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Abstract. Molecular-dynamics calculations were performed on zinc atom clusters to
determine their equilibrium confignrations using an embedded-atom method (Eam) potential
developed for zine. Calculation of the thermodynamic properties at different temperatures
involved a Monte Carlo scheme in conjunction with statistical mechanical techniques. The
harmonic approximation was used in the calculation of the vibrational contribution to the
cluster partition function and the rigid-body approximation was used in the caiculation of
the rotational contribution, The above calculations were used to examine the Helmholtz free
energy of formation of the clusters as a function of cluster size, temperature and pressure
with the aim of determining the nucleation rates and critical supersaturation pressures.
Three cluster-growth patterns were considered in all the above calculations and stability
diagrams were plotted indicating the relative stability of clusters as a function of cluster size
and temperature for these three growth patterns.

1. Introduction

In recent years, considerable interest has been focused on materials with ultrafine
microstructures [1] with the anticipation that their properties will be superior to
conventional materials that have phase or grain structures on a coarser size scale. Such
materials with nanoscale grain sizes are called nanocrystalline materials and can be
assembled from clusters of atoms {nanoclusters) typically composed of a few to a few
thousand atoms. Recently, considerable research has been done on the synthesis and
characterization of gas condensed nanophase metals and ceramics [2-5]. There has also
been increasing interest in the nanoclusters themselves at the atomic level.

Part of the motivation for studying clusters is the desire to understand how physical
properties evolve in the transition from atom to cluster to small pieces of the bulk solid.
Another motivation is associated with questions arising from the desire to use smaller
and smaller solid structures in technological applications. Because of the variety of
fields in which interest in clusiers has arisen, approaches to their study vary
considerably. In some fields of chemical physics, one example being nucleation
theory, the thermodynamic properties of small clusters are of great importance. The
development of fast computers has allowed investigators to model these properties by
atomic simulations. Total-energy calculations can be used to predict the structural
arrangements and properties of clusters.
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There are essentially two types of approaches to these calculations, ab initio and
empirical. The former provides more or less exact solutions via some version of
Hartree—Fock formalism. The latter employs interatomic interaction potentials that are
empirical in nature. In the case of ab initio calculations, one is less concerned with
limitations imposed on the accuracy than on the size of the cluster, and vice versa for
calculations based on empirical potentials. A& imifio caleulations require quite
significant resources when the system involves more than about 200 electrons,
although this number is increasing as faster (e.g. massively parallel) computers
become available. On the other hand, the advantage of empirical potentials is that such
resource limitations are not encountered until the system sizes exceed about 10*-10°
atoms. Our interest here concerns zinc clusters with too many atoms to be amenable to
treatment by ab initio calculations, and therefore, we have employed a type of potential
based on the embedded-atom method (Eam) [6-8].

Some early studies made use of pairwise potentials to determine the relative energies
of small clusters of identical atoms. Using static relaxation, Hoare and Pal [9] identified
several growth sequences for the formation of small clusters of argon atoms. A formal
physical-cluster theory of cluster nucleation has been put forward by Lee, Barker and
Abraham [10]. Molecular-dynamics calculations have also been performed on Lennard-
Jones argon clusters by McGinty [11] over a wide range of sizes and temperatures.
More recently, the thermodynamics and nucleation of small clusters of aluminum
atoms were studied using an interatomic potential obtained by the Eam by Ramprasad
and Hoagland [12].

Pair potentials, while yielding the total energy directly, require the use of an
accompanying volume-dependent energy term to properly describe the elastic
properties of metals. The presence of free surfaces creates special difficulties in
applying such a volume-dependent energy. In addition, in the case of metallic systems,
the interaction between atoms is intrinsically many-body in nature. The above
considerations have lead to the evolution of many-body potentials.

