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Abstract. Molecular-dynamics calculations were performed on zinc atom clusters to 
determine their equilibrium configurations using an embedded-atom method (EAM) potential 
developed for zinc. Calculation of the thermodynamic properties at Werent temperatures 
involved a Monte Carlo scheme in conjunction with statistical mechanical techniques. The 
harmonic approximation was used in the calculation of the vibrational contribution to the 
cluster partition function and the rigid-body approximation was used in the calculation of 
the rotational contribution. me above calculations were used to examine the Helmholtz free 
energy of formation of the clusters as a function of cluster size, temperature and pressure 
with the aim of determining the nucleation rates and critical supersaturation pressures. 
Three cluster-growth patterns were considered in all the above calculations and stability 
diagrams were plotted indicating the relative siability of clusters as a function of cluster size 
and lemperature far these three growth patterns. 

1. Introduction 

In recent years, considerable interest has been focused on materials with ultrafine 
microstructures [ I ]  with the anticipation that their properties will be superior to 
conventional materials that have phase or grain structures on a coarser size scale. Such 
materials with nanoscale grain sizes are called nanocrystalline materials and can be 
assembled from clusters of atoms (nanoclusters) typically composed of a few to a few 
thousand atoms. Recently. considerable research has been done on the synthesis and 
characterization of gas condensed nanophase metals and ceramics [Z-51. There has also 
been increasing interest in the nanoclusters themselves at the atomic level. 

Part of the motivation for studying clusters is the desire to understand how physical 
properties evolve in the transition from atom to cluster to small pieces of the bulk solid. 
Another motivation is associated with questions arising from the desire to use smaller 
and smaller solid structures in technological applications. Because of the variety of 
fields in which interest in clusters has arisen, approaches to their study vary 
considerably. In some fields of chemical physics, one example being nucleation 
theory, the thermodynamic properties of small clusters are of great importance. The 
development of fast computers has allowed investigators to model these properties by 
atomic simulations. Total-energy calculations can be used to predict the structural 
arrangements and properties of clusters. 
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There are essentially two types of approaches to these calculations, ab inifio and 
empirical. The former provides more or less exact solutions via some version of 
Hartree-Fock formalism. The latter employs interatomic interaction potentials that are 
empirical in nature. In the case of ab initio calculations, one is less concerned with 
limitations imposed on the accuracy than on the size of the cluster, and vice versa for 
calculations based on empirical potentials. Ab initio calculations require quite 
signifcant resources when the system involves more than about 200 electrons, 
although this number is increasing as faster (e.g. massively parallel) computers 
become available. On the other hand, the advantage of empirical potentials is that such 
resource limitations are not encountered until the system sizes exceed about 104-105 
atoms. Our interest here concerns zinc clusters with too many atoms to be amenable to 
treatment by ab initio calculations, and therefore, we have employed a type of potential 
based on the embedded-atom method (EAM) [6-81. 

Some early studies made use of pairwise potentials to determine the relative energies 
of small clusters of identical atoms. Using static relaxation, Hoare and Pal [9] identified 
several growth sequences for the formation of small clusters of argon atoms. A formal 
physical-cluster theory of cluster nucleation has been put forward by Lee, Barker and 
Abraham [lo]. Molecular-dynamics calculations have also been performed on Lennard- 
Jones argon clusters by McGinty [l 11 over a wide range of sizes and temperatures. 
More recently, the thermodynamics and nucleation of small clusters of aluminum 
atoms were studied using an interatomic potential obtained by the EAM by Ramprasad 
and Hoagland [12]. 

Pair potentials, while yielding the total energy directly, require the use of an 
accompanying volume-dependent energy term to properly describe the elastic 
properties of metals. The presence of free surfaces creates special difficulties in 
applying such a volume-dependent energy. In addition, in the case of metallic systems, 
the interaction between atoms is intrinsically many-body in nature. The above 
considerations have lead to the evolution of many-body potentials. 

