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In the present computational study, we focus on graphene ribbons with zigzag edge atoms with their
unsaturated bonds either dangling or terminated by various adsofBa®@sor C3. Using this system as a test
case, we discuss the two important contributions to the work function—the first one being an anisotropic bulk
property related to the electron affinity of the material, and the second one being directly related to the surface
dipole moment caused by the spill over of electronic charge into the vacuum. The latter contribution, which
tends to increase the work function, can to a large extent be minimized by a judicious choice of adsorbates
(typically, adsorbates that are more electropositive than the surfElce former face-dependent contribution
turns out to be the minimum possible work function achievable for a given surface. Our calculations are based
on density-functional theory within the local density approximation using nonlocal pseudopotentials and a
plane wave basis s€t50163-18209)03632-3

[. INTRODUCTION as potential candidates for cold-cathode field emission
application€ Among the allotropes of carbon, nanotubes
The work function,g, of a crystal surface is defined as the seem to be active field emitters, although other forms—like
energy needed to remove an electron at the Fermi level frorffagments of graphene and diamond-like carbon—are also
the bulk region of a crystal to the vacuum at infinity. ¢, known to be activd.One possible reason the nanotubes are
apart from describing the ability of an electron to escapeactive may be because they display special electronic states
from a material, correlates with the chemistry at the surfacdocalized at the tip atomS:™ It has also been pointed out

of a crystal. For instance, the work function is intimately that the nanotubes may be quite da‘eggve,.with one such

related to the dipole barrier at the surface, and has beefefect being S|m|I?r(;[o_ algdrafher;e edg .er;lle the (I:Iarr-l

equated to the electronegativity in the case of elemental cry on atoms_ In a cylindrical de ect-_ ree nano_tu e are all three-
old coordinated(just as in graphite those in defected tu-

tals (the electronegativity being the ability of one element to : . ) :
compete with others for the valence electronic charge durin&{UIes may be tWO'fOld. co_ordm_a;e.d, with an entirely different
-electron network in its vicinity(as in fragments of

compound formation®* It is also well known that adsorp- rapheng A recent tight-binding study of graphene

tion of species at a surface alters the vyork function of th' ibbon< with the edge carbon atoms passivated with H has
syrface in an unders_te_mdable manner, with ad_sorbate_s having 1\ onstrated that graphene ribbons with zigzag edges dis-
higher electronegativities than the surface increasing thg,y special localized states near the Fermi level arising pri-
Work function Wf_ule those7 with lower electronegativities marily due to the topology of the electron networks at the
having the opposite effect. edges. Here, we use density-functional methods and consider

In the present study, we quantify the above anticipatedigzag graphene edges with unsaturated bonds either dan-
trends for the test case of graphene ribbon edges with varioygling or passivated with H, O, or Cs, and assess the impor-
adsorbates. We also address an appealing—although ngince of such terminations on the edge dipole moment and
unanticipated—correlation between the edge dipole momenhe work function perpendicular to the edge—quantities
and the work function perpendicular to the edged along which are key to the electron emission properties of these
the ribbon plang This correlation points to an interesting confined systems.
way of viewing the work functionyiz., by partitioning it into In the next section, we give details of the method and
an anisotropidface-dependentbulk cohesive(electron af- models used in this study. We comment about the specifics
finitylike) part and a part entirely due to the surface or edgeof the work function and dipole moment calculations and
dipole moment. The latter, which is a positive contribution toformally relate the former to the latter in Sec. Ill. In Sec. 1V,
the work function, is due to the spill over of the electron gaswe present electronic and geometric structure results, calcu-
into the vacuum region, and can to a large extent be reducddted work functions and dipole moments for the unpassi-
by a judicious choice of adsorbates. In fact, this analysivated and H-, O-, and Cs-terminated zigzag ribbons. We fi-
indicates that there is a minimum possible work functionnally conclude with Sec. V.
associated with a particular surface or edge that can be at-
tained when the surface or edge dipole moment can be made
to vanish.

