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Contributions to the work function: A density-functional study of adsorbates
at graphene ribbon edges

R. Ramprasad, Paul von Allmen, and L. R. C. Fonseca
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~Received 30 March 1999!

In the present computational study, we focus on graphene ribbons with zigzag edge atoms with their
unsaturated bonds either dangling or terminated by various adsorbates~H, O, or Cs!. Using this system as a test
case, we discuss the two important contributions to the work function—the first one being an anisotropic bulk
property related to the electron affinity of the material, and the second one being directly related to the surface
dipole moment caused by the spill over of electronic charge into the vacuum. The latter contribution, which
tends to increase the work function, can to a large extent be minimized by a judicious choice of adsorbates
~typically, adsorbates that are more electropositive than the surface!. The former face-dependent contribution
turns out to be the minimum possible work function achievable for a given surface. Our calculations are based
on density-functional theory within the local density approximation using nonlocal pseudopotentials and a
plane wave basis set.@S0163-1829~99!03632-2#
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I. INTRODUCTION

The work function,f, of a crystal surface is defined as th
energy needed to remove an electron at the Fermi level f
the bulk region of a crystal to the vacuum at infinity.1–3 f,
apart from describing the ability of an electron to esca
from a material, correlates with the chemistry at the surf
of a crystal. For instance, the work function is intimate
related to the dipole barrier at the surface, and has b
equated to the electronegativity in the case of elemental c
tals ~the electronegativity being the ability of one element
compete with others for the valence electronic charge du
compound formation!.3,4 It is also well known that adsorp
tion of species at a surface alters the work function of
surface in an understandable manner, with adsorbates ha
higher electronegativities than the surface increasing
work function while those with lower electronegativitie
having the opposite effect.5–7

In the present study, we quantify the above anticipa
trends for the test case of graphene ribbon edges with var
adsorbates. We also address an appealing—although
unanticipated—correlation between the edge dipole mom
and the work function perpendicular to the edge~and along
the ribbon plane!. This correlation points to an interestin
way of viewing the work function,viz., by partitioning it into
an anisotropic~face-dependent! bulk cohesive~electron af-
finitylike! part and a part entirely due to the surface or ed
dipole moment. The latter, which is a positive contribution
the work function, is due to the spill over of the electron g
into the vacuum region, and can to a large extent be redu
by a judicious choice of adsorbates. In fact, this analy
indicates that there is a minimum possible work functi
associated with a particular surface or edge that can be
tained when the surface or edge dipole moment can be m
to vanish.

Our choice of an allotrope of carbon as a test case in
present study is motivated by the fact that recent atten
has focused on carbon-based materials due to their pro
PRB 600163-1829/99/60~8!/6023~5!/$15.00
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as potential candidates for cold-cathode field emiss
applications.8 Among the allotropes of carbon, nanotub
seem to be active field emitters, although other forms—l
fragments of graphene and diamond-like carbon—are a
known to be active.9 One possible reason the nanotubes
active may be because they display special electronic st
localized at the tip atoms.10,11 It has also been pointed ou
that the nanotubes may be quite defective, with one s
defect being similar to a graphene edge.12,13 While the car-
bon atoms in a cylindrical defect-free nanotube are all thr
fold coordinated~just as in graphite!, those in defected tu-
bules may be two-fold coordinated, with an entirely differe
p-electron network in its vicinity ~as in fragments of
graphene!. A recent tight-binding study of graphen
ribbons14 with the edge carbon atoms passivated with H h
demonstrated that graphene ribbons with zigzag edges
play special localized states near the Fermi level arising
marily due to the topology of thep electron networks at the
edges. Here, we use density-functional methods and cons
zigzag graphene edges with unsaturated bonds either
gling or passivated with H, O, or Cs, and assess the imp
tance of such terminations on the edge dipole moment
the work function perpendicular to the edge—quantit
which are key to the electron emission properties of th
confined systems.

