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Using a two-dimensional model, we have considered the effects of spatially changing fields and
potentials, stochastic electron emission, and ballistic electron motion on the anode current and on
the width of the electron beam in field emission displays. We have solved the electrostatic problem
using the boundary element method. Our electron emission model evaluates the current density at
the cathode surface from the tunneling transmission coefficient, which is calculated from the
solution of the one-dimensional Sclinger equation using a potential barrier which includes the
effect of image charges and nonuniform electric field. The current density is used to calculate the
rate of electron emission for each segment of the emitter's surface. The emission time is assumed
to follow a Poisson distribution. The electron’s velocity magnitude and angle with the normal to the
surface are also stochastically generated following the probability distribution of field emitted
electrons. Ballistic transport is used to propagate electrons through the device. For very sharp tips
the electric field changes from its surface value over a very short distance away from the surface,
which can be comparable to the tunneling distance. We found that the resulting current density is
considerably lower for the calculated barrier profile than for the triangular one, especially at low
values of the electric field. We have also shown that the effect of the lateral kinetic energy and
emission angle distribution on the electron beam width at the anode is negligible for sharp emitters,
where the angular spread is dominated by the curvature of the emitting surfac0@American
Institute of Physicg.S0021-897@0)05104-3

I. INTRODUCTION can obtain the values of the electric field and potential at
) o ) ] every point of the domain. However, BEM is not very effi-

Field emission device¢~EDs pose a considerable chal- giant if the values of the electric field or potential are needed
lenge for numerical simulations due to the many lengthy,er 4 very large number of points, e.g., if the field values
scales present in the system, typically spanning more thaQ.e needed over a fine discretization grid.
six orders of magnitude. For instance, electron emission oc-  gacause of the exponential nature of the emitted current,
curs at the tip.of small metallic cones or at the cap of carbony,, performance of FEDs is strongly dependent on system
nanotubes, with dimensions of the order of 100 A for theparameters. Thus, it is necessary to consider a detailed de-
former and 10 A for the latter, while typical anode-cathodegyintion of the emission process. Our emission model con-
distances can be of the order of hundreds of microns. sists of stochastic field emission, where the emission param-

In this article we describe an algorithm to model cOM-gars namely emission velocity magnitude, emission angle
plete FEDs, from the electron tunneling scale to macroscopig;it the normal to the surface, and emission time are deter-
device elements. We illustrate the method with two applicayyined from the probability distribution of field emitted elec-
tions: the effect of spatial changes of the electric field on thg, o5 at the surface of the cathode. Such a probability distri-
emitted current density and the effect of the emission anglg tion is the product of the supply function and the
on the spread of the electron beam. transmission coefficient through the tunnel barrier, which in-

To accurately calculate the electric field inlazl FED We ¢, des image charge effects as well as spatial variations of
have chosen the boundary element mett®BEM).“ BEM  he electric field near the tip. Once emitted, electrons are

consists in writing the Poisson equation in terms of surfac ropagated across the device using ballistic transport.
integrals using Green’s function techniques and discretizing ¢ resulting algorithm, based on a 2D model of field
the boqndaries to solve the integrals numgrically_. In three'emission, is very general, efficient, and easy to use. We have
dimensiong3D) the BEM converts the 3D differential equa- applied it to different problems, from cathode design optimi-

tion to a 2D surface integral equation, while in 2D, it con- ;4401 to charging of device elements resulting from electron
verts the 2D differential equation to a line integral. In both ;o

cases, the number of independent variables is decreased by .Despite the quantitative limitations imposed by the

one, facilitating the numerical solution of the multiscale o er dimensionality of our model, the qualitative results we
problem. BEM also handles irregular domains very well. AS,paineq offer useful insights. The limitation of a 2D model

described in detail in the next section, using the BEM 0n§g mostly in the field enhancement factor, not in the emission
process. In other words, given the electric field along the
¥Electronic mail: |.fonseca@motorola.com surface of the emitter, the value of the 2D and 3D currents
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for realistic emitter dimensions differ by approximately one
order of magnitude. Because of the exponential nature of the ~ .

. - shared boundaries
emitted current, small uncertainties on system parameters = r
will lead to changes in the current of more than one order of Y ¥
magnitude. Thus, the disagreement between the 2D and 3D /
currents is in the uncertainty range of the system parameters.

In Sec. Il we describe the BEM, the stochastic electron
emission, and the electron transport across the device. In Sec. _ _ .
Il we illustrate the algorithm by comparing current densities'C: 1- Schematic representation of a domain boundaand shared sub-

. . . . domain boundaries. The arrows along the boundaries show one of the two
obtained with calculated and triangular tunnel barriers. Weygssiple line integration directions.
also discuss the effect of the electron emission angle on the
spread of the electron beam.