Our choice of an allotrope of carbon as a test case in the All calculations were performed using the local-density
present study is motivated by the fact that recent attentiompproximation®® (LDA) within density-functional theory
has focused on carbon-based materials due to their promisBFT).1"'8 The electronic ground state was determined self-

Il. MODELS AND METHOD
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consistently using the Teter-Payne-Allan preconditioned -
conjugate gradient methbt through the solution of the

Kohn-Sham single-particle equations, and the ionic positions U
were optimized using the Broyden-Fletcher-Goldfarb-Shano * i 4
schemé’ to minimize the Hellmann-Feynman forc&sA set y X ——2

of “special” points are used for the Brillouin-zone dy3
integrations’?> along with a Fermi-Dirac broadening I
schemé? to determine the Fermi level. Norm-conserving
nonlocal pseudopotentials of the Troullier-Martins tyfe,
transformed using the Kleinman-Bylander techniGueere
used to describe C and O, with the pseudopotential param-
eters obtained from earlier wofR. A Kleinman-Bylander
transformed pseudopotential for Cs was generated using
Vanderbilt's methotf using core radii of 3.0 and 2.6 a.u. for
the s and p components, respectively; the potential was
taken as the local component. For H, we used a local
Troullier-Martins pseudopotential, with a core radius of 0.9
a.u.

A good test for the quality of a pseudopotential is its
ability to reproduce equilibrium bulk properties; hence, bulk  FIG. 1. Schematic of the zigzag graphene ribbon. Solid and
graphite and bcc Cs were considered. The equilibrium propepen circles indicate carbon atoms and adsorlfeiteO, or C3
erties are determined by converging the results with respe@toms, respectively. The dots indicate periodicity alongxthéec-
to the plane wave cutoff energy and the numbek gloints  tion.
used for sampling the Brillouin zone; convergence in the
total energy was assumed to have been reached when thesults reported here, with no changes in the qualitative
total energy was within 0.01 eV/atom of the well convergedtrends. Geometries were assumed to be optimized when all
asymptotic value. For graphite, convergence was achievef@rces were less than 0.03 eV/A.
when a 50 Ry plane wave cutoff and 18 spediapoints
were usgd tO' sample quantities within the irrgducible Wedge IIl. GENERAL COMMENTS ON WORK FUNCTION
of the Brillouin ZOHE(|BZ). The calculated lattice constants AND DIPOLE MOMENT CALCULATIONS
(a=2.462 A andc=6.649 A) and cohesive energy.9
eV/atom) compare well with the corresponding experimental ~ The work function is formally defined as
numbers §=2.456 A, c=6.696 A, and E;=7.4 eV/
atom) 2”28 Convergence in the case of Cs was achieved at a ¢p=D—Eg, (1)
plane wave cutoff energy of 10 Ry and 4 spediaboints.

The calculated bcc lattice constant, cohesive energy, anﬁ . . :
bulk modulus are 6.105 A, 0.855 eV, and 2.3 GPa, respecd/'® €dge, in the present casand Ef is the bulk Fermi
tively, which are also in good agreement with experimentafN€r9y. measured with respect to the average electrostatic
measurements(6.045 A, 0.804 eV, and 2.0 GPa, reference potentlél.The use of nonlo_cal pseudopotentials to
respectively. 22 For O-terminated systems, we adopt a cut-'€at the ion cores and the reciprocal-space formalism
off energy of 60 Ry, as used in earlier work involving?®. adopted in t.he present s@udy restrict the ch0|.ce of the rgfer—

Supercell slab geometries were assumed in treatin nce potential. In the reciprocal-space formalism, there is an

graphene ribbons. All ribbon calculations were performecgroitrariness in the zero of the energy scale. The local

with four chains of carbon in each ribbon, and a vacuum 01pseudopotential and the Hartree potential for small wave

at least 12.0 A in the direction perpendicular to the edgevectors and the ion-ion interaction terms are individually di-