In the next section, we give details of the method a
models used in this study. We comment about the spec
of the work function and dipole moment calculations a
formally relate the former to the latter in Sec. III. In Sec. IV
we present electronic and geometric structure results, ca
lated work functions and dipole moments for the unpas
vated and H-, O-, and Cs-terminated zigzag ribbons. We
nally conclude with Sec. V.

II. MODELS AND METHOD

All calculations were performed using the local-dens
approximation15,16 ~LDA ! within density-functional theory
~DFT!.17,18 The electronic ground state was determined s
6023 ©1999 The American Physical Society
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consistently using the Teter-Payne-Allan precondition
conjugate gradient method19 through the solution of the
Kohn-Sham single-particle equations, and the ionic positi
were optimized using the Broyden-Fletcher-Goldfarb-Sha
scheme20 to minimize the Hellmann-Feynman forces.21 A set
of ‘‘special’’ points are used for the Brillouin-zon
integrations,22 along with a Fermi-Dirac broadenin
scheme,23 to determine the Fermi level. Norm-conservin
nonlocal pseudopotentials of the Troullier-Martins type24

transformed using the Kleinman-Bylander technique,25 were
used to describe C and O, with the pseudopotential par
eters obtained from earlier work.24 A Kleinman-Bylander
transformed pseudopotential for Cs was generated u
Vanderbilt’s method26 using core radii of 3.0 and 2.6 a.u. fo
the s and p components, respectively; thep potential was
taken as the local component. For H, we used a lo
Troullier-Martins pseudopotential, with a core radius of 0
a.u.

A good test for the quality of a pseudopotential is
ability to reproduce equilibrium bulk properties; hence, bu
graphite and bcc Cs were considered. The equilibrium pr
erties are determined by converging the results with res
to the plane wave cutoff energy and the number ofk points
used for sampling the Brillouin zone; convergence in
total energy was assumed to have been reached when
total energy was within 0.01 eV/atom of the well converg
asymptotic value. For graphite, convergence was achie
when a 50 Ry plane wave cutoff and 18 specialk points
were used to sample quantities within the irreducible we
of the Brillouin zone~IBZ!. The calculated lattice constan
(a52.462 Å andc56.649 Å) and cohesive energy~7.9
eV/atom! compare well with the corresponding experimen
numbers (a52.456 Å, c56.696 Å, and Ecoh57.4 eV/
atom).27,28 Convergence in the case of Cs was achieved
plane wave cutoff energy of 10 Ry and 4 specialk points.
The calculated bcc lattice constant, cohesive energy,
bulk modulus are 6.105 Å, 0.855 eV, and 2.3 GPa, resp
tively, which are also in good agreement with experimen
measurements ~6.045 Å, 0.804 eV, and 2.0 GPa
respectively!.27,29 For O-terminated systems, we adopt a c
off energy of 60 Ry, as used in earlier work involving O.24

Supercell slab geometries were assumed in trea
graphene ribbons. All ribbon calculations were perform
with four chains of carbon in each ribbon, and a vacuum
at least 12.0 Å in the direction perpendicular to the ed
~calculations involving Cs required at least 20 Å of vacuum!,
and a vacuum of 5.0 Å perpendicular to the ribbon pla
Fig. 1 shows a schematic of the model system. The siz
the vacuum region was chosen such that the self-consis
potential in the vacuum region flattens to its asympto
value. As a result of the large size of the supercell, only
specialk points within the surface IBZ were used for th
ribbon calculations. All results presented here were well c
verged for the above choices ofk-point mesh, slab, and
vacuum thicknesses, and a plane wave cutoff energy o
Ry ~60 Ry in O-terminated systems!. Geometry optimiza-
tions were performed to determine surface relaxation. Ho
ever, reconstructions of the atoms along the edges were
permitted due to the small size of the surface unit cell d
tated by reasons of computational expediency; we anticip
edge reconstructions to result in only minor changes of
d

s
o

-

ng

al

p-
ct

e
the

ed

e

l

a

nd
c-
l

-

g
d
f
e

;
of
nt

c
x

-

0

-
ot
-
te
e

results reported here, with no changes in the qualita
trends. Geometries were assumed to be optimized when
forces were less than 0.03 eV/Å.