In the present work, an EAM interatomic potential for zinc was developed. The 
procedure involved is described in the first section of this paper. Molecular-dynamics 
techniques were then used to study zinc clusters to find their equilibrium configurations 
(most stable configurations at absolute zero) and also to study the structural geometry 
of the very small clusters. A Monte Carlo scheme was used to find their configuration at 
temperatures other than absolute zero, statistical mechanical techniques were used to 
evaluate the Helmholtz free energy of formation of the clusters and eventually the 
nucleation rates were calculated at different temperatures. Partition functions are 
separated and all degrees of freedom are explicitly considered. As a result the 
translation-rotation paradox [13], which arises due to neglecting the translational and 
rotational terms, is taken care of. Further, as solid clusters are dealt with here, 
ambiguities associated with the liquid drop vanish. Though the extremely high surface- 
to-volume ratio of the very small clusters is prone to create difficulties, the EAM potential 
used here (which is typically designed to study bulk material properties) is shown to 
suggest some interesting properties of zinc clusters. 

2. The potential 

Daw and Baskes developed the embedded-atom method, a technique based on local 
electron-density theory, for the construction of many-body potentials for metals. The 
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method describes the potential energy of an atom in a crystal as the sum of a long-range 
embedding energy, and a short-range pair potential. The embedding energy arises from 
the change of the energy of an electron gas when ion cores are embedded in the electron 
gas. The EAM functional form for calculating the energy of an atom is given by [14, 151 

where 

Ei is the potential energy associated with atom i, pi is the total electron density at atom i 
due to the rest of the atoms in the system, Fi(pi) is the energy required to embed atom i 
into the electron density pi ,  +ij(ri j)  is the pair potential between atoms i and j separated 
by the distance rij ,  andA(ri,) is the contribution to the electron density of i due to the 
presence ofj. In the case of zinc, the summation included contributions up to the fifth- 
nearest neighbours. In order to apply the EAM, thef, @ and Ffunctions must be known. 
The standard fitting procedure to determine these functions is to choose specific 
functional forms for f and @, to determine the parameters off and + by fitting to 
experimental data and finally to determine F by Foiles' [I61 scheme. 

An exponential functional form is chosen forf 

where re is the equilibrium interatomic separation. From the free-atom electron-density 
data tabulated in the Clementi and Roetti double zeta tables [17], the spherically 
averaged electron-density distribution around an atom is determined as a function of 
the distance from the centre of the atom. The total electron density was taken to be a 
h e a r  sum of the s electron contributions. Figure 1 shows the electron density and a 
least-squares fit of equation (3) that yields @ = 7.34 for re = 2.665 angstroms. 

In order to get the pair potential, the bulk and shear moduli, the lattice parameter, 

.WO1 
0.8 0.8 1.0 1.2 1.4 1.6 P 

Figure 1. The spherically averaged free-atom electron density data obtained lrom Clementi 
and Roetti tables for zinc; the least squares fit represented by the straight line for which 
p = exp [-@(r/re-,)] gave p = 7.34. 
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the cia ratio and the energy of formation of a single vacancy are used for fitting. The 
equations relating the equilibrium properties such as the cohesive energy (E,) and 
the linear elastic constants (Cijki) to the KAM parameters are dealt with extensively in the 
literature [I  1, 141. For HCP metals with c/a ratio less than or equal to the ideal value, 
the usual method to obtain the pair potential is to assume an exponential form similar 
to that of the electron density. However, dficulties were encountered (i.e. the lattice 
equilibrium condition could not be solved when an exponential functional form was 
chosen for 4) when a similar procedure was adopted for zinc which has a c/a ratio much 
greater than ideal. As a result, a slightly different procedure which introduces a function 
called the effective pair potential, was adopted. A fourth-order polynomial was selected 
to represent his effective pair potential instead of an exponential form. This form with 
its five coefficients to be determined from various physical properties avoids the 
computational difficulties of the exponential form. 

Starting from equation (l), the argument develops as follows. The equilibrium 
electron density is added and subtracted from the total electron density and the 
total energy is written as a Taylor series expansion about the equilibrium electron 
density 
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where 

+ h j )  = 2Fi'(~e) f ( r i j )  + 4ij (rill 

is an effective pair potential. Also, the EAM potential is invariant to a transformation in 
which a term linear in the electron density is added to or subtracted from the 
embedding function. Making an appropriate adjustment to the two-body potential, i.e., 
the transformation 

makes no change in the potential. One can always choose the constant f so that F'(p,)  is 
zero and as a result +(r) = 4 ( r ) .  It can he shown that certain properties that are used 
for fitting can be expressed, after some algebraic manipulations, solely in terms of the 
effective pair potential in a very general manner. Also, if we decide to choose 
F'(p,) = 0, then we can merely replace +(r) by +(r).  According to the above treatment, 
and following the derivations in [14], the lattice parameter, the cia ratio, the bulk and 
shear moduli and the single-vacancy formation energy are related to the pair potential 
as follows: 
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(i) the lattice parameter and cia ratio are related to the pair potential in 

