium wave function,
f l(x), at a suitable point~say,xl8), typically about 1 a.u. to
the right of the turning pointxl . This procedure is warrante
by the fact that the WKB approximation breaks down at
immediate neighborhood of the turning point, and thatxl8 can
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be adjusted to ensure near continuity of the derivatives
c l(x) andf l(x). Cl is thus given by

2f l~xl !u~2m/\2!@ve f f~xl !2eFxl2e l #u1/4expS E
xl

xl8uk l udxD .

The exponential term can be neglected if the distancexl8
2xl is chosen to be much smaller than the exponential de
length.

The tunneling current is then given by3

I 5
4pe

\ (
LR

uMLRu2d~EL2ER!, ~2!

with MLR being the tunneling matrix element,

MLR5
\2

2mE
x5 x̄

dydzS CL* ~x,y,z!
]

]x
CR~x,y,z!

2CR~x,y,z!
]

]x
CL* ~x,y,z! D

5
\2

2m S c l~x!
]

]x
c r~x!

2c r~x!
]

]x
c l~x! D

x5 x̄

dk
y
L ,k

y
Rdk

z
L ,k

z
R. ~3!

The integral in the first equation is performed along a
plane x5 x̄ entirely in the classically forbidden barrier re
gion. Note that bothc l(x) andc r(x) are required only in the
barrier region.

SubstitutingMLR into the expression for the total curren
yields

I 5
4pe

\ (
lr

(
ky

Lkz
L
U \2

2m S c l~x!
]

]x
c r~x!

2c r~x!
]

]x
c l~x! D

x5 x̄
U2

d~e l2e r !

5
4pe

\ (
l

(
ky

Lkz
L
E de ru r~e r !U \2

2m S c l~x!
]

]x
c r~x!

2c r~x!
]

]x
c l~x! D

x5 x̄
U2

d~e l2e r !. ~4!

Noting that

]

]x
c l ,r~x!5

Cl ,r

2
expS a l ,rE

xl ,r

x

uk l ,r udxD Fa l ,r uk l ,r u1/2

1
2m

\2 S eF

4
2

1

4

dve f f~x!

dx D uk l ,r u25/2G , ~5!

the expression for the total current can be simplified to

I 5
4pe

\ (
l

(
ky

Lkz
L
S \2

2mD Cl
2

4p
expS 22E

xl

xr
uk l udxD . ~6!
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Due to the cylindrical symmetry of the jellium problem, an
sinceky

L andkz
L form a continuum, the sum overky

L andkz
L

can be converted to an integration of the form

(
ky

Lkz
L

→ s

~2p!2E0

2p

dfE
0

AkF
2

22me l /\2

kdk

5
s

4p
~EF2e l !~2m/\2!,

where s is the cross-sectional area, andEF is the Fermi
energy. Finally, the field-emission current density,J
(5I /s), is given by

J5
e

4p\ (
l

~EF2e l !Cl
2 expS 22E

xl

xr
uk l udxD . ~7!

The present method can be incorporated in traditio
plane-wave-based atomistic electronic structure scheme
calculate field-emission currents from surfaces. In su
cases, the left-hand side system wave functions are writte
a Laue representation:CL(r )5eiki•r i(Gi

eiGi•r if lkiGi
(x),

where nowL[$ l ,ki%, with ki being ak point in the first
surface Brillouin zone,r i represents a vector in theyz plane,
andGi is a two-dimensional~2D! reciprocal-lattice vector in
the yz plane. This form ofCL(r ) when used in the BTH
formalism results in the total current

I 5
4pe

\ (
l

(
ki

S \2

2mDClki0
2

4p
expS 22E

xl

xr
uk lki0

udxD , ~8!

where now,

Clki0
52f lki0

~xl !u~2m/\2!@v0~xl !2Fxl2e lki
#u1/4

with e lki
5EL2\2ki

2/2m,

k lki0
5A~2m/\2!@v0~x!2eFx2e lki

#,

andv0(x) is theGi50 component of the 2D Fourier trans
form of the effective potential. In this expression, we ha
assumed that the corrugation of the potential and the w
functions along theyz plane can be neglected on the scale
the barrier width~the former is of the order of angstrom
and the latter, for fields in typical field-emission expe
ments, is of the order of tens of angstroms!. It is worth men-
tioning that the local band-structure effects~or the local den-
sity of states information! are introduced in the curren
through the energy spectrum, and the summation overl; thus,
effects due to adsorbates on surfaces—such as reso
tunneling—will be captured within this treatment, provide
xl is chosen to be to the right of the adsorbate~not just to the
right of the metal surface!. Although in the clean metal o
jellium cases, we could assume that the electric field does
perturb the left-hand side system wave functions and eig
values, this may not be a valid assumption for adsorb
covered metal surfaces~due to field penetration through th
adsorbate!. In such cases, the perturbed left-hand side w
functions~at xl) and eigenvalues can be obtained from th
unperturbed counterparts using first-order perturba
theory with the electric field treated as a perturbation. T
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present work thus paves the way for a quantitative study
the field-emission current from adsorbates, coatings, and
ides, and is a first step towards a study of nonplanar surfa
~such as Spindt tips and nanoprotrusions!.