III. GENERAL COMMENTS ON WORK FUNCTION
AND DIPOLE MOMENT CALCULATIONS

The work function is formally defined as

f5D2EF , ~1!

whereD is the electrostatic potential step at the surface~or
the edge, in the present case!, and EF is the bulk Fermi
energy, measured with respect to the average electros
reference potential.3 The use of nonlocal pseudopotentials
treat the ion cores and the reciprocal-space formal
adopted in the present study restrict the choice of the re
ence potential. In the reciprocal-space formalism, there is
arbitrariness in the zero of the energy scale. The lo
pseudopotential and the Hartree potential for small wa
vectors and the ion-ion interaction terms are individually
vergent quantities, although they add up to a fin
quantity.30,31 The Kohn-Sham equations are hence solved
setting theG50 component of the local pseudopotent
@Vloc

pp (r )# and Hartree potential@VH(r )# to zero ~as these
contributions merely shift the band structure uniformly!, in-
troducing the arbitrariness mentioned above.32 It should,
however, be noted that although the actual value of the Fe
energy has no significance@since it has been shifted by a
unknown amount equal toVH(G50)1Vloc

pp (G50)], the
Fermi energyrelative to VH(r )1Vloc

pp (r ) is a well defined
and transferable quantity. We thus adopt the following p
cedure to determinef.

We calculate the planar-averaged potentialVavg(z)
5„^VH(r )1Vloc

pp (r )&XY… along the direction perpendicular t
the edge for the graphene ribbon, i.e., planar-averagin
performed in theXY plane in Fig. 1. Independently, we de

FIG. 1. Schematic of the zigzag graphene ribbon. Solid a
open circles indicate carbon atoms and adsorbate~H, O, or Cs!
atoms, respectively. The dots indicate periodicity along thex direc-
tion.
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termine the same quantity~along the same direction! for an
edgeless graphene sheet. We found that the former qua
in the interior regions of the ribbon is identical in shape
the latter~indicating bulklike behavior!, although shifted by
a constant amount. By matching up the two quantities,
by knowing the bulk Fermi energy relative to the bu
Vavg(z), we calculate the work function as the differen
between the surfaceVavg(z) in the vacuum region and th
bulk Fermi energy.7,33 We illustrate this schematically in Fig
2.

We now comment on howf can be intuitively partitioned
into physically understandable components. For simplic
let us ignore the relaxation of the surface ionic cores, wh
have been shown earlier to changef negligibly.33 Creation
of a surface has two major implications: the first is a sim
truncation of the material at the surface plane, and the sec
is the spill over into the vacuum region~or the self-consisten
rearrangement! of electrons into the vacuum to minimiz
their kinetic energy. To be consistent with these ideas, le
decompose the electrostatic potential stepD into two com-
ponents, one purely a dipole effect due to the spill over of
electronic charge density into the vacuum region~say D1),
and the other due to the potential step in a ‘‘reference’’ s
tem where there is no spill-over or rearrangement of cha
~sayD2). The reference surface is composed of atoms w
their electron densities frozen at their bulk values~i.e., bulk
truncation for the ionicand electronic degrees of freedom
and the truncation is assumed to be performed exactlybe-
tweenadjacent planes!. Figure 3 shows a schematic of th
planar-averaged electronic charge density for both the hy
thetical reference system and the self-consistent situa
The work function can then be written as

f5D11~D22EF!. ~2!

