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Numerical simulation of the tunneling current and ballistic electron effects
in field emission devices

L. R. C. Fonseca,a) Paul von Allmen, and R. Ramprasad
Motorola, Inc., Flat Panel Display Division, 7700 South River Parkway, FPD22, Tempe, Arizona 85284

~Received 13 September 1999; accepted for publication 9 November 1999!

Using a two-dimensional model, we have considered the effects of spatially changing fields and
potentials, stochastic electron emission, and ballistic electron motion on the anode current and on
the width of the electron beam in field emission displays. We have solved the electrostatic problem
using the boundary element method. Our electron emission model evaluates the current density at
the cathode surface from the tunneling transmission coefficient, which is calculated from the
solution of the one-dimensional Schro¨dinger equation using a potential barrier which includes the
effect of image charges and nonuniform electric field. The current density is used to calculate the
rate of electron emission for each segment of the emitter’s surface. The emission time is assumed
to follow a Poisson distribution. The electron’s velocity magnitude and angle with the normal to the
surface are also stochastically generated following the probability distribution of field emitted
electrons. Ballistic transport is used to propagate electrons through the device. For very sharp tips
the electric field changes from its surface value over a very short distance away from the surface,
which can be comparable to the tunneling distance. We found that the resulting current density is
considerably lower for the calculated barrier profile than for the triangular one, especially at low
values of the electric field. We have also shown that the effect of the lateral kinetic energy and
emission angle distribution on the electron beam width at the anode is negligible for sharp emitters,
where the angular spread is dominated by the curvature of the emitting surface. ©2000 American
Institute of Physics.@S0021-8979~00!05104-5#
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I. INTRODUCTION

Field emission devices~FEDs! pose a considerable cha
lenge for numerical simulations due to the many len
scales present in the system, typically spanning more t
six orders of magnitude. For instance, electron emission
curs at the tip of small metallic cones or at the cap of carb
nanotubes, with dimensions of the order of 100 Å for t
former and 10 Å for the latter, while typical anode-catho
distances can be of the order of hundreds of microns.

In this article we describe an algorithm to model co
plete FEDs, from the electron tunneling scale to macrosco
device elements. We illustrate the method with two appli
tions: the effect of spatial changes of the electric field on
emitted current density and the effect of the emission an
on the spread of the electron beam.

To accurately calculate the electric field in a FED w
have chosen the boundary element method~BEM!.1,2 BEM
consists in writing the Poisson equation in terms of surf
integrals using Green’s function techniques and discretiz
the boundaries to solve the integrals numerically. In thr
dimensions~3D! the BEM converts the 3D differential equa
tion to a 2D surface integral equation, while in 2D, it co
verts the 2D differential equation to a line integral. In bo
cases, the number of independent variables is decrease
one, facilitating the numerical solution of the multisca
problem. BEM also handles irregular domains very well.
described in detail in the next section, using the BEM o

a!Electronic mail: l.fonseca@motorola.com
2530021-8979/2000/87(5)/2533/9/$17.00

Downloaded 13 Sep 2006 to 137.99.20.141. Redistribution subject to AIP
h
an
c-
n

-
ic
-
e
le

e
g
-

by

e

can obtain the values of the electric field and potential
every point of the domain. However, BEM is not very ef
cient if the values of the electric field or potential are need
over a very large number of points, e.g., if the field valu
are needed over a fine discretization grid.

Because of the exponential nature of the emitted curr
the performance of FEDs is strongly dependent on sys
parameters. Thus, it is necessary to consider a detailed
scription of the emission process. Our emission model c
sists of stochastic field emission, where the emission par
eters, namely emission velocity magnitude, emission an
with the normal to the surface, and emission time are de
mined from the probability distribution of field emitted ele
trons at the surface of the cathode. Such a probability dis
bution is the product of the supply function and th
transmission coefficient through the tunnel barrier, which
cludes image charge effects as well as spatial variation
the electric field near the tip. Once emitted, electrons
propagated across the device using ballistic transport.

The resulting algorithm, based on a 2D model of fie
emission, is very general, efficient, and easy to use. We h
applied it to different problems, from cathode design optim
zation to charging of device elements resulting from elect
hits.