As an aside, we point out that the FN expression1 for the
current density can be recovered from the jellium BTH e
pression@Eq. ~7!# derived above. Within the free-electron ga
model, which underlies the FN treatment,Cl

5A(2m/\2)/@pu l(e l)#. After converting the sum over the
left-hand side system to an integration@( l$•••%
→*0

EFde lu l(e l)$•••%#, and replacing the jellium effective
potential by the one used in the FN treatment,

JFN5
em

2p2\3E0

EF
~EF2e!expS 22E

xl

xr
ukFNudxD de, ~9!

wherekFN5A(2m/\2)(EF1f2e2/4x2eFx2e). It can be
shown that the above expression forJFN results precisely in
the FN expression when the appropriate approximations
made.1

III. RESULTS AND DISCUSSION

We consider as a model system a jellium surface with
average density corresponding tor s55.0 (r s is defined as the
average radius of an electron, as 4pr s

3r̄/351, wherer̄ is the
average valence electron density of the bulk metal!; for com-
parison, we mention that K, Rb, and Cs haver s values of
4.96, 5.23, and 5.63, respectively.8 In Fig. 1, we show the
self-consistent LDA and ILDA effective potentials in th
neighborhood of the surface of the slab, whose long-ra
behavior is dominated by the exchange-correlation poten
For comparison, we also show the step potential at the
face, and the classical image potential whose form is gi
by 1/4(x2ximage). ximage was calculated earlier9 self-
consistently as the centroid of a small amount of exc

FIG. 1. Total self-consistent LDA~dashed line! and ILDA ~solid
line! effective potentials relative to their bulk values as a functi
of distance from the surface;x.0 andx,0 represent vacuum an
jellium, respectively. The classical image potential and the step
tential at the surface are represented by dotted and dot-dashed
respectively.
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charge added to the system; for a system withr s55.0, ximage
was found to be 1.08 a.u.12 The LDA potential has a rapid
decay following the exponential decay of the electronic d
sity. The ILDA potential, on the other hand, has the corr
asymptotic behavior, and recovers the LDA result inside
jellium. Clearly, the classical image potential assumed in
FN treatment is quite inadequate in regions close to the
face. In the vacuum region, both the self-consistent LDA a
ILDA effective potentials are bounded by the classical ima
potential and the step potential. It can thus be anticipated
both the LDA and ILDA tunneling currents will be some
where between the FN currents calculated with and with
the image potential. Furthermore, it can also be expected
the current calculated using the ILDA potential will be b
tween that calculated using the LDA potential and FN c
rent calculated using the image potential.

The actual calculation of the tunneling current density
ing the BTH formalism confirm these expectations. Figur
shows the calculated current density as a function of field
a typical Fowler-Nordheim plot. For comparison, we al
show the FN results with and without the image potent
these curves were generated using the FN equation1 for the
calculated jellium work function of 2.74 eV@the work func-
tion is defined asve f f(`)2EF#.13 Two interesting points are
worth mentioning:~i! in the limit of low fields~shown as the
inset in Fig. 2!, the ILDA current approaches the FN resu
with image potential; this is clearly understandable since
low fields, the barrier width is so large that details of t
effective potential close to the surface become irrelevant~at
these low fields, the LDA current density is lower than t
ILDA current density because the LDA barrier approach
the vacuum level more rapidly!, ~ii ! in the limit of high
fields, significant deviations of the ILDA current towards t
LDA result and away from the FN current can be seen; thi
again reasonable since at high fields, the asymptotic beha

FIG. 2. Fowler-Nordheim plot of the current densities calcula
using the jellium model with LDA~diamonds! and ILDA ~circles!
exchange-correlation potentials. Dot-dashed and dotted lines re
sent results obtained using the Fowler-Nordheim equation with
and with image potential, respectively. Inset shows the same
for low fields.
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of the effective potential becomes relatively unimporta
compared to its behavior close to the surface~where the FN
treatment breaks down, and the LDA and ILDA potentia
coalesce!.