(D22EF) is purely an anisotropic material property, esse
tially a measure of the strength of the potential that binds
electron to the material~in other words, the electron affinity!
and D1 is a surface property that depends on the the s
over of electronic charge at the surface, and can change
the type of adsorbate on the surface, depending on how
adsorbate affects the surface dipole moment. Thus, cha
in the work function of a surface due to various adsorba
are brought about by changes inD1 alone. It should be noted

FIG. 2. Schematic of the planar-averaged potentialVavg(z) for
bulk ~dashed line! and surface~solid line!. EF is the Fermi energy
of the bulk. The planar-averaged potential for the surface is shi
so that it matches with the bulk potential. The work functionf for
the surface is determined as the energy difference between the
of the ~shifted! planar-averaged potential in the vacuum region a
the bulk Fermi energy.
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that our choice of the reference system yields orientati
dependent work functions, in contrast to other model syste
composed of a superposition of atomic charge densities
bulk Wigner-Seitz unit cells used earlier.33,34

The exact relationship betweenD1 ~or f) and the surface
dipole moment can be seen to be a linear one by the foll
ing derivation. Consider a model slab system, whose sur
is perpendicular to thez axis, filling the half-spacez<0. Let
r(x,y,z) be the deformation charge density, i.e., the diffe
ence between the charge density of the reference system
no charge spill over~where the surface or edge atom char
densities are identical to the bulk charge density! and the
self-consistent charge density.r(x,y,z) thus represents the
redistribution of the charge density due to the creation of
surface or edge. TheXY plane-averaged potential,v̄(z), in-
duced by the dipole layer and theXY plane-averaged den
sity, r̄(z), are related by Poisson’s equation:

]2

]z2
v̄~z!524pr̄~z!, ~3!

where

v̄~z!5
1

AE E v~x,y,z!dxdy; ~4!

whereA is the area of the surface unit cell,v(x,y,z) is the
potential induced due to the spill over, and the integratio
are performed within the surface unit cell; a similar relatio
ship holds for r̄(z). The solution of the above Poisson
equation with the boundary conditions given by vanishi
potential and electric field atz51` is

v̄~z!524pE
z

`

dz8z8r̄~z8!14pzE
z

`

dz8r̄~z8!. ~5!

SinceD1 is given by v̄(`)2 v̄(2`), the work function
can be written as

f54pE
2`

`

dz8z8r̄~z8!1~D22EF!54pm/A1~D22EF!,

~6!

d

lue
d

FIG. 3. Schematic of the planar-averaged electronic charge
sity for the reference system~solid line! and for the self-consisten
situation ~dashed line!. Vertical dotted lines indicate surface trun
cation planes, and solid circles represent the location of the a
planes.
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where we have assumed that the asymptotic form for
second integral of Eq.~5! is 1/z11e(e.0) for z˜2`, and
the dipole moment for the surface unit cell along thez direc-
tion, m, is defined as

m5E
2`

` E
y
E

x
dx8dy8dz8z8r~x8,y8,z8!, ~7!

where thex andy integrations are performed within the su
face unit cell. We thus see that the work function var
linearly with the dipole moment per unit area, with the slo
being 4p, and the intercept beingD22EF . Therefore, an
electron attempting to escape from a material has to
mount two barriers: a surface barrier~or the anisotropic elec
tron affinity!, D22EF , that binds the electron to the bulk
and a dipole barrier entirely due to the surface dipole m
ment caused by the spill-over of the electronic charge den
into the vacuum region. As we will see in the next sectio
any adsorbate that tends to decrease the extent of elect
spill over into the vacuum will decrease the work function
the system in that direction.

IV. RESULTS

Figure 1 shows a schematic of the model ribbon syste
considered, and Table I lists the results for the variou
terminated geometry optimized four-chain zigzag graph
ribbons; geometric parameters other than the ones liste
Table I changed by less than a percent from the corresp
ing bulk values. For comparison, we also list the results
the unoptimized~C atoms fixed at their bulk positions! clean
four-chain zigzag ribbon. In order to ascertain that the el
tronic structure of the systems considered here is in ag
ment with the earlier tight-binding calculation,14 we have
calculated the band structure of the H-terminated graph
ribbon, which we show in Fig. 4. As in the earlier study14

we see a flat band close to the Fermi level close to the B
louin zone boundaries; analysis of the charge density res
ing from this band showed that the states responsible for
flat part of the band were localized at the edge atoms.