Il. METHOD Fj=—Va®(r)),

A. Solution of the electrostatic problem: The BEM G :J G(r,,r)dr, (6)
T
]

The BEM can be used to solve the general electrostatic
problem where charges are present in the system. For sim-
plicity, we will only consider the case where there is no Gi,j:fr VaG(ry,r)dr,
accumulation of charges anywhere in the device and where i

the emitted current is low enough that space charge effects — rj+rj,,

are not important. The latter approximation holds for emit-  "i=— 5
ters operating in the range of currents less thahuA,

which is typical for metallic FED cathodes. The formal ex- i =interior point.

tension of the method to the general case is straightforwarGrhe indexi labels any point of the domain, whilelabels
The 2D chargeless electrostatic problem is described b}Soints onl. To evaluateb, in Eq. (5) the value of the elec-
the Laplace equation on which Dirichlet boundary conditionsyic field along the boundaryF;, is needed. By taking;

are imposed el’, F; is given in matrix notation by
(9%t d5)D(1)=0, O(I)=Dy(r), 1) F=—G YG'+1)d,. )
where I is the perimeter of the integration domafhand So far we have assumed a position-independent dielec-

®,(r) is the potential at the boundaries. Using Green's theotric constant. If the domain is composed of many subdo-
rem, the earlier differential equation can be written as ar]’nainssi, each one characterized by a position_independent
integral equation dielectric constant; , then we have an equation like E@)
for each subdomaifsee Appendix A However, in this case,
O(r)= é [G(r,r" )V ®(r")—®(r")V G(r,r')]dr’,  (2)  ®; is not known at every point along the boundaries, since
r some boundaries are shared between subdonta@®s Fig.
where the derivatives are taken alongthe normal to the 1). The additional unknowns added to the problem are bal-
contour and directed outwards, and the Green’'s functiomnced by the use of the continuity of the normal component
G(r,r") is defined by of the electric displacement field across neutral interfaces:
ekFF=€e“F¥, wherel/r corresponds to the left/right sides of

2 2 ’ ’
(Gxxt dyy) G, 1) = &(r=r7). ©)  the shared boundat
In 2D the Green’s function is given by the following expres- Once the electric field is calculated using Ed@), the
sion: determination of the potential at nonboundary points in-
1 volves a single summation over the boundary elements,
G(r,r')=— Z|n|r_r'|_ (4) given by Eq.(2), while the electric field at nonboundary

points is given by similar expressions € —V®). This is a
If r is taken onI', Eq. (2) determines the electric fiels ~ major advantage of the BEM over grid methods like finite
=-V,® onT, normal to the contour. differences or finite elements: the potential and electric field

The numerical expression for ER) is obtained by di- can be calculated at any point of space by performing a
viding the contour I into L segmentsI';=[r;,rj.4], simple summation, which is insensitive to the relative mag-

j=1,... L, which transforms the integral equation into an hitude of the terms in the suifas long as proper computer
algebraic equation precision is used On the contrary, in finite elements or finite
L differences, the values of the electric field and potential on
_ L. the grid are obtained from a matrix inversion, an operation
®i= 2‘1 (GijF +Gij®y), ® that imposes restrictions on the relative magnitude of the
where matrix elements. For a mu!tiscale prob_lem _Iike the simula-
tion of FEDs, such restrictions result in grids with a very
O, =d(r)), large number of points, leading to large storage require-
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ments. On the other hand, even though a summation ovevhere{ is a uniformily distributed random number<@<1.
boundary elements is computationally fast, if the potential The generation of the random velocity components for
and/or the electric field are needed at a large number ofach electron emitted by each boundary element is compli-
points, then the time spent to perform each summation timesated by the fact tha¥(v,,v,) cannot be decomposed as a
the number of points may be large. In this case, grid methodproduct of two distribution functions of the velocity compo-
may be advantageous, because the matrix is inverted onlyents. For distribution functions with coupled random vari-
once, and the value of the field at any point can be obtainedbles, the standard procedure, called rejection métisatie
by simple interpolation. In the case of FED simulations, thefollowing: (1) generate a pairv,vy) using a distribution
electric field and potential are only needed within the elecfunction K(v,,vy) for which the directions can be decou-
tronic beam, which fills only a small portion of the whole pled, K(vy,vy)=K;(v,)XK5(vy), and such that
device, and therefore the BEM is the method of choice.  N(vy,v,)/K(vy,vy)<1; (2) useN(vy,v,) to reject or ac-
cept the pair ¢ ,vy): accept it it N(vy,vy)/K(vy,vy)>7,
reject it otherwise. As earlier is a uniformily distributed
B. Electron emission random number. In stefl) we have chosen a normal distri-
In order to emit an electron from a point at the emitterPution fork and adjusted the mean velocity and variances
surface we generate the following three random numbers: th&x anday to best fitN(v, ,v,) (the mean velocity parallel to
emission timet, the velocity component normal to the sur- the emission plane is zerdVe then multipliedk by a con-
face and the velocity component parallel to the surfage, StantAsuch thaln X K=N for all (v,vy) pairs. The number
and v, respectively, at the emission location. We use theof rejections is of the order of the area undex K (sinceN
probability distribution of field emitted electrond(v,,v,) 1S Normalized and is typically less than 100.