Despite the quantitative limitations imposed by t
lower dimensionality of our model, the qualitative results w
obtained offer useful insights. The limitation of a 2D mod
is mostly in the field enhancement factor, not in the emiss
process. In other words, given the electric field along
surface of the emitter, the value of the 2D and 3D curre
3 © 2000 American Institute of Physics
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for realistic emitter dimensions differ by approximately o
order of magnitude. Because of the exponential nature of
emitted current, small uncertainties on system parame
will lead to changes in the current of more than one orde
magnitude. Thus, the disagreement between the 2D and
currents is in the uncertainty range of the system parame

In Sec. II we describe the BEM, the stochastic elect
emission, and the electron transport across the device. In
III we illustrate the algorithm by comparing current densiti
obtained with calculated and triangular tunnel barriers.
also discuss the effect of the electron emission angle on
spread of the electron beam.

II. METHOD

A. Solution of the electrostatic problem: The BEM

The BEM can be used to solve the general electrost
problem where charges are present in the system. For
plicity, we will only consider the case where there is
accumulation of charges anywhere in the device and wh
the emitted current is low enough that space charge eff
are not important. The latter approximation holds for em
ters operating in the range of currents less than;1mA,
which is typical for metallic FED cathodes. The formal e
tension of the method to the general case is straightforw

The 2D chargeless electrostatic problem is described
the Laplace equation on which Dirichlet boundary conditio
are imposed

~]xx
2 1]yy

2 !F~r !50, F~G!5F0~r !, ~1!

where G is the perimeter of the integration domainS and
F0(r ) is the potential at the boundaries. Using Green’s th
rem, the earlier differential equation can be written as
integral equation

F~r !5 R
G
@G~r ,r 8!¹n8F~r 8!2F~r 8!¹n8G~r ,r 8!#dr8, ~2!

where the derivatives are taken alongn, the normal to the
contour and directed outwards, and the Green’s func
G(r ,r 8) is defined by

~]xx
2 1]yy

2 !G~r ,r 8!5d~r2r 8!. ~3!

In 2D the Green’s function is given by the following expre
sion:

G~r ,r 8!52
1

2p
lnur2r 8u. ~4!

If r is taken onG, Eq. ~2! determines the electric fieldF
52¹nF on G, normal to the contour.

The numerical expression for Eq.~2! is obtained by di-
viding the contour G into L segments G j5@r j ,r j11#,
j51, . . . ,L, which transforms the integral equation into a
algebraic equation

F i52(
j 51

L

~Gi j F j1Gi j8 F j !, ~5!

where

F i5F~r i !,
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F j52¹nF~ r̄ j !,

Gi j 5E
G j

G~r i ,r !dr, ~6!

Gi j8 5E
G j

¹nG~r i ,r !dr,

r̄ j5
r j1r j 11

2
,

r i5 interior point.

The index i labels any point of the domain, whilej labels
points onG. To evaluateF i in Eq. ~5! the value of the elec-
tric field along the boundary,F j , is needed. By takingr i

PG, F j is given in matrix notation by

F52G21~G811!F0 . ~7!

So far we have assumed a position-independent die
tric constant. If the domain is composed of many subd
mainsSi , each one characterized by a position-independ
dielectric constante i , then we have an equation like Eq.~2!
for each subdomain~see Appendix A!. However, in this case
F i is not known at every point along the boundaries, sin
some boundaries are shared between subdomains~see Fig.
1!. The additional unknowns added to the problem are b
anced by the use of the continuity of the normal compon
of the electric displacement field across neutral interfac
e l

kFl
k5e r

kFr
k , wherel /r corresponds to the left/right sides o

the shared boundaryk.
Once the electric field is calculated using Eq.~7!, the

determination of the potential at nonboundary points
volves a single summation over the boundary eleme
given by Eq. ~2!, while the electric field at nonboundar
points is given by similar expressions (F52¹F). This is a
major advantage of the BEM over grid methods like fin
differences or finite elements: the potential and electric fi
can be calculated at any point of space by performing
simple summation, which is insensitive to the relative ma
nitude of the terms in the sum~as long as proper compute
precision is used!. On the contrary, in finite elements or finit
differences, the values of the electric field and potential
the grid are obtained from a matrix inversion, an operat
that imposes restrictions on the relative magnitude of
matrix elements. For a multiscale problem like the simu
tion of FEDs, such restrictions result in grids with a ve
large number of points, leading to large storage requ

FIG. 1. Schematic representation of a domain boundaryG and shared sub-
domain boundaries. The arrows along the boundaries show one of the
possible line integration directions.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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ments. On the other hand, even though a summation
boundary elements is computationally fast, if the poten
and/or the electric field are needed at a large numbe
points, then the time spent to perform each summation tim
the number of points may be large. In this case, grid meth
may be advantageous, because the matrix is inverted
once, and the value of the field at any point can be obtai
by simple interpolation. In the case of FED simulations,
electric field and potential are only needed within the el
tronic beam, which fills only a small portion of the who
device, and therefore the BEM is the method of choice.