The work function perpendicular to the zigzag edge a
the edge dipole moment per unit surface area are also li
in Table I. Interesting trends can be seen in the calcula
work functions in Table I. The unpassivated, clean zigz
edge has a rather high work function of 6.3 eV. This va
decreases drastically with H termination. O termination
creases the work function and Cs termination decreases

TABLE I. Selected geometric parameters, work functions~in
eV! and edge dipole moments per unit surface areaA ~in eV! for the
four-chain graphene ribbon for various cases of termination;
Fig. 1 for a description of geometric symbols.

d12 d23 dX2C f m/A

Clean 0.630 2.170 6.30 0.382
H-terminated 0.680 2.146 1.102 3.31 0.14
O-terminated 0.775 2.129 1.249 7.29 0.45
Cs-terminated 0.685 2.154 3.390 2.55 0.08
Unrelaxed, clean 0.719 2.130 6.34 0.38
Reference system 0.719 2.130 1.40 0.00
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an even lower value than with H-termination. In general,
see that the more electropositive an adsorbate, larger is
work function decrease, consistent with results reported
the literature.5–7 Changes in the dipole moment with adso
bates follow the work function changes. Clearly, adsorba
that are more electropositive than the surface, becaus
their propensity to lose electrons, cause an attenuation o
electronic charge spill over, decreasing the dipole mom
whereas more electronegative adsorbates enhance the
over for the opposite reason.

Table I also lists the dipole moments, which are calc
lated relative to a hypothetical reference system where th
is no leakage of the charge density from the edge into
vacuum~designated as reference in Table I!; as mentioned
earlier in Sec. III, the reference ribbon is composed of ato

FIG. 5. Linear correlation between the work function and t
edge dipole moment per unit area~last two columns of Table I! of
the zigzag graphene ribbon for various terminations. The edge
pole moment is relative to a reference system for which there is
leakage of the electronic charge density into the vacuum.

e

FIG. 4. Band structure of H-passivated zigzag graphene ribb
The energy values shown are relative to the Fermi energy, and
k points are in units of (2p/a), wherea is the periodic length along
the ribbon edge.
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PRB 60 6027CONTRIBUTIONS TO THE WORK FUNCTION: A . . .
with their electron densities frozen at their bulk values.
anticipated, a linear correlation exists~Fig. 5! between the
work function and dipole moment~with an intercept corre-
sponding to the work function of the reference system!. The
calculated slope of the plot is 12.72, in good agreement w
the anticipated value of 4p~512.57!. Furthermore, Fig. 5
indicates that there exists a minimum possible theoret
work function corresponding to the situation when the s
face dipole moment is zero~i.e., when there is absolutely n
charge spill over into the vacuum!; this minimumf is, of
course,D22EF ~defined in the previous section!, an intrinsic
anisotropic material property. In the case of the zigzag e
of graphene, the calculated minimum work function is 1.
eV.

V. CONCLUSIONS

In the present study, we have identified two contributio
to the work function of a surface—the first one being
anisotropic bulk property related to the electron affinity
.
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the material, and the second one being directly related to
surface dipole moment caused by the spill over of electro
charge into the vacuum due to the creation of the surfa
The latter contribution, which tends to increase the wo
function, can to a large extent, be minimized by a judicio
choice of adsorbates~typically, adsorbates that are mor
electropositive than the surface!. The former face-dependen
contribution turns out to be the minimum possible wo
function achievable for a given surface. We have used
zigzag edges of graphene, with the edge atoms termin
with various adsorbates, as a test case in order to illust
these concepts, and found that the minimum possible th
retical work function in the direction perpendicular to th
zigzag edge~and along the graphene plane! is about 1.40 eV.
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