to determine these random numbers The normally distributed velocity components are then
given by
o [m)?
N(UX,Uy): (ZT)z %) v F(v)T(vy), 8 ve=v-2 |Og(§x)3in<o_ -y U'X+U_X,
X2y
wherem is the free electron masdl, is the normalization (13
2, 2 ; P s
fa(_:tor,v=(vx-_f-vy)1/?, T is the transmission coefficient, and vy=1/-2 |og(gx)cog( - UVA) ay,
F is the Fermi function xCy
where{, and{, are uniformily distributed random numbers.
F(v)= E(v)=3mv?2. (9)  After the velocity vectorv=(v,,v,) is generated and ac-

1+exd B(E(v) = )] cepted in the local reference frame of the boundary element,
In Eq. (9), u is the chemical potentia3=(k7) !, 7is the itis rotated to the reference frame of the device. Thus, for an
temperature, ané&(v) is the electron’s classical kinetic en- emitter shaped as half a circle for example, the velocity of an
ergy. The transmission coefficieft is obtained from the electron emitted at the apex remains unchanged under a ro-
open boundary solution of the Schiinger equation for a tation, but velocities for emission from all other locations are
given potentialV(r). In order to avoid solving the full 2D rotated. Consequently, evenduf=0 (emission perpendicu-
scattering probleth(see discussion laterwe have assumed lar to the surfacg the electron’s lateral velocity may still be
that the emitted electrons tunnel through the barrier along theonzero in the device reference frame.

normal to the surface. In that case, the 2D poteniiéd)

reduces to a 1D effective potentisl.4(£), where¢ is the

coordinate along the normal to each point of the surface ang gjectron propagation

T is obtained from the solution of a 1D Scllinger equation

with the effective potentiaV/qy (see Appendix B Electrons are propagated ballistically through the device
The emission rate; from theith boundary element is following Newton’s equation of motion. We use the Verlet

obtained from the corresponding surface current derjsity algorithm to calculate each electron’s position and velocity

1leF_ ot
5 Il‘(’\tinfl(&infl*'‘Stinsz' :

ri:?ji: (10 rin:rin—1+2 m

i
n
i-2
whereAl; is the length of theth boundary element, and the

) . o X(ri_y—ri o),
current density per unit length is given by

(14
ri—ri, leF_;

. @ * n o _ = n &N
Ji=efodvxﬁwdvyNi(vx,vy). (1) vi_l_é‘ti“,ﬁ&tin,z 5 T (Ol At o),

Using the emission rate, we determine the emission time othere the indices andn refer to step number and electron
the nth electron from théth boundary element following a number, respectively, arféi=F(r;) is the electric field. No-

Poisson distribution tice that the velocity is one step “late” with respect to the
location. Because the Verlet algorithm requires knowledge
th=n-1_ ilog(l—{) (12) of the two prior positions, a second-order accurate expres-
I I !
Fi

sion for the first step is used
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C
1+ \[F) , (18

wherer andc are the ellipse’s focus-to-apex and major axis,
e respectively. .For a radius=100 A and a tip height=1