B. Electron emission

In order to emit an electron from a point at the emit
surface we generate the following three random numbers
emission timet, the velocity component normal to the su
face and the velocity component parallel to the surface,vx

and vy respectively, at the emission location. We use
probability distribution of field emitted electronsN(vx ,vy)
to determine these random numbers

N~vx ,vy!5
N0

~2p!2 S m

\ D 2

vxF~v !T~vx!, ~8!

wherem is the free electron mass,N0 is the normalization
factor,v5(vx

21vy
2)1/2, T is the transmission coefficient, an

F is the Fermi function

F~v !5
1

11exp@b~E~v !2m!#
, E~v !5 1

2mv2. ~9!

In Eq. ~9!, m is the chemical potential,b5(kt)21, t is the
temperature, andE(v) is the electron’s classical kinetic en
ergy. The transmission coefficientT is obtained from the
open boundary solution of the Schro¨dinger equation for a
given potentialV(r ). In order to avoid solving the full 2D
scattering problem3 ~see discussion later!, we have assumed
that the emitted electrons tunnel through the barrier along
normal to the surface. In that case, the 2D potentialV(r )
reduces to a 1D effective potentialVeff(j), wherej is the
coordinate along the normal to each point of the surface
T is obtained from the solution of a 1D Schro¨dinger equation
with the effective potentialVeff ~see Appendix B!.

The emission rater i from the i th boundary element is
obtained from the corresponding surface current densityj i

r i5
D l i

e
j i , ~10!

whereD l i is the length of thei th boundary element, and th
current density per unit length is given by

j i5eE
0

`

dvxE
2`

`

dvyNi~vx ,vy!. ~11!

Using the emission rate, we determine the emission time
the nth electron from thei th boundary element following a
Poisson distribution

t i
n5t i

n212
1

r i
log~12z!, ~12!
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wherez is a uniformily distributed random number, 0,z,1.
The generation of the random velocity components

each electron emitted by each boundary element is com
cated by the fact thatN(vx ,vy) cannot be decomposed as
product of two distribution functions of the velocity compo
nents. For distribution functions with coupled random va
ables, the standard procedure, called rejection method4 is the
following: ~1! generate a pair (vx ,vy) using a distribution
function K(vx ,vy) for which the directions can be decou
pled, K(vx ,vy)5K1(vx)3K2(vy), and such that
N(vx ,vy)/K(vx ,vy)<1; ~2! use N(vx ,vy) to reject or ac-
cept the pair (vx ,vy): accept it if N(vx ,vy)/K(vx ,vy).z,
reject it otherwise. As earlier,z is a uniformily distributed
random number. In step~1! we have chosen a normal distr
bution forK and adjusted the mean velocityv̄x and variances
sx andsy to best fitN(vx ,vy) ~the mean velocity parallel to
the emission plane is zero!. We then multipliedK by a con-
stantA such thatA3K.N for all (vx ,vy) pairs. The number
of rejections is of the order of the area underA3K ~sinceN
is normalized! and is typically less than 100.

The normally distributed velocity components are th
given by

vx5A22 log~zx!sinS zy

sxsyA
Dsx1 v̄x ,

~13!

vy5A22 log~zx!cosS zy

sxsyA
Dsy ,

wherezx andzy are uniformily distributed random number
After the velocity vectorv5(vx ,vy) is generated and ac
cepted in the local reference frame of the boundary elem
it is rotated to the reference frame of the device. Thus, for
emitter shaped as half a circle for example, the velocity of
electron emitted at the apex remains unchanged under a
tation, but velocities for emission from all other locations a
rotated. Consequently, even ifvx50 ~emission perpendicu
lar to the surface!, the electron’s lateral velocity may still b
nonzero in the device reference frame.

C. Electron propagation

Electrons are propagated ballistically through the dev
following Newton’s equation of motion. We use the Verl
algorithm to calculate each electron’s position and veloci

r i
n5r i 21

n 1
1

2

eFi 21

m
dt i 21

n ~dt i 21
n 1dt i 22

n !1
dt i 21

n

dt i 22
n

3~r i 21
n 2r i 22

n !,
~14!

v i 21
n 5

r i
n2r i 22

n

dt i 21
n 1dt i 22

n
2

1

2

eFi 21

m
~dt i 21

n 2dt i 22
n !,

where the indicesi andn refer to step number and electro
number, respectively, andFi[F(r i) is the electric field. No-
tice that the velocity is one step ‘‘late’’ with respect to th
location. Because the Verlet algorithm requires knowled
of the two prior positions, a second-order accurate exp
sion for the first step is used
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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r 1
n5r 01dt0v0

n1
1

2

eF~r 0
n!