(ii) the bulk modu1us.B is given by 
[ F " ( p , ) ( r ~ p : ) ' + ~ C ( r ~  m 2 @ n C)l = 9 % B  

m 

(iii) the shear modulus G is given by 
m 2 I, [F"(p,) ( r r d ) 2 ( 1  - 3Q) +$c(re ) 4 (rem)] = 15%G 

m 

(iv) the single-vacancy formation energy is approximately given by 
uf f$(r,") = -El,. 

In the above 

The sums are over the m neighbours and fie is the equilibrium atomic volume 
Equations (7) and (8) can be combined to eliminate F"(p,) 

~ ~ ( r F ) 2 r $ 1 1 ( r , " )  = 15n2,G-9(1 - 3 Q ) O , E .  
2 m  

In addition, we have imposed the condition that both potentials go smoothly to zero at 
the cut-off distance, so that 

We choose the following functional form for r$ 

+ ( I )  = &(r/r, - + K3(r/re - q3 + K2(r/re - 1)' + Kl(r/re  - 1) + & (13) 
and solve for the five coefficients using equations (6), (19)-(12). Figure 2 shows a plot 
of the pair potential versus the scaled interatomic distance for a cut-off distance of 
4.84 8, (between the fifth- and sixth-nearest neighbours). The plot indicates that the pair 
potential is highly repulsive for interatomic distances that are much smaller than the 
equilibrium nearest-neighbour distance, attractive for distances in the vicinity of the 
equilibrium nearest-neighbour distance and repulsive for larger distances and goes to 
zero smoothly at the cut-off. It was observed that the pair potential varied drastically 
with the cut-off; some values of the cut-off. in fact. yielded unrealistic relationships 
between the pair potential and interatomic distance where the pair potential was highly 
attractive for very small interatomic separations and repulsive for large separations. 

Finally, the embedding energy is determined as a function of r using Foiles' scheme, 
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Figure 2. The effective pair potential versus the Figure 3. Plot of the embedding energy as a function 
scaled interatomic distance with the cut-off at 4.84k of the scaled electron density for zinc. 

by uniformly dilating the lattice and calculating the resultant energy change from a 
universal equation of state given by Rose ef a1 [I81 

E(a) = -&[I + - I)] exp (+a/% - 1)) (14) 

where cy. the reduced lattice parameter is given by cy = 3(n,B/E,) and a is the lattice 
parameter. Using equations (1) and (14) F(p) is obtained. The pair potential is obtained 
for several values of the cut-off distance; using the calculated pair potential and the 
total energy given by equation (14), the embedding energy is evaluated. The elastic 
constants are then calculated with this potential; the cut-off which results in a minimum 
deviation of the calculated elastic constants from the experimental values is determined; 
the potential which is based on this particular cut-off is the one that is used in 
subsequent calculations. Figure 3 shows the dependence of the embedding energy on 
the scaled electron density for zinc. Figure 4 shows the total potential energy per atom 
for zinc (c/a = 1.85629) as a function of the lattice parameter a. 

Zinc, a HCP metal, has five independent single crystal elastic constants. These elastic 
constants were calculated [ I I ,  141 using the EAM potential developed for zinc. Figure 5 
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Figure 4. Variation of the total energy per atom with 
the lattice parameter. 0,  for zinc (cfa = 1.85629) as 
given by the Rose equation of state. 

Figure 5. Dependence of the root mean square 
deviation of the predicted elastic constants from the 
experimental values on the cut-off distance for zinc. 
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Table 1. Physical properties of zinc. All energies are in eV, distances in A and elastic 
constants. bulk and shear moduli in eVA-'. 