um we obtain R=M,,/M.,~3.3. Because the current
FIG. 2. (a) Schematic representation of the cross section of an ellipticalemitted depends exponentially on the electric field, such a
cone and elliptical cylinder. The first is obtained by rotating the cross SeCiatio implies current densities manv orders of maanitude
tion around the major axis, while the latter is obtained by a rigid translation P L . y . 9
of the cross sectior(b) Geometry used in our numerical calculations. lower fOI’ the e”'DUCE_‘I cylinder than for thET e||lptIC<’;.l| cone
for a fixed voltage bias. If the quantity of interest in a 2D
simulation of a 3D device containing an elliptical cone is the
current, then one has to scale the voltage bias by approxi-
mately R (in a diode configuration the scaling is exacRy
2 while for the triode configuration the scaling is only approxi-
) ) mate since there are two voltage sources and only one is
where 6t, is a small time step. In order to accelerate thegeajey. If the quantity of interest in the simulation is the
calculations we have implemented a scheme in which eaciectory of the electrons, then we recommend to use real-
electron is propagated according to its own time step. FO[gtic yoltage bias and, hence, low currents. Indeed, the elec-
example, if electror is propagated over a time stépand o trajectories obtained from a simulation with scaled bias
electronB is propagated over a time st&p/k, then for the 1396 depend on the device geometry and can lead to erro-
nextk—1 steps of electroiB, electronA is not propagated. neqys interpretations: in the diode mode the cone of emission
This scheme is very helpful if there are several electron§;; pe narrower than it should since under a higlagode
being simultaneously propagated in the device. The stefqiaqe pias the electrons spend less time in the device and
length is short or long depending whether the electric field ISy s propagate less in the lateral direction. On the contrary,
quickly or slowly varying at the electron location in the triode mode the beam will be wider, since a higher

1 2k |ri—ri_4 gate voltage more strongly pulls the electrons laterally to-
oti= TIE T : (16)  wards the gates.
vi-g VM [Fi—Fi_4

_ o _ The second difference between a 2D and a 3D simula-
whereM is the minimum number of steps required to reachtion is the current emitted given the field at the surface. We
the anode. The earlier relation is derived by assuming conderived the 2D Fowler—Nordheiiii—N) current density as-

(a) (b)

M cyl=

1 eF(rg)
=1 o+ Stouf+ = m° o2, (15)

servation of energy within a total error tolerance suming low temperature, no image charge, and a triangular
barrier
2\ 3/4 312
lll. APPLICATIONS j2p(F,w)=1.017x 103(W exp( —0-683F—) o 19

A. Comparison between 2D and 3D models whereF is the electric field in V/A andv is the work func-

Before discussing trends provided by our 2D model, wetion in electron volts. Comparing the earlier expression with
will evaluate to what extent the 2D model gives valuablethe usual 3D F—R
insight when studying a 3D system. We first compare the F2 3/
field enh.ancement factor fo_r needle-like struct_ures such as jap(F,w)=1.537x 1010—exp< —0.683 )_ (20)
cones with that for wedge-like structures. To illustrate the w FJen?
\ical expressions for the fled enhancement factor: he aiC" CEUANS, for @ ypical elect fieé=3>x 10 VIA and
liptical cone and the elliptical cylinder. The elliptical cone is work functionw=4.5 eV, a current density ratisp/|zp

) . ) i ~5x1CP. If we assume a uniform semispherical/circular
ob'tam?d by.rotatmg the' cross septpn of F!ga)zarpund the emitter geometry in 3D/2D, with emission radii= 100 A,
ellipse’s major axis, while the elliptical cylinder is obtained

by translating the same cross section betweenand +« we obtain a surface area of &30 *“c? and a surface
Let us define the field enhancement fadtbias © length of 3.510"%cm, and a current ratidgp/l 5~ 10.
Thus, while the field enhancement obtained in 2D is consid-
F erably smaller than in the 3D case, the current emitted by a
M= F_o' (17) segment of realistic length in 2D is quite close to the 3D

) o ] ) current emitted by an equivalent area.
whereF is the electric field at the apex of the tip, whitg is

the electric field far from the tip. The field enhancement for

the elliptical coneM ¢one, and elliptical cylinderMy,, are B. Realistic versus triangular barriers

Because sharp tips display such strong field enhance-

2— ment, the electric field in the region of the tip can change by
Mconﬁ—r, a considerable fraction over a distance comparable to the
In(4E) 5 tunneling length. The resulting nontriangular barrier has
r been discussed by several work&r3The exact description
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TABLE |. Electric field and current density at the surface of a triangular- 6 T T T
shaped emitter with a circular cap as a function of the angle from the apex.
Cap radius =100 A. Here and later, the triangle base lenigth0.5 um and s low field calculated barrier |
the triangle heighh=1 um. -~~~ low field triangular barrier
—— high field calculated barrier
o L — — - high field triangular barrier |
Angle (°) 0 15 30 - 2 \
Electric field (V/um) 2.5x10° 2.3x10° 2.0x10° { 0 N
Current density(A/ um) 3.0x10%  82x10*? 5.3x10™ 2 N .
& \\ S
2t N . g
\ S
AN AN
4| AN 1
of electron tunneling to vaccum from a sharp tip in a strong
electric field requires a rather complex formalism, the solu- & , ‘ ,
tion of the full 3D scattering problem, which reduces to a 2D 0 20 40 60 80 100
z (Angstroms)