m
dt0

2 , ~15!

where dt0 is a small time step. In order to accelerate t
calculations we have implemented a scheme in which e
electron is propagated according to its own time step.
example, if electronA is propagated over a time stepdt and
electronB is propagated over a time stepdt/k, then for the
next k21 steps of electronB, electronA is not propagated
This scheme is very helpful if there are several electr
being simultaneously propagated in the device. The s
length is short or long depending whether the electric field
quickly or slowly varying at the electron location

dt i5
1

v i 21
A2k

M

ur i2r i 21u
uFi2Fi 21u

, ~16!

whereM is the minimum number of steps required to rea
the anode. The earlier relation is derived by assuming c
servation of energy within a total error tolerancek.

III. APPLICATIONS

A. Comparison between 2D and 3D models

Before discussing trends provided by our 2D model,
will evaluate to what extent the 2D model gives valuab
insight when studying a 3D system. We first compare
field enhancement factor for needle-like structures such
cones with that for wedge-like structures. To illustrate t
difference, let us consider two geometries with known a
lytical expressions for the field enhancement factor: the
liptical cone and the elliptical cylinder. The elliptical cone
obtained by rotating the cross section of Fig. 2~a! around the
ellipse’s major axis, while the elliptical cylinder is obtaine
by translating the same cross section between2` and1`.
Let us define the field enhancement factorM as

M5
F

F0
, ~17!

whereF is the electric field at the apex of the tip, whileF0 is
the electric field far from the tip. The field enhancement
the elliptical cone,M cone, and elliptical cylinder,M cyl , are5

M cone'

2
c

r

lnS 4
c

r D22

,

FIG. 2. ~a! Schematic representation of the cross section of an ellipt
cone and elliptical cylinder. The first is obtained by rotating the cross s
tion around the major axis, while the latter is obtained by a rigid transla
of the cross section.~b! Geometry used in our numerical calculations.
Downloaded 13 Sep 2006 to 137.99.20.141. Redistribution subject to AIP
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wherer andc are the ellipse’s focus-to-apex and major ax
respectively. For a radiusr 5100 Å and a tip heightc51
mm we obtain R5M cone/M cyl'3.3. Because the curren
emitted depends exponentially on the electric field, suc
ratio implies current densities many orders of magnitu
lower for the elliptical cylinder than for the elliptical con
for a fixed voltage bias. If the quantity of interest in a 2
simulation of a 3D device containing an elliptical cone is t
current, then one has to scale the voltage bias by appr
mately R ~in a diode configuration the scaling is exactlyR
while for the triode configuration the scaling is only approx
mate since there are two voltage sources and only on
scaled!. If the quantity of interest in the simulation is th
trajectory of the electrons, then we recommend to use r
istic voltage bias and, hence, low currents. Indeed, the e
tron trajectories obtained from a simulation with scaled b
voltage depend on the device geometry and can lead to e
neous interpretations: in the diode mode the cone of emis
will be narrower than it should since under a higheranode
voltage bias the electrons spend less time in the device
thus propagate less in the lateral direction. On the contr
in the triode mode the beam will be wider, since a high
gate voltage more strongly pulls the electrons laterally t
wards the gates.

The second difference between a 2D and a 3D simu
tion is the current emitted given the field at the surface. W
derived the 2D Fowler–Nordheim~F–N! current density as-
suming low temperature, no image charge, and a triang
barrier

j 2D~F,w!51.0173103S F2

w D 3/4

expS 20.683
w3/2

F D A

cm
, ~19!

whereF is the electric field in V/Å andw is the work func-
tion in electron volts. Comparing the earlier expression w
the usual 3D F–N6

j 3D~F,w!51.53731010
F2

w
expS 20.683

w3/2

F D A

cm2
, ~20!

one obtains, for a typical electric fieldF5331021 V/Å and
work function w54.5 eV, a current density ratioj 3D / j 2D

'53106. If we assume a uniform semispherical/circul
emitter geometry in 3D/2D, with emission radiir 5100 Å,
we obtain a surface area of 6.3310212cm2 and a surface
length of 3.131026 cm, and a current ratioI 3D /I 2D'10.
Thus, while the field enhancement obtained in 2D is cons
erably smaller than in the 3D case, the current emitted b
segment of realistic length in 2D is quite close to the 3
current emitted by an equivalent area.