IV. SUMMARY

A crucial outcome of this work is the development of
method, using the Bardeen transfer Hamiltonian formalis
to calculate the field-emission current from planar surfac
This method can be directly incorporated in large-scale a
mistic electronic structure methods, as it requires only
knowledge of the field-free self-consistent potential in t
vacuum region, the energy spectrum and the value of
wave functions at the turning point of the potential outsi
the surface, all of which are available from standard el
tronic structure calculational schemes. Using a realis
exchange-correlation potential~e.g., the weighted-density
approximation! that possesses the correct asymptotic beh
ior in such electronic calculations will yield results mo
quantitative than those obtained using the Fowler-Nordh
formula~which cannot describe local electronic structure a
adsorbate-induced resonant effects!. The present work is the
first step towards a quantitative study of the field-emiss
current from nonplanar structures such as Spindt tips
nanoprotrusions.

We have used a model jellium surface as a test system
this study. Our results for this test system can be summar
as follows: the calculated tunneling current for the jelliu
system is bounded by the FN results obtained assuming
the step potential at the surface, and a classical image po
tial in addition to the step potential. In the limit of low field
the jellium current approaches the FN~with image potential!
current as details of the form of the actual potential close
the surface become unimportant due to the largeness o
barrier. In the limit of high fields, the jellium current deviate
~decreases! from the FN value, as in this limit the barrie
width is small, and the form of the effective potential clo
to the surface becomes important.

APPENDIX: JELLIUM CALCULATION

Our model jellium system is constructed slightly diffe
ently compared to the original Lang-Kohn~LK ! treatment.5

While in their case they had a semi-infinite slab extend
from x50 to x52`, we have a slab of thicknessd centered
at the origin. Thus, our jellium slab is symmetric aboutx
50, and the positive background for our system,r1(x), is
given by

r1~x!5H r̄, uxu<d/2

0, uxu.d/2,
~A1!

wherer̄ is the average electron density~number of valence
electrons per Wigner-Seitz cell/volume of a Wigner-Se
cell! of the system.

For this model system, the wave functions and energ
are given by5

Ck,ky ,kz
~x,y,z!5fk~x!ei (kyy1kzz), ~A2!

d
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ut
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Ek,ky ,kz
~x,y,z!5ek1\2~ky

21kz
2!/2m. ~A3!

Since our model system is a slab finite in thex direction, the
energiesek do not form a continuum, unlike in the LK trea
ment. ek and the associatedfk(x) are determined by self
consistently solving the following set of Hohenberg-Koh
Sham equations~in Hartree atomic units!:

S 2
1

2

]2

]x2
1ve f f„r~x!…D fk~x!5ekfk~x!, ~A4!

ve f f„r~x!…524pE
x

`

dx8E
x8

`

dx9@r~x9!2r1~x9!#

1mxc„r~x!…1DF, ~A5!

r~x!5
1

p (
k<kF

~EF2ek!ufk~x!u2, ~A6!

where r(x) is the electronic density andve f f„r(x)… is the
effective potential. The effective potential is composed of
electrostatic~first term! and exchange-correlation~second
term! contributions. The last term inve f f„r(x)…,

DF54pE
0

`

dx8E
x8

`

dx9@r~x9!2r1~x9!#2mxc„r̄…,

~A7!

is included so thatve f f„r(x)… is zero atx50; this way, all
allowed energies in the bulk region are positive.EF is the
bulk Fermi energy given in terms of the average charge d
A

on

an
in

ul-
,

h.

-
h

e

n-

sity by EF5kF
2/25(3p2r̄)1/3/2, and kF is the bulk Fermi

wave vector.
In treating the exchange-correlation interaction betwe

electrons, we have used both the widely used local-den
approximation~LDA ! with the Wigner form for the correla-
tion potential,5 and a functional form proposed by Sere
et al. ~ILDA !.9 LDA does not have the correct asymptot
behavior in the vacuum region, where it has an exponen
decay rather than the correct;1/4x behavior. The ILDA
form corrects this error self-consistently; it recovers the LD
result in the bulk region, and smoothly interpolates it outs
the image plane to the classical 1/4(x2ximage) image poten-
tial, ximage being the location of the image plane which,
general, does not coincide with the physical surface of
metal.8 It should thus be noted that ILDA doesnot improve
the LDA in the bulk and surface regions, but just comp
ments it by including the image potential more realistica
in the vacuum region.

The set of Hohenberg-Kohn-Sham equations are solve
the following manner. A trial charge density distribution,
proposed by Perdewet al.,14 is chosen. The kinetic energ
term in the Hamiltonian is discretized using a three-po
finite difference formula, periodic boundary conditions a
imposed, and the periodL of the system is taken sufficientl
large compared to the slab thicknessd, so that the effective
potential has enough room to flatten out. The result
Hamiltonian matrix is tridiagonal in real space and can
diagonalized efficiently.15 A direct inversion of iterative sub-
space~DIIS! procedure16 was used to mix the new charg
density with the earlier ones providing a stable and fast c
vergence to the self-consistent result. A slab of thickness
a.u. was used in this study.
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