scattering problem in systems with azimuthal symmats.
Since the systems of interest are emitter tips containing hurgG. 3. Calculated potential barrier for low and high fields at the tip apex
dreds of atoms along their emissive area, we do not believésolid—high field, dashed—low fieJdand assuming a triangular barrier
that such level of accuracy is needed. Indeed, the uncertainfeheiend s fe ot Tadire e s e

in the tip radius, tip geometry, surface compositipresence =1233 Vijum for low field). Thick solid line: Fermi level. Tip circular cap

or not of chemisorbed or physisorbed impurifieand sur-  radiusr=100 A. Electric field far away from the tip: 200 M. Work

face temperature possibly play a larger role in realistic fieldunctionw=4.5 eV.

emission structures than a more accurate treatment of the

scattering process. We have therefore simplified the solution

of the 2D scattering problem, while capturing the essentiakity is overestimated in the case of triangular barriers and
physics of the tunneling process, using the following ap-slowly approaches the calculated result as the tip radius in-
proximation: we have assumed that the tunneling path is areases. For example, for an applied field of 20Qu/
straight line perpendicular to the emitter surface, and calcup,,;/p.,. drops from~5 for r=50 A (average electric field
lated the potential proflle along.that line. Thus, we st_|II solvejn the tip Vyjp=1000 Vjum) to ~3 for r=500 A (Vy,

the usual 1D Schuinger equation for the transmission co- — 3000 V/um). In other words, the difference between the
efficient, but we take into account the changing potentiakajculated and the triangular barrier resulteth including
profiles starting from different points along the surface of theimage charggis weakly dependent on the tip radius. This is
emitter. Such an approximation underestimates the local cubecause two competing effects take place when the tip radius
rent density, since the major contribution to the tunnelingis varied: for increasing radii the calculated tunneling barrier
current follows the shortest path under the barrier, which isg petter and better approximated by the triangular barrier,
not necessarily a straight line normal to the surface of theynq they exactly overlap for the case of an infinite tip radius
emitter'! However, since most of the current comes from the(flat surface. However, as the radius increases, the field en-
area around the apex of the emitter where the field is largeg{ancement factor decreases, leading to a decrease in the elec-
and where the shortest tunneling path is almost straight, Wgic field at the surface of the emitter. As a result, the area

believe that our approximation is accurate enough to providgnder the barriers above the Fermi level increases, and so do
reasonable current values. As an illustration of the highly

nonlinear effect of the electric field on the current density,

Table | shows the electric field and current density as a func-

tion of the angle from the apex for a triangle-shaped Fig. 10°
2(b)]. Notice how fast the current density decreases as the
angle from the apex increases.

Figure 3 shows typical barrier profiles obtained from the
calculation of the potential along the tunneling path starting
from the tip apex, and for a triangular barrier, for which the
electric field is assumed constant on the scale of the tunnel-
ing length, and is given by its value at the surface of the
emitter(the apex, in this particular exampléigure 4 shows
the current density along the circular cap of the triangle as a
function of the tip radius for calculated and triangular barri- 10 , ,
ers, both added to & image charge potential. Notice that 0 0.05 oo 015
the ratio between the two current densitigs,./ py; remains Location along tp (Microns)
constant along the entire length of the cap, which extendsiG. 4. Current density as a function of the location along the tip circular
approximately 40° from the apex. The inset shows the avercap for calculatedsolid) and triangular(dashed barrier profiles, and for

age current density at the cap as a function of tip radius fopifferent tip radii ¢ =50,100,200,300,400,500)AHigher current density
maximum corresponds to smaller tip radius. Inset: average current density at

calculated and t_riangm"f‘r barrier PrOﬁI_es- As expected froMpe cap as a function of tip radius for calculateblic) and triangular
the general barrier profile shown in Fig. 3, the current den<{dashed barrier profiles.

L
H

-
[=]

&

Current density (A/Micron)
)

o

o
[
b5
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FIG. 5. F=N plot of the current density at the tip apex for calculdsetid) -1 -05 o 05 1
and triangula¥dashedi barrier profiles, and for a tip radius=100 A. Image Anode location (Microns)

charge not considered. i . .
FIG. 6. Normalized count of electrons hitting the anode as a function of the

location along the anode for a flat emitter. The center of the distribution is
) aligned with the emitter. Anode voltagé,=2x 10" V, work function w
the difference between the areas under the calculated aneb.s ev, tip radius =100 A, anode-cathode separation 100.