B. Realistic versus triangular barriers

Because sharp tips display such strong field enhan
ment, the electric field in the region of the tip can change
a considerable fraction over a distance comparable to
tunneling length. The resulting nontriangular barrier h
been discussed by several workers.7–9 The exact description

l
c-
n

 license or copyright, see http://jap.aip.org/jap/copyright.jsp



n
lu
D

u
ie
in

el
t

tio
tia
p

is
lc
lve
o-
tia
th
cu
in

th
h
ge

w
id
hl
ity
n

th

he
in
he
ne
th

s
ri
t

nd
e
fo

om
en

nd
in-

e

is
dius
ier
ier,
ius
en-
elec-

rea
o do

ar
pe

ex
r
-

lar

ity at

2537J. Appl. Phys., Vol. 87, No. 5, 1 March 2000 Fonseca, von Allmen, and Ramprasad
of electron tunneling to vaccum from a sharp tip in a stro
electric field requires a rather complex formalism, the so
tion of the full 3D scattering problem, which reduces to a 2
scattering problem in systems with azimuthal symmetry.3,10

Since the systems of interest are emitter tips containing h
dreds of atoms along their emissive area, we do not bel
that such level of accuracy is needed. Indeed, the uncerta
in the tip radius, tip geometry, surface composition~presence
or not of chemisorbed or physisorbed impurities!, and sur-
face temperature possibly play a larger role in realistic fi
emission structures than a more accurate treatment of
scattering process. We have therefore simplified the solu
of the 2D scattering problem, while capturing the essen
physics of the tunneling process, using the following a
proximation: we have assumed that the tunneling path
straight line perpendicular to the emitter surface, and ca
lated the potential profile along that line. Thus, we still so
the usual 1D Schro¨dinger equation for the transmission c
efficient, but we take into account the changing poten
profiles starting from different points along the surface of
emitter. Such an approximation underestimates the local
rent density, since the major contribution to the tunnel
current follows the shortest path under the barrier, which
not necessarily a straight line normal to the surface of
emitter.11 However, since most of the current comes from t
area around the apex of the emitter where the field is lar
and where the shortest tunneling path is almost straight,
believe that our approximation is accurate enough to prov
reasonable current values. As an illustration of the hig
nonlinear effect of the electric field on the current dens
Table I shows the electric field and current density as a fu
tion of the angle from the apex for a triangle-shaped tip@Fig.
2~b!#. Notice how fast the current density decreases as
angle from the apex increases.

Figure 3 shows typical barrier profiles obtained from t
calculation of the potential along the tunneling path start
from the tip apex, and for a triangular barrier, for which t
electric field is assumed constant on the scale of the tun
ing length, and is given by its value at the surface of
emitter~the apex, in this particular example!. Figure 4 shows
the current density along the circular cap of the triangle a
function of the tip radius for calculated and triangular bar
ers, both added to a14x image charge potential. Notice tha
the ratio between the two current densitiesrcalc/r tri remains
constant along the entire length of the cap, which exte
approximately 40° from the apex. The inset shows the av
age current density at the cap as a function of tip radius
calculated and triangular barrier profiles. As expected fr
the general barrier profile shown in Fig. 3, the current d

TABLE I. Electric field and current density at the surface of a triangul
shaped emitter with a circular cap as a function of the angle from the a
Cap radiusr 5100 Å. Here and later, the triangle base lengthb50.5mm and
the triangle heighth51 mm.

Angle ~°! 0 15 30

Electric field ~V/mm! 2.53103 2.33103 2.03103

Current density~A/mm! 3.0310211 8.2310212 5.3310214
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sity is overestimated in the case of triangular barriers a
slowly approaches the calculated result as the tip radius
creases. For example, for an applied field of 200 V/mm,
r tri /rcalc drops from'5 for r 550 Å ~average electric field
in the tip V̄tip51000 V/mm! to '3 for r 5500 Å (V̄tip

53000 V/mm!. In other words, the difference between th
calculated and the triangular barrier results~both including
image charge! is weakly dependent on the tip radius. This
because two competing effects take place when the tip ra
is varied: for increasing radii the calculated tunneling barr
is better and better approximated by the triangular barr
and they exactly overlap for the case of an infinite tip rad
~flat surface!. However, as the radius increases, the field
hancement factor decreases, leading to a decrease in the
tric field at the surface of the emitter. As a result, the a
under the barriers above the Fermi level increases, and s

-
x.