In the present work, an EAM interatomic potential for zinc was developed. The
procedure involved is described in the first section of this paper. Molecular-dynamics
techniques were then used to study zinc clusters to find their equilibrium configurations
(most stable configurations at absolute zero) and also to study the structural geometry
of the very small clusters. A Monte Carlo scheme was used to find their configuration at
temperatures other than absolute zero, statistical mechanical techniques were used to
evaluate the Helmholiz free energy of formation of the clusters and eventually the
nucleation rates were calculated at different temperatures. Partition functions are
separated and all degrees of freedom are explicitly considered. As a result the
transtation—rotation paradox [13], which arises due to neglecting the translational and
rotational terms, is taken care of. Further, as solid clusters are dealt with here,
ambiguities associated with the liquid drop vanish. Though the extremely high surface-
to-volume ratio of the very small clusters is prone to create difficulties, the EaM potential
used here (which is typically designed to study bulk material properties) is shown to
suggest some interesting properties of zinc clusters.

2. The potential

Daw and Baskes developed the embedded-atomn method, a technique based on local
electron-density theory, for the construction of many-body potentials for metals. The
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method describes the potential energy of an atom in a crystal as the sum of a long-range
embedding energy, and a short-range pair potential. The embedding energy arises from
the change of the energy of an electron gas when ion cores are embedded in the electron
gas. The eam functional form for calculating the energy of an atom is given by [14, 15]

E.v,' = Fi(pz) +éz¢ij(rij) (1)
J#1
where
o= Z firy) (2)
J# 1

E, is the potential energy associated with atom i, p; is the total electron density at atom #
due to the rest of the atoms in the system, F;(g;) is the energy required to embed atom i
into the electron density p;, @;;{r;;)} is the pair potential between atoms / and j separated
by the distance r;;, and fi(r;,) is the contribution to the electron density of i due to the
presence of /. In the case of zinc, the summation included contributions up to the fifth-
nearest neighbours. In order to apply the Eam, the f, ¢ and F functions must be known.
The standard fitting procedure to determine these functions is to choose specific
functional forms for f and ¢, to determine the parameters of f and ¢ by fitting to
experimental data and finally to determine F by Foiles® [16] scheine.
An exponential functional form is chosen for f

f(r) = exp[-B(r/re — 1)] (3)

where . 18 the equilibrium interatomic separation. From the free-atom eleciron-density
data tabulated in the Clementi and Roetti double zeta tables [17], the sphericaily
averaged electron-density distribution around an atom is determined as a function of
the distance from the centre of the atom. The total electron density was taken to be a
linear sum of the s electron contributions. Figure 1 shows the electron density and a
least-squares fit of equation (3) that yields 3 = 7.34 for ¢, = 2.665 angstroms.

In order to get the pair potential, the bulk and shear moduli, the lattice parameter,
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Figure 1, The spherically averaged free-atotn electron density data obtained {rom Clementi
and Roetti tables for zinc; the least squares fit represented by the straight line for which
p = exp[~B(r/re1)] gave B =7.34.
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the ¢fa ratio and the energy of formation of a single vacancy are used for fitting. The
equations relating the equilibrium properties such as the cohesive energy (E,) and
the linear elastic constants (Cyz;) to the EAM parameters are dealt with extensively in the
literature [11, 14]. For HCP metals with ¢/a ratio less than or equal to the ideal value,
the usual method to obtain the pair potential is to assume an expouential form similar
to that of the electron density. However, difficulties were encountered (i.e. the lattice
equilibrium condition could not be solved when an exponential functional form was
chosen for ¢) when a similar procedure was adopted for zinc which has a ¢/a ratio much
greater than ideal. As a result, a slightly different procedure which introduces a function
called the effective pair potential, was adopted. A fourth-order polynorsial was selected
to represent his effective pair potential instead of an exponential form. This form with
its five coefficients to be determined from various physical properties avoids the
computational difficulties of the exponential form.