. : : : t quantities, although they add up to a finite
(calculations involving Cs required at least 20 A of vacium VE'9eN ;
and a vacuum of 5.0 A perpendicular to the ribbon plane,qu""m'ty'go'slThe Kohn-Sham equations are hence solved by

Fig. 1 shows a schematic of the model system. The size oqetpti)ng theG=0 component of the local pseudopotential
the vacuum region was chosen such that the self-consistehYioc(r)] @nd Hartree potentiglVy(r)] to zero (as these
potential in the vacuum region flattens to its asymptoticcont“bUt'O”S merely shift the band structure uniforiniy-

value. As a result of the large size of the supercell, only si{roducing the arbitrariness mentioned abdtet should,
specialk points within the surface IBZ were used for the however, be noted that although the actual value of the Fermi

ribbon calculations. All results presented here were well con€N€rgy has no significandsince it has been shifted by an
verged for the above choices &fpoint mesh, slab, and Unknown amount equal t&/,(G=0)+ V[ (G=0)], the
vacuum thicknesses, and a plane wave cutoff energy of 56ermi energyrelative to Vi (r)+Vfi(r) is a well defined

Ry (60 Ry in O-terminated systemsGeometry optimiza- and transferable quantity. We thus adopt the following pro-
tions were performed to determine surface relaxation. Howcedure to determine.

ever, reconstructions of the atoms along the edges were not We calculate the planar-averaged potenthd},y(2)
permitted due to the small size of the surface unit cell dic-=((Vy(r) +VR(r))xy) along the direction perpendicular to
tated by reasons of computational expediency; we anticipatdhe edge for the graphene ribbon, i.e., planar-averaging is
edge reconstructions to result in only minor changes of theperformed in theXY plane in Fig. 1. Independently, we de-

hereD is the electrostatic potential step at the surféme
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Vacuum Slab Vacuum ; :
: Vacuum : Slab : Vacuum

FIG. 2. Schematic of the planar-averaged potenfigl,(z) for
bulk (dashed lingand surfacdsolid ling). Eg is the Fermi energy FIG. 3. Schematic of the planar-averaged electronic charge den-
of the bulk. The planar-averaged potential for the surface is shiftedity for the reference systefsolid line) and for the self-consistent
so that it matches with the bulk potential. The work functipiior situation (dashed ling Vertical dotted lines indicate surface trun-
the surface is determined as the energy difference between the valgation planes, and solid circles represent the location of the atom
of the (shifted planar-averaged potential in the vacuum region andplanes.
the bulk Fermi energy.

that our choice of the reference system yields orientation-

termine the same quantitalong the same directigrior an  dependent work functions, in contrast to other model systems
edgeless graphene sheet. We found that the former quantifgébmposed of a superposition of atomic charge densities or
in the interior regions of the ribbon is identical in shape tobulk Wigner-Seitz unit cells used earli&r*
the latter(indicating bulklike behavigr although shifted by The exact relationship betwe&n, (or ¢) and the surface
a constant amount. By matching up the two quantities, andipole moment can be seen to be a linear one by the follow-
by knowing the bulk Fermi energy relative to the bulk ing derivation. Consider a model slab system, whose surface
Vavg(2), we calculate the work function as the differenceis perpendicular to the axis, filling the half-space<0. Let
between the surfac¥,,4(z) in the vacuum region and the p(x,y,z) be the deformation charge density, i.e., the differ-
bulk Fermi energy:**We illustrate this schematically in Fig. ence between the charge density of the reference system with
2. no charge spill ovetwhere the surface or edge atom charge

We now comment on how can be intuitively partitioned  densities are identical to the bulk charge densipd the
into physically understandable components. For simplicityself-consistent charge density(x,y,z) thus represents the
let us ignore the relaxation of the surface ionic cores, whichedistribution of the charge density due to the creation of the

have been shown earlier to changenegligibly** Creation ¢ tace o edge. ThXY plane-averaged potential(z), in-
of a surface has two major implications: the first is a simpled