FIG. 3. Calculated potential barrier for low and high fields at the tip ap
~solid—high field, dashed—low field! and assuming a triangular barrie
shape~long dashed—high field, dotted—low field! where the constant elec
tric field is given by its value at the surface~52465 V/mm for high field and
51233 V/mm for low field!. Thick solid line: Fermi level. Tip circular cap
radius r 5100 Å. Electric field far away from the tip: 200 V/mm. Work
function w54.5 eV.

FIG. 4. Current density as a function of the location along the tip circu
cap for calculated~solid! and triangular~dashed! barrier profiles, and for
different tip radii (r 550,100,200,300,400,500 Å!. Higher current density
maximum corresponds to smaller tip radius. Inset: average current dens
the cap as a function of tip radius for calculated~solid! and triangular
~dashed! barrier profiles.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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the difference between the areas under the calculated
triangular barriers~see Fig. 3! and the ratior tri /rcalc.

Figure 5 shows the F–N plot of the current density at
tip apex for a fixed tip radiusr 5100 Å and for the two
barrier profiles without image charge. We see now t
r tri /rcalc rapidly decreases as the field increases. In this c
only the area under the barrier and above the Fermi le
plays a role since the field enhancement is constant. Des
the fact that the surface electric field in this case is in
same range as for the case when the tip radius is va
~1000–3000 V/mm!, r tri /rcalc now dropped from 350 to 2
Notice that the slope of the F–N plot for the calculated b
rier approaches the slope for the triangular barrier at h
fields. Therefore, in order to extract the field enhancem
factor from the F–N plot for a nonplanar emitter, the slope
the high field extreme of the curve should be used. In
particular case shown in Fig. 5, knowing that the work fun
tion used is 4 eV, the field enhancement factor@Eq. ~17!#
obtained at high fields for the calculated barrier is 13
while the exact one is 12.3.

C. Effect of the emission angle on the spread of the
electron beam

The solid angle of the cone of emission is determined
the combined effects of the curvature of the emitting surf
and the lateral emission velocity of the electrons at e
point of the surface. In the usual F–N approach the la
effect is eliminated through summation over all lateral v
locities, which means that emission from a flat surface wo
produce a nondiverging electron beam at low currents~at
very high currents, electron–electron repulsion would s
lead to a divergent beam!. The spread of the electron beam
also a function of the potential differenceVa between anode
and cathode, because the lateral velocity remains close t
value at emission. The spread of the beam is therefore bi
for smaller values ofVa because electrons spend more tim
to cross the device which results in enhanced lateral pro
gation. We will now discuss the spread of the electron be
considering a typical device geometry and a typicalVa .
Room temperature will be used in all cases.

FIG. 5. F–N plot of the current density at the tip apex for calculated~solid!
and triangular~dashed! barrier profiles, and for a tip radiusr 5100 Å. Image
charge not considered.
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Figure 6 shows the normalized electron distributi
along the anode for an anode-cathode separation of 100mm
and potential differenceVa523104 V. The cathode is as-
sumed flat and electrons are emitted from a single point.
use a low work function,w52.5 eV, to increase the emissio
rate for lowerVa . This configuration leads to a solid ang
between the center of the peak and the peak half heigh
V'0.15° while the usual F–N procedure givesV50. Notice
that in the diode configuration,Va serves two purposes: t
decrease the tunneling barrier for electron emission and
provide electrons with enough energy to excite the phosp
that coats the FED anode. Energies in the range 33103– 1
3104 eV are typically needed for bright color displays.12

Using a triode mode, the value ofVa can be decreased from
104 V, while lowering the tunneling barrier can be accom
plished with the use of a gate structure close to the emit
surface. Also, in the case of monochrome displays or l
voltage color phosphors, much lower energies and there
Va are needed~150–300 eV!.12 The spreadV'0.15° can,
hence, be considered as a lower bound for the solid emis
angle from a flat surface since lower anode-cathode pote
differences will result in considerably larger values ofV.
Also it should be noted that the electric field for gated stru
tures has a lateral component leading to an additional spr
ing of the electronic beam.