~ 

Inputs used for fitting in equations (6), (9)-(12) and (14) 

0 2.665 
cia 1.85629 

(EL 0.4381 
E:: 0.5 
, , .  
E, 1.35 

Elastic constants Experimental Calculated 

CI I 0.9891 0.9565 
c12 0.1969 0,3432 
cl 3 0.3965 0.2190 
c 3 3  0.385 0.4677 
C44 0.25 0.3735 
(G)" 0.2845 0.3174 

shows the variation of the root-mean-square deviation of the predicted elastic constants 
from the experimental ones with the cut-off. Certain elastic constants, C33 in particular, 
varied quite drastically with the cut-off. From figure 5 it can be noted that the RMS 
deviation was minimum for a cut-off distance of 434A on which the potential for Zn 
that was used in subsequent calculations was based. Table 1 compares experimental 
values of various properties with those predicted by the EAM potential. It can be seen 
that, with the exception of CI2, there i s  reasonable agreement in the elastic constants. 

3. Computational procedure 

Clusters which were part of the HCP, FCC and icosahedral lattices were generated and 
relaxed to equilibrium at OK by a molecular-dynamics technique [19]. It is worth 
mentioning here that an icosahedron (figure 6 )  is a geometric structure that has 12 
vertices and 20 faces and has six 5-fold symmetry axes. To get the cluster configurations 
at temperatures other than 0 K, a Metropolis Monte Carlo scheme [20] was used to 
obtain the expectation values of the coordinates of the cluster atoms, the average 
potential energies and the principal moments of inertia at a temperature T. The 
procedure begins with an equilibrium ( T -  0 K) cluster and from this a Boltzmann- 
weighted set of configurations is generated by random displacements of the atoms in the 
cluster. The following results were based on 10000 such cofigurations which were 
accumulated for averaging for each temperature of the simulation. 

The partition function of a cluster is evaluated in the same way one would evaluate 

Figure 6. r2n icosahedron. 
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that of a polyatomic molecule. The cluster Hamiltonian is assumed to be separable: 

R Ramprasad and R G Hoagland 

H = Hvib + H,t + Ht, (15) 

4 = qvibqrotqtr. (16) 

enabling the cluster partition function to be written as a product 

The individual terms in the product are evaluated from standard statistical mechanical 
formulas using the harmonic approximation to evaluate the vibrational component qv ib ,  
the rigid-rotor approximation to evaluate the rotational component qrot, and the 
perfect-gas approximation to evaluate the translational component qtr. 

3i-6 exp ( -hff j /2kT) 
qi,vib = (g) 5 1 - exp ( -h f f j / kT)  

where P is the partial pressure of i-atom clusters, m is the mass of a single atom, h is 
Planck‘s constant, U the averaged potential energy of the cluster and IA,  I,, IC, the 
principal moments of inertia. The vibrational partition function is calculated by normal 
mode analysis. This involves diagonalization of the force-constant matrix whose 
elements are for an i-atom cluster, the (3i)’ second derivatives of the cluster’s 
equilibrium potential energy [21]. The elements of the force-constant matrix are 
evaluated by inserting equilibrium coordinate values of the atoms into the above 
analytic expression for the second derivatives. The normal frequencies of oscillation are 
obtained from the eigenvalues U,’ of this matrix by the relation 27ruj = U) These 
partition functions are used to calculate the Helmholtz free energy of formation of the 
cluster as 

A(i, T )  = -kTln(q) .  (20) 

Since our motivation in this work stems primarily from interest in determining the 
critical conditions for nucleation of clusters from the vapour, the quantity that is 
eventually calculated is the critical supersaturation pressure, the pressure at which the 
vapour becomes metastable relative to an i-atom cluster. To calculate the critical value, 
and equilibrium theory of rates is assumed. The critical supersaturation pressure is 
identified as the pressure at which the rate of nucleation becomes large. In practice, this 
identification of the critical supersaturation pressure can be made with tittle ambiguity 
since the calculated rate increases quite drastically from a very small to a very large 
value as the pressure is increased through the critical value. The steady-state rate of 
nucleation was calculated as 

J = [P/(2xmkT)”2]S(i’)el(AA’/3xkTi*Z)t/2 exp ( -AA*/kT)  ( 2 1 )  

where i* is the size, S(i*) the surface area and AA’ the Helmholtz free energy of 
formation of the cluster with the largest free energy of formation. 
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4. Results and discussion 

4.1. Clusters at OK 
As mentioned before, each equilibrium cluster is formed by relaxing a non-equilibrium 
cluster. The most stable 4-atom cluster is found to he the one having a dense regular 
tetrahedral structure as shown in figure 7. We note that certain other approaches such 
as the self-consistent local spin density (LSD) calculations 1221, or the generalized valence 
bond (GVB) approach [23] give different results in that they predict the 4-atom Na and 
Li clusters with a planar-rhombus geometry to be more stable. This geometry is not 
likely to emerge as a stable one for an EAM model because there an intrinsic dependence 
on bond angle is needed to favour a rhombus over a tetrahedron but this is a feature 
lacking in the EAM potential. The most stable 5-atom cluster was the one obtained when 
an atom was placed on one of the faces of the tetrahedral 4-atom cluster. 