. : duced by the dipole layer and th€Y plane-averaged den-
truncation of the material at the surface plane, and the secong, — . , o
is the spill over into the vacuum regidar the self-consistent sity, p(2), are related by Poisson’s equation:
rearrangemeintof electrons into the vacuum to minimize
their kinetic energy. To be consistent with these ideas, let us 9 — _ —
decompose the electrostatic potential siejnto two com- EV(Z)_ —47p(2), )
ponents, one purely a dipole effect due to the spill over of the
electronic charge density into the vacuum regisayD1),  where
and the other due to the potential step in a “reference” sys-
tem where there is no spill-over or rearrangement of charge o 1
(sayD,). The reference surface is composed of atoms with v(z)= Kf f v(X,Y,z)dxdy; (4)
their electron densities frozen at their bulk valdes., bulk

truncation for the ionicand electronic degrees of freedom, | w0 A is the area of the surface unit cell(x.y,2) is the

?nd thed_truncetltlcin IS a;:ssumeg t% be perforr:ned ?me ?h potential induced due to the spill over, and the integrations
weenadjacent plangs Iguré 5 shows a schematic of the o performed within the surface unit cell; a similar relation-
planar-averaged electronic charge density for both the hypoS

thetical ref ¢ d th it istent situat Ship holds forp(z). The solution of the above Poisson’s
elical reterence system an € sefi-consistent situa 'O'?e'quation with the boundary conditions given by vanishing
The work function can then be written as

potential and electric field &=+« is
¢=D1+(D2—Eg). ) o . B _—_

(D,—Eg) is purely an anisotropic material property, essen- v(z)= _47TJZ dz'z'p(z )+47er2 dz'p(z'). (5

tially a measure of the strength of the potential that binds an

electron to the materidln other words, the electron affinity . . — .

and D, is a surface property that depends on the the spill SinceD, Is given byv() v (=), the work function
: .can be written as

over of electronic charge at the surface, and can change with

the type of adsorbate on the surface, depending on how the .

gdsorbate affects the surface dipole momeqt. Thus, change§=4wf d2' 7' p(2')+(Dy— Ep)=4mul A+ (Dy—Ep),

in the work function of a surface due to various adsorbates —o

are brought about by changesDn alone It should be noted (6)
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TABLE I. Selected geometric parameters, work functigims 10 T :
eV) and edge dipole moments per unit surface @¢ia eV) for the

four-chain graphene ribbon for various cases of termination; see \/
Fig. 1 for a description of geometric symbols.

di, dys dx—c ¢ wlA

0

Clean 0.630 2.170 6.30 0.382

H-terminated 0.680 2146 1.102 3.31 0.142 < Ny
O-terminated 0775 2129 1.249 7.29 0.458 %

Cs-terminated 0685 2154 3390 255 0.081 m
Unrelaxed, clean 0.719 2.130 6.34 0.383 10 L |
0719  2.130 1.40 /\—/\

Reference system 0.000

where we have assumed that the asymptotic form for the \v/

second integral of Eq5) is 1/z'"¢(e>0) for z——, and

. , . _20 , ,
the dipole moment for the surface unit cell along #direc 005 03 o1 o 03 05
tion, u, is defined as Kk

® o S, FIG. 4. Band structure of H-passivated zigzag graphene ribbon.
M:J J J dx'dy’dz'z’p(x",y",z"), (7) The energy values shown are relative to the Fermi energy, and the
A k points are in units of (Z/a), wherea is the periodic length along