Figure 7 shows the normalized electron distributi
along the anode using the same parameters and device
ometry as in the flat emitter case except that we use a tr
gular tip (b50.5,h51 mm, r 5100 Å! in place of the flat
emitter. Two situations were considered: emission with a
without angular distribution, the latter case corresponding
emission perpendicular to the surface. For perpendic
emission the electrons hit the anode with a multipeak dis
bution, each peak corresponding to one of the discrete
gions in the cathode with a nonzero electron distribution s
face elements. The finite width of each peak is due to the
that the emission velocity perpendicular to the surface is
chastic and contains a component along the anode-cat

FIG. 6. Normalized count of electrons hitting the anode as a function of
location along the anode for a flat emitter. The center of the distributio
aligned with the emitter. Anode voltageVa523104 V, work function w
52.5 eV, tip radiusr 5100 Å, anode-cathode separation 100mm.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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direction as well as a nonzero component perpendicular
for emission from any location away from the tip apex. T
multipeak nature of the distribution for perpendicular em
sion is an artifact of the numerical method but the to
spread of the electron distributions is similar for the tw
cases. The reason is that the spread of the electron bea
the flat surface is of the order of 0.5mm, while the spread
due to the tip geometry is of the order of 10mm. We can
conclude from this calculation that the spread of the elect
beam is mostly determined by the curvature of the emi
while the lateral velocity of the emitted electrons turns out
be a minor contribution.

IV. CONCLUSION

We have described an algorithmic approach to mo
field emission displays, capable of handling the many len
scales present in these systems, ranging from the mi
scopic level, where tunneling and electron emission t
place, to the macroscopic device scale. The model was
veloped in two dimensions, but can be readily expanded
three dimensions. We have analyzed the 2D model and
cluded that, for realistic emitter dimensions, it undere
mates the field enhancement by a factor of 3–4 and the e
ted current by a factor of 10 if compared to a 3D system.
have illustrated the algorithm by calculating the differen
between the current density for tunneling through triangu
barriers and calculated barriers, the latter obtained from
numerical solution of Laplace equation. We have shown t
the difference resulting from the two barrier profiles mos
occurs at small values of the electric field at the surface
the emitter, since at high fields the region where the t
barriers differ is below the Fermi level where the emiss
current is low. We have also analyzed the effect of the
gular velocity distribution on the spread of the electron be

FIG. 7. Normalized counts of electrons hitting the anode as a function o
location along the anode for a tip emitter. The centers of the distributions
aligned with the emitter. Thin line: electron emission normal to the surfa
thick line: electron emission including angular distribution. Anode volta
Va523104 V, work function w52.5 eV, tip radiusr 5100 Å, tip height
h51 mm, tip width b50.5 mm, anode-cathode separation 100mm.
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and we have shown that the major contribution to the spr
of the electron beam comes from the curvature of the em
ting surface at the tip.

APPENDIX A

Given a system withN subdomains, the electrostatic po
tential within each subdomain can be written as follows:

F j
( i )52 (

j 8PLi

@Gj j 8
i ) D j 8

( i )
1G8 j j 8

( i ) F j 8
( i )

#,

D j
( i )52e i¹nF j

( i ),

Gj j 8
( i )

5
1

e i
E

G
j 8
( i )

drG~r j ,r !, ~A1!

G8 j j 8
( i )

5E
G

j 8
( i )

dr¹nG~r j ,r !,

Li5Ei ø
i 851;i 8Þ i

N

Sii 8 ,

whereLi is the set of points on the boundary of domaini and
is the union of the set of points on the boundary portion t
is not shared with any other domain,Ei , and the sets of
points shared with other domains,Sii 8 . The continuity con-
ditions on the shared boundaries and the external boun
conditions are given by

F j
( i )5F j 8

( i 8)

D j
( i )5D j 8

( i 8)J ; j , j 8: j PSii 8 , j 8PSi 8 i , ~A2!

F j
( i )5F0 j

( i ) ; j PEi ,

where F0 j
( i ) is the electrostatic potential on the extern

boundary of subdomaini. The set of Eqs.~A1! combined
with the boundary conditions leads to the following gene
expression

(
j 8PEi

Gj j 8
( i ) D j 8

( i )
1 (

i 851;i 8Þ i

N H (
j 8PSii 8

@Gj j 8
( i ) D j 8

( i i 8)
1G8 j j 8

( i ) F j j 8
( i i 8)

#

1d j
Sii 8F j

( i i 8)J 52d j
EiF0 j

( i )2 (
j 8PEi

G8 j j 8
( i ) F0 j 8

( i ) , ~A3!

whereD j
( i i 8) and F j

( i i 8) are the fields on the shared boun
aries and

d i
S5H 1 if i PS

0 otherwise.
~A4!

The solution to this set of equations gives the electrost
potential on the shared boundaries and the electric field
the shared boundary and the external boundary.