From this point on, to generate clusters in a systematic way, and since clusters with 
more than five atoms have at least one metastable configuration, three distinct 
symmetry patterns, namely HCP, FCC and icosahedral were followed. 

An octahedral cluster is the most stable 6-atom cluster. This is an FCC close-packed 
structure as shown in figure 7. The first instance of a cluster with the geometric structure 
of a pentagonal hipyramid is a 7-atom cluster which falls in the category of icosahedral 
clusters, since a pentagonal bipyramid is part of an icosahedron. A picture of a 7-atom 
cluster is shown in figure 7. Five regular tetrahedra fit almost perfectly around a 
common edge to form a pentagonal hipyramid, but not quite; some distortion (about a 
1% change in bond angle and bond length) is necessary in each of the tetrahedra in 

Figure 7. Equilibrium clusters. 
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order to make a perfect fit. This is also the reason why the basic building block of an 
icosahedral packing is a distorted tetrahedron. This 7-atom pentagonal bipyramidal 
cluster was quite stable and, in fact, the 7-atom FCC cluster was unstable relative to the 
icosahedral geometry. As a further indication of the relative stability of the icosahedral 
lineage, there is a very large drop in energy per atom on going from 6- to 7-atoms as 
shown in figure 8. The most stable 8-atom cluster also had icosahedral symmetry with a 
substantially smaller drop in energy per atom than the 6- to 7-atom step indicating that 
the 7-atom cluster is a particularly stable structure. It is also interesting to note that the 
energy per atom of HCP 6- and 7-atom clusters was higher than that of the 5-atom 
cluster. Mention of this will be made later when discussing free energy and nucleation- 
kinetics considerations. The most stable clusters with atoms from 9 to 14 had 
icosahedral symmetry; the energy difference between the 12- and 13-atom clusters was 
much greater than that between the 13- and 14-atom clusters; the reason for this is that 
the 13-atom cluster is the smallest cluster with an atom not on the surface. The 13-atom 
icosahedral cluster, shown in figure 7, has a potential energy which is about 3.5% less 
than that of the corresponding HCP cluster. The most stable 15-atom cluster was a HCP 
cluster. From this point on, the icosahedral configuration was most preferred for 
clusters up to 57 atoms. 

It is worthwhile to examine some clusters which have closed-shell configurations 
and other types of special symmetry. HCP clusters with 19-, 21-, 39-, 51- and 57-atoms 
have completely filled second, third, fourth, fifth and sixth shells respectively; of the FCC 
clusters, the 19-, 43- and 55-atom clusters have fully 6lled second, third and fourth 
shells. The above may suggest that these clusters could have the lowest energy, but 
calculations show that the icosahedral clusters (as large as 57 atoms/cluster) are the 
ones which have lowest energy for clusters with more than 6 atoms at OK. 

The 23-atom icosahedral cluster (the most stable 23-atom cluster) has the geometry 
of a pentagonal bipyramid as shown in figure 7. Another cluster of interest is the lowest 
energy 55-atom cluster, also shown in figure 7, which has the geometric structure of an 
icosahedron; this cluster has a filled third shell in this geometry while the 13-atom 
icosahedral cluster has a lilled 6rst shell. Figure 8 shows the potential energy per atom 
of zinc clusters versus the number of atoms per cluster from which it is evident that 
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E y r e  8. Potential energy per atom of Zn clusters versus numben of atoms per cluster for 
three types of symmetry pattems. 
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clusters with 7, 13, 19, SS atoms exhibit special stability. These numbers - 7, 13, 19, 55 
- are referred to as magic numbers. 