where thex andy integrations are performed within the sur- the ribbon edge.
face unit cell. We thus see that the work function varies
linearly with the dipole moment per unit area, with the slopean even lower value than with H-termination. In general, we
being 4, and the intercept bein®,—Eg. Therefore, an See that the more electropositive an adsorbate, larger is the
electron attempting to escape from a material has to suork function decrease, consistent with results reported in
mount two barriers: a surface barri@r the anisotropic elec- the literature’™’ Changes in the dipole moment with adsor-
tron affinity), D,—E, that binds the electron to the bulk, bates follow the work function changes. Clearly, adsorbates
and a d|po|e barrier entire|y due to the surface d|po|e molhat are more electropositive than the surface, because of
ment caused by the spill-over of the electronic charge densit{heir propensity to lose electrons, cause an attenuation of the
into the vacuum region. As we will see in the next section,electronic charge spill over, decreasing the dipole moment,
any adsorbate that tends to decrease the extent of electrondhereas more electronegative adsorbates enhance the spill
spill over into the vacuum will decrease the work function of over for the opposite reason.
the system in that direction. Table I also lists the dipole moments, which are calcu-
lated relative to a hypothetical reference system where there
is no leakage of the charge density from the edge into the
vacuum(designated as reference in Tab)e ds mentioned
Figure 1 shows a schematic of the model ribbon systemsarlier in Sec. lll, the reference ribbon is composed of atoms
considered, and Table | lists the results for the variously
terminated geometry optimized four-chain zigzag graphene 8 : .
ribbons; geometric parameters other than the ones listed in
Table | changed by less than a percent from the correspond-
ing bulk values. For comparison, we also list the results for
the unoptimizedC atoms fixed at their bulk positionslean
four-chain zigzag ribbon. In order to ascertain that the elec-
tronic structure of the systems considered here is in agree-
ment with the earlier tight-binding calculatidf,we have
calculated the band structure of the H-terminated graphene
ribbon, which we show in Fig. 4. As in the earlier study,

IV. RESULTS

[e2]
T
)

work function (eV)
ey

we see a flat band close to the Fermi level close to the Bril- 2t 8
louin zone boundaries; analysis of the charge density result-
ing from this band showed that the states responsible for the
flat part of the band were localized at the edge atoms. 0 ‘ . . ‘
The work function perpendicular to the zigzag edge and 0 0.1 02 0.3 0.4 05

. ) . dge dipol t it v
the edge dipole moment per unit surface area are also listed edge dipole moment per unit area (V)

in Table I. Interesting trends can be seen in the calculated FiG. 5. Linear correlation between the work function and the
work functions in Table |. The unpassivated, clean zigzagdge dipole moment per unit aréast two columns of Table) lof
edge has a rather high work function of 6.3 eV. This valuethe zigzag graphene ribbon for various terminations. The edge di-
decreases drastically with H termination. O termination in-pole moment is relative to a reference system for which there is no
creases the work function and Cs termination decreases it 1eakage of the electronic charge density into the vacuum.
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with their electron densities frozen at their bulk values. Asthe material, and the second one being directly related to the
anticipated, a linear correlation exisiBig. 5 between the surface dipole moment caused by the spill over of electronic
work function and dipole momernitvith an intercept corre- charge into the vacuum due to the creation of the surface.
sponding to the work function of the reference systefime  The latter contribution, which tends to increase the work
calculated slope of the plot is 12.72, in good agreement witliunction, can to a large extent, be minimized by a judicious
the anticipated value of #=12.57. Furthermore, Fig. 5 choice of adsorbategtypically, adsorbates that are more
indicates that there exists a minimum possible theoreticaglectropositive than the surfgcdhe former face-dependent
work function corresponding to the situation when the sur-contribution turns out to be the minimum possible work
face dipole moment is zer@.e., when there is absolutely no function achievable for a given surface. We have used the
charge spill over into the vacuymthis minimum ¢ is, of ~ zigzag edges of graphene, with the edge atoms terminated
courseD,— Eg (defined in the previous sectigran intrinsic ~ with various adsorbates, as a test case in order to illustrate
anisotropic material property. In the case of the zigzag edgthese concepts, and found that the minimum possible theo-
of graphene, the calculated minimum work function is 1.40retical work function in the direction perpendicular to the
ev. zigzag edgéand along the graphene plang about 1.40 eV.
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