triangular barriergsee Fig. 3 and the ratiop;/pcalc-

Figure 5 shows the F—N plot of the current density at the
tip apex for a fixed tip radius=100 A and for the two Figure 6 shows the normalized electron distribution
barrier profiles without image charge. We see now thag@long the anode for an anode-cathode separation ofuhd0
puil peare rapidly decreases as the field increases. In this cas@nd potential differencd/,=2x 10" V. The cathode is as-
only the area under the barrier and above the Fermi levefumed flat and electrons are emitted from a single point. We
plays a role since the field enhancement is constant. Despittése a low work functionw=2.5 eV, to increase the emission
the fact that the surface electric field in this case is in theate for lowerV,. This configuration leads to a solid angle
same range as for the case when the tip radius is varie@etween the center of the peak and the peak half height of
(1000—3000 VAM), pyil pearc NOW dropped from 350 to 2. {2~0.15° while the usual F—N procedure givas-0. Notice
Notice that the slope of the F—N plot for the calculated barthat in the diode configuration/, serves two purposes: to
rier approaches the slope for the triangular barrier at higtflecrease the tunneling barrier for electron emission and to
fields. Therefore, in order to extract the field enhancemenprovide electrons with enough energy to excite the phosphor
factor from the F—N plot for a nonplanar emitter, the slope athat coats the FED anode. Energies in the ranyelG— 1
the high field extreme of the curve should be used. In thex 10" eV are typically needed for bright color displays.
particular case shown in Fig. 5, knowing that the work func-Using a triode mode, the value b, can be decreased from
tion used is 4 eV, the field enhancement fa(ﬂﬁq (17)] 104 V, while Iowering the tunneling barrier can be accom-
obtained at high fields for the calculated barrier is 13.5plished with the use of a gate structure close to the emitting
while the exact one is 12.3. surface. Also, in the case of monochrome displays or low
voltage color phosphors, much lower energies and therefore
V, are needed150-300 eV.!? The spread)~0.15° can,
hence, be considered as a lower bound for the solid emission
angle from a flat surface since lower anode-cathode potential

The solid angle of the cone of emission is determined bydifferences will result in considerably larger values ©@f
the combined effects of the curvature of the emitting surfacélso it should be noted that the electric field for gated struc-
and the lateral emission velocity of the electrons at eaclures has a lateral component leading to an additional spread-
point of the surface. In the usual F—N approach the latteing of the electronic beam.
effect is eliminated through summation over all lateral ve-  Figure 7 shows the normalized electron distribution
locities, which means that emission from a flat surface wouldalong the anode using the same parameters and device ge-
produce a nondiverging electron beam at low currdats ometry as in the flat emitter case except that we use a trian-
very high currents, electron—electron repulsion would stillgular tip (0=0.5,h=1 um, r=100 A) in place of the flat
lead to a divergent begmiThe spread of the electron beam is emitter. Two situations were considered: emission with and
also a function of the potential differentg between anode without angular distribution, the latter case corresponding to
and cathode, because the lateral velocity remains close to iegmission perpendicular to the surface. For perpendicular
value at emission. The spread of the beam is therefore biggemission the electrons hit the anode with a multipeak distri-
for smaller values o¥/, because electrons spend more timebution, each peak corresponding to one of the discrete re-
to cross the device which results in enhanced lateral propazions in the cathode with a nonzero electron distribution sur-
gation. We will now discuss the spread of the electron beanfiace elements. The finite width of each peak is due to the fact
considering a typical device geometry and a typival. that the emission velocity perpendicular to the surface is sto-
Room temperature will be used in all cases. chastic and contains a component along the anode-cathode

C. Effect of the emission angle on the spread of the
electron beam
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3 ' and we have shown that the major contribution to the spread
of the electron beam comes from the curvature of the emit-
ting surface at the tip.

N
T

APPENDIX A

Given a system witiN subdomains, the electrostatic po-
tential within each subdomain can be written as follows:

*

-
T

f

| | |
‘ o=~ [6).D0+6 Vo,

Normalized electron count (10°)

i"el;
H “ ‘ ‘ 0 _ i
|'|' DJ()—_EiVn(I)](),
0 ﬂdh“l" “l"hlhﬂ.‘m A 1
18 15 G == ,drG(r;.r) (A1)
Anode location (Mlcrons) € (| ) J
FIG. 7. Normalized counts of electrons hitting the anode as a function of the
location along the anode for a tip emitter. The centers of the distributions are G’ (i) _ drv G( r)
aligned with the emitter. Thin line: electron emission normal to the surface; i’ r® I
thick line: electron emission including angular distribution. Anode voltage I’
V,=2x10* V, work functionw=2.5 eV, tip radiusr =100 A, tip height N
h=1 wum, tip widthb=0.5 um, anode-cathode separation 106. Li=E, U S,
i"=1i" #i