4.2. Nucleation of clusters from vapour 

The free energies of formation of the clusters were calculated from 

AA& T,P) =A&, T) + (1 - i )kTin P 

AAa(i, T) = A a ( &  T) - nAo(l, T) 

AO(l, T)  = -kTln(q,,,). (7-4) 

(22) 

(23) 

where 

is the standard Helmholtz free energy of formation of an i-atom cluster. A O ( l ,  T) is the 
free energy of a 1-atom cluster which is the gas and is given by 

The standard free energy of formation of zinc clusters at 1650 K for HCP, icosahedral 
and FCC growth schemes as a function of cluster size is given in figure 9. It can be seen 
that the free energy of formation of the 7-atom HCP cluster is more than twice as large as 
that of the 7-atom icosahedral cluster. The fact that the 7-atom HCP cluster is so 
unstable when compared to the 7-atom icosahedral cluster is, to a large extent, 
suggestive of a high nucleation barrier to the growth of the HCP clusters. This will be 
discussed below. The low stability of this particular HCP cluster only supports the earlier 
results, obtained at 0 K by molecular dynamics calculations, that the 7-atom HCP cluster 
has higher potential energy per atom than the 5-atom cluster. 

The free energy of formation was studied as a function of the number of atoms per 
cluster in the temperature range 14SOK-1650K. The trend that was noticed was that 
the most stable 6-atom cluster was a FCC cluster; for clusters with more than 6 atoms but 
13 or less atoms the icosahedral clusters were the most stable. Thereafter, the HCP 
clusters were the ones with lowest free energy of formation with the exception of the 16- 
atom cluster, in which case the icosahedral symmetry was preferred. Nucleation rates 
were then calculated as a function of temperature and pressure and subsequently the 
critical supersaturation pressures were identified at different temperatures as those 
pressures a t  which the nucleation rates increased from a very small to a very large value. 
Figure 10 shows the dependence of the critical supersaturation pressure on temperature 
for the HCP, FCC and icosahedral zinc clusters. As was expected the nucleation kinetics 
favoured the HCP and FCC growth patterns least. 

The free energy curves were then used to plot stability diagrams at 1 atm. and 
0.5 a h .  as shown in figure 11. It is evident that though small icosahedral clusters are 
more strongly favoured at low temperatures, the HCP configuration having more than 13 
atoms (with the exception of the 16-atom cluster) is more stable at higher temperatures. 
A! temperatures close to absolute zero, the icosahedral configuration could be stable for 
zinc clusters having up to at least 57 atoms; however, as the temperature is increased, 
the HCP structure is entropically favoured and so the HCP clusters become stable. The 
EAM version of zinc as presented here has a slightly higher boiling point than the actual 
value. The boiling point of Zn is about 1400K as predicted by these calculations when 
compared to the actual boiling point which is 1180K. It is also worth noting that the 
features present in this diagram are not simply characteristic of the EAM, since, in a 
similar study by us [12] on EAM aluminum clusters, the corresponding phase diagram 
was considerably different, showing much less structure than here. 
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In the above discussion, several model calculations of clusters using an EAM 

potential were presented. As was just mentioned, such calculations inevitably contain 
elements of uncertainty associated with the potentials, approximations due to ignoring 
the effects of vibrational anharmonkity and the steady-state approximations involved 
in the calculation of the nucleation rates. However, calculations of the type reported 
here are instructive and are the first step in the development of understanding of 
clusters on an atomic level. An approach on this level helps to reduce uncertainties and 
ambiguities concerning the exact nature of micro clusters. 

5. Summary 

Results that were obtained in the present study can be summarized as follows. 

(i) Icosahedral short-range order is strongly favoured at temperatures close to 
absolute zero in the small clusters of zinc atoms having up to 57 atoms; clusters with 7, 
13, 19, 55 (magic numbers) atoms exhibited special stability. 

(ii) The study of critical supersaturation pressure as a function of temperature 
indicated that the HCP clusters had the smallest driving force for nucleation. The reason 
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Figure 11. Stability diagrams for Zn at (U)  P = 1 atm and (b) P = 0.5 am.  
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for this behaviour was probably due to the low stability of the 7-atom HCP cluster which 
manifested itself both in the molecular dynamics and the Monte Carlo simulations. 

(iii) The stability diagrams showed that, at high temperatures, clusters with more 
than 13 atoms preferred the HCP configuration; the reason being that the HCP 
configuration is entropically more favoured at high temperatures. 
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