APPENDIX B

The transmission coefficient through the 1D potent
barrier is calculated by using the transfer matrix techniq
combined with the Runge–Kutta method of order four. T

e
re
;
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starting differential equations for the wave function and
derivative are derived from the Schro¨dinger equation and ar
given as follows:

]xc5c8,

]xc85a~V~x!2E!c, ~B1!

a5
2m

\2
,

whereV(x) describes the potential barrier andE is the inci-
dent electron energy. The transfer matrix method relates
wave function and its derivative before and after the bar
in the following manner:

S c~xN!

c8~xN!
D 5M S c~x0!

c8~x0!
D , ~B2!

whereM is the transfer matrix. We choosex0 andxN smaller
and larger than the smallest and largest classical turn
points, respectively, such that the potential is well descri
by a constant atx0 and by the linear electrostatic potential
xN . After dividing the segment@x0 ,xN# into equal intervals
of length h, the Runge–Kutta method gives the followin
expression for the transfer matrix:

M5)
i 51

N

Mi , ~B3!

where the four components ofMi , the transfer matrix for
each interval, are

Mi~1,1!511
h2

6
a~Vi2E!1

h2

3
a~Vi 11/22E!

1
h4

24
a2~Vi 11/22E!~Vi2E!,

Mi~1,2!5hF11
h2

6
a~Vi 11/22E!G ,

~B4!

Mi~2,1!5
h

3 Fa2 ~Vi2E!12a~Vi 11/22E!1
a

2
~Vi 11

2E!1
h2

4
a2~Vi 11/22E!~Vi1Vi 1122E!G ,

Mi~2,2!511
h2

3
a~Vi 11/22E!1

h2

6
a~Vi 112E!

1
h2

24
a2~Vi 11/22E!~Vi 112E!.

The wave function and its derivative before the barrier
given by the superposition of the forward propagating in
dent wave and the backward propagating reflected wave
can be written as follows:

c~x0!5CPW~eik0x01ARe2 ik0x0!,

c8~x0!5CPWik0~eik0x02ARe2 ik0x0!,
~B5!

whereAR is the reflection amplitude andCPW is a normal-
ization constant~see later!. After the barrier, the transmitte
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wave is described by the forward propagating eigenstate
the Schro¨dinger equation with a linear potential. In order
find this solution we use the stationary eigenstatecS , which
is proportional to an Airy functionAi13

cS~xN!5CAATAi@2j~xN!#,

j~x!5S 2meF

\2 D 1/3S x2
W2E

eF D , ~B6!

Ai~x!5
Apuxu

3
$J2 1/3@u~x!#1J1/3@u~x!#%, x,0,

u~x!5 2
3uxu3/2, ~B7!

whereAT is the transmission amplitude andCA is a normal-
ization constant~see later!. The Bessel functionsJ61/3 can be
expressed as sums of forward and backward propaga
Hankel functions14

J61/3~x!5 1
2@H61/3

~1! ~x!1H61/3
~2! ~x!#. ~B8!

The forward propagating eigenstate of the Schro¨dinger equa-
tion with a linear potential and its derivative are there
given by the following expressions:

c~xN!5
CA

A2
AT

ApuxNu
3

@H21/3
~1! ~u!1H1/3

~1!~u!#,

c8~xN!52
CA

A2
AT

Ap

3 H H21/3
~1! ~u!1H1/3

~1!~u!

2AuxNu

1uxNu@H21/38~1! ~u!1H1/38~1!~u!#J , ~B9!

u5 2
3uj~xN!u3/2. ~B10!

The normalization constants for both the plane wave and
Airy function are chosen such that

E
2`

`

cE* ~x!cE8~x!dx5d~E2E8!, ~B11!

and are given by the following expressions:

CPW5H m

8p2\2@E2V~x0!#
J 1/4

CA5
~2m!1/3

Ap\2/3~eF!1/6
. ~B12!

By using the transfer matrix equation we can calculate
coefficientsAR andAT

AT5
D1

D
, AR5

D2

D
,

D5fNCPW~ ik0M222M21!2fN8 CPW~ ik0M122M11!,

D152ik0 det~M !CPW
2 , ~B13!

D25fNCPW~ ik0M221M21!2fN8 CPW~ ik0M121M11!,
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fN5
c~xN2x0!

AT
, fN8 5

c8~xN2x0!

AT
. ~B14!

In order to avoid roundoff errors, we found that it is impo
tant to calculate the determinant of the transfer matrix
using the matrix multiplication rule

det~M !5)
i 51

N

det~Mi !. ~B15!

The transmission~reflection! coefficient is given by the ratio
of the transmitted~reflected! to the incident current probabil
ity

T5
J~xN!

J~x0!
,

R5uARu2, ~B16!

J~x!5
\

2mi
@c* ~x!c8~x!2c~x!c8* ~x!#. ~B17!
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