wherelL; is the set of points on the boundary of domaand
direction as well as a nonzero component perpendicular to it the union of the set of points on the boundary portion that
for emission from any location away from the tip apex. Theis not shared with any other domaik;, and the sets of
multipeak nature of the distribution for perpendicular emis-points shared with other domainS;. . The continuity con-
sion is an artifact of the numerical method but the totalditions on the shared boundaries and the external boundary
spread of the electron distributions is similar for the twoconditions are given by
cases. The reason is that the spread of the electron beam for M) ()
the flat surface is of the order of 0,am, while the spread bj=oj,
due to the tip geometry is of the order of Jdm. We can DO =pl"
conclude from this calculation that the spread of the electron J I’
beam is mostly determined by the curvature of the emitter cI).(i):cI)(ij) VjieE,

while the lateral velocity of the emitted electrons turns out to (|) _ _
be a minor contribution where @/ is the electrostatic potential on the external

boundary of subdomain The set of Eqs(Al) combined
with the boundary conditions leads to the following general
expression

Vj,j,:jESiir,j,ESi/i, (AZ)

IV. CONCLUSION

We have described an algorithmic approach to modelz G(')D(') E { 2 [Gﬂ),Dj(i,i,)+G'ﬂ),fbﬁi,l)]

field emission displays, capable of handling the many length’ E; =Li'#i ) eSyr

scales present in these systems, ranging from the micro-

scopic level, where tunneling and electron emission take +5J.S“’CI>JU")J:—6J.EWI>8])— > G’(')CIDSJ),, (A3)
place, to the macroscopic device scale. The model was de- '€k

veloped in two dimensions, but can be readily expanded to
three dimensions. We have analyzed the 2D model and con
cluded that, for realistic emitter dimensions, it underesti-
mates the field enhancement by a factor of 3—4 and the emit- S ‘1 if ieS
ted current by a factor of 10 if compared to a 3D system. We i

have illustrated the algorithm by calculating the difference

between the current density for tunneling through triangularfhe solution to this set of equations gives the electrostatic
barriers and calculated barriers, the latter obtained from thotential on the shared boundaries and the electric field on
numerical solution of Laplace equation. We have shown thathe shared boundary and the external boundary.

the difference resulting from the two barrier profiles mostly

occurs at small values of the electric field at the surface OTAPPENDlX B

the emitter, since at high fields the region where the two

barriers differ is below the Fermi level where the emission  The transmission coefficient through the 1D potential

current is low. We have also analyzed the effect of the anbarrier is calculated by using the transfer matrix technique
gular velocity distribution on the spread of the electron beantombined with the Runge—Kutta method of order four. The

where D(II ) and CD(” ) are the fields on the shared bound-
aries and

. A4
0 otherwise. (A4)
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starting differential equations for the wave function and itswave is described by the forward propagating eigenstate of
derivative are derived from the Scliinger equation and are the Schrdinger equation with a linear potential. In order to
given as follows: find this solution we use the stationary eigensiate which

is proportional to an Airy functiori®?

o=,
J lﬂ,:a(V(X)_E)lﬁ' (Bl) wS(XN):CAATAi[_g(XN)]l
X [l
1/3
2meF W-E
2m - _
a3, £(X) ( ¥ ( o ) (B6)
whereV(x) describes the potential barrier akds the inci- o V| x|
dent electron energy. The transfer matrix method relates the A= "3 13- 1dUCO]+ I U]}, x<0,
wave function and its derivative before and after the barrier -
in the following manner: u(x)=3x*? (B7)
P(Xn) (Xg) whereA+ is the transmission amplitude a@}, is a normal-
, = , , ization constantsee latex. The Bessel functiond.. ;3 can be
(X & (Xo) (B2)  jzati tsee latex. The Bessel functiond. ;3 can b

expressed as sums of forward and backward propagating
whereM is the transfer matrix. We choosg andxy smaller  Hankel function&®

and larger than the smallest and largest classical turning 1re(D) @
points, respectively, such that the potential is well described ~ J=13(X)=2[HZ1/3(X) + H 7 5(X) ]. (B8)

by a constant ato and by the linear eIe_ctrostatic potential & The forward propagating eigenstate of the Sdiniger equa-
Xy After dividing the segmerfixo, xy] mtq equal lnterval_s tion with a linear potential and its derivative are thereby
of length h, the Runge—Kutta method gives the following given by the following expressions:

expression for the transfer matrix:

N Ca, V7|xyl
—_A (1) (1)
M :iljl Mi , (83) (p(XN) \/EAT 3 [H_1/3(U)+ H1/3(U)],
where the four components ®fl;, the transfer matrix for , Ca | HYu)+HRW)
each interval, are P (xn)= - 2 20
h? h?2
Mi(L,)=1+ —a(V,—E)+ — a(V,, yp— E) , ,
| 6 3 + [xullHEHw) + Hid Wt (B9)
h4
2 _ -
+ 529 Viezm B)(Vi—B), u=2&(xy)|¥2 (B10)
h2 The normalization constants for both the plane wave and the
Mi(1,2=h/1+ & a(Viii— E)}, Airy function are chosen such that
hlia a B4 fx Yt (X) e (X)dx=S8(E—E’) (B11
Mi(za]—):§[§(Vi_E)+2a(Vi+1/2_E)+ 5 Vina o EVUTE '
2 and are given by the following expressions:
-BE)+ Za’z(VHl/Z_E)(Vi+vi+1_2E)}y o 14
C —
R h? P [BWZhZ[E—V(XO)]
Mi(2,2=1+ Za(Vis1p-E)+ (V11— E)
3 6 (2m)1/3
h? e TE=TS (B12)
+ 2202V 1 E) (V. 1~ ). Vah?3(eF)

_ _ o . By using the transfer matrix equation we can calculate the
The wave function and its derivative before the barrier arepefficientsAr and At

given by the superposition of the forward propagating inci-
dent wave and the backward propagating reflected wave and Ay A

can be written as follows: Ar=3 ARTR
— ikoX —ikgx . , .
(o) = Cpn(€7070+ AgeT20%), (B5) A= pNConliKoM 2o~ M 1) — AL CoudikoM 1~ M),
’ _ H ikgXg __ —ikgx
¥ (Xo) = Cpwiko( €700 = Age10%), A, = 2iko de(M)Cy, (B13)

whereAg, is the reflection amplitude an@py, is a normal- _ , .
ization constantsee later. After the barrier, the transmitted A= dNCpulikoM 22+ Mog) — S CpwlikogM 12+ M1g),

Downloaded 13 Sep 2006 to 137.99.20.141. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 87, No. 5, 1 March 2000 Fonseca, von Allmen, and Ramprasad 2541

W(Xn—Xo) ) ' (Xn—Xg) 1P. A. Knipp and T. L. Reinecke, Phys. Rev.5&, 1880(1996.
=7, N (B14) 2R. L. Hartman, W. A. Mackie, and P. R. Davis, J. Vac. Sci. Techndl2B
At At 754 (1994).

: P 3A. A. Lucas, H. Morawitz, G. R. Henry, J.-P. Vigneron, Ph. Lambin, P. H.
In order to avoid roundoff errors, we found that it is impor Cutler, and T. E. Feuchtwang, Phys. Reva 10708(1988.

tant to calculate the determinant of the transfer matrix bysy, n press, s. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
using the matrix multiplication rule Numerical Recipes in @Cambridge University Press, New York, 1992
N 5H. G. Kosmabhl, IEEE Trans. Electron Devic88 1534 (1991).
5A. Modinos, Field, Thermionic, and Secondary Electron Emission Spec-
det(M) =H det(M;). (B15) troscopy(Plenum, New York, 1984
i=1 7J. L. Shaw, Proceedings of the Materials Research Society Meeting, San

_— . . . L . Francisco, 1999unpublishegl
The transmissiottreflection coefficient is given by the ratio 54 Fursey and D. V. Glazanov, J. Vac. Sci. Technol@3910(1998.

of the transmittedreflected to the incident current probabil-  °p . cutler, J. He, J. Miller, N. M. Miskovsky, B. Weiss, and T. E.

ity Sullivan, Prog. Surf. Sci42, 169 (1993.
10A. Mayer and J.-P. Vigneron, Phys. Rev.58, 12599(1997).
J(Xn) 7. W. Huang, T. E. Feuchtwang, P. H. Cutler, and E. Kazes, Phys. Rev. A
= m' 41, 32(1990; J. L. Gervais, Phys. Rev. D6, 3507(1977; T. Banks, C.
0 M. Bender, and T. T. Wuibid. 8, 3346(1973.
R=|A |z (B16) 128, R. Chalamala, Y. Wei, and B. E. Gnade, IEEE Spe@%.42 (1998.
Rl BL. Landau and E. LifshitzQuantum MechanicéButterworth, Washing-
A 14ton, DC, 1997.
J(X) _ m[ lﬂ* (X) W(X) _ ¢(X) W* (X)] (517) $§:|i)gfg§gken,Mathemancal Methods for Physicisté\cademic, New

Downloaded 13 Sep 2006 to 137.99.20.141. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