Starting from equation (1), the argument develops as follows. The equilibrium
electron density is added and subtracted from the total electron density and the
total energy is written as a Taylor series expansion about the equilibrium electron
density

Eipe = 2—&(; f("ij)) +3 Z by (riy)

ii#]
= ZF:‘(Pc‘f‘ (Z Sl - Pe)) +% Z ¢y (riz)
z j G55#i
= Z [Fr'(ﬁ'e) - peE',(Pe)] +% Z 2E',(pe)f(rij) +§l Z ¢:‘j (rz'j)
; i) i
m > [Fipe) — peFi(pe)] +1 > () (4)
i iEf

where
W(ry) = 2 (pe) f(ri) + b4 (rs))

is an effective pair potential. Also, the eaM potential is invariant to a transformation in
which a term linear in the electron density is added to or subtracted from the
embedding function. Making an appropriate adjustment to the two-body potential, i.e.,
the transformation

Fpe) < F(pe) + tpe
¢lre ) & o) — 21 ()

makes no change in the potential. One can always choose the constant ¢ so that F'(p, ) is
zero and as a result ¢(r) = ¢(r). It can be shown that certain properties that are used
for fitting can be expressed, after some algebraic manipulations, solely in terms of the
effective pair potential in a very general manner. Also, if we decide to choose
F'(p,) = 0, then we can merely replace 3(r) by ¢(r). According to the above treatment,
and following the derivations in [14], the lattice parameter, the ¢/a ratio, the bulk and
shear moduli and the single-vacancy formation energy are related to the pair potential
as follows:
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(i) the lattice parameter and ¢/a ratio are related to the pair potential in

S (R 2 st ©)

m

(il} the bulk modulus B is giver by
[F"{pe) (rd" Pe zz(re "(r)] =99, B (7)

(ifi} the shear modulus G is given by
[F(pe) (00 ) (1= 3Q) +4) (") '6 ()] = 1592 G (8)
m
{(iv) the single-vacancy formation energy is approximately given by
$6(r") ~ ~EiY. )
In the above

pi= D (E) e

m

O =q1q2 + 9293 + 1y

{Z[ GATLATME: )}/(rep;).

The sums are over the m neighbours and £, is the equilibrium atomic volume.
Equations (7} and (8) can be combined to eliminate F"(p,)

3 m e IH
TQ;(% )e"(rl') = 150, G - 9(1 - 30)2. B. (10)

In addition, we have imposed the condition that both potentials go smoothly to zero at
the cut-off distance, so that

$lreu) = 0 (11)
¢'(rea) = 0. (12)

We choose the following functional form for ¢
$(r) = Kalr/re ~ 1)* + Kalr/re = 1)’ + Ky(r/re = 1P + Ki(r/re — 1) + Ky (13)

and solve for the five coefficients using equations (6), (19)—(12). Figure 2 shows a plot
of the pair potential versus the scaled interatomic distance for a cut-off distance of
4.84 A (between the fifth- and sixth-nearest neighbours). The plot indicates that the pair
potential is highly repulsive for interatomic distances that are much smaller than the
equilibrium nearest-neighbour distance, attractive for distances in the vicinity of the
equilibrium nearest-neighbour distance and repulsive for larger distances and goes to
zero smoothly at the cut-off. It was observed that the pair potential varied drastically
with the cut-off; some values of the cut-off, in fact, yielded unrealistic relationships
between the pair potential and interatomic distance where the pair potential was highly
attractive for very small interatomic separations and repulsive for large separations.
Finally, the embedding energy is determined as a function of » using Foiles® scheme,
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Figure 2. The effective pair potential versus the Figure3. Plot of the embedding energy as a function
scaled interatomic distanee with the cut-off at 4.84 A.  of the scaled electron density for zine.

by uniformly dilating the lattice and calculating the resultant epergy change from a
universal equation of state given by Rose et af [18]

E(a) = —E[l + a{afao — 1)] exp (~ala/as — 1)) (14)

where «, the reduced lattice parameter is given by & = 3(£.B/E;) and a is the lattice
parameter. Using equations (1) and (14) F(p) is obtained. The pair potential is obtained
for several values of the cut-off distance; using the calculated pair potential and the
total energy given by equation (14), the embedding energy is evaluated. The elastic
constants are then calculated with this potential; the cut-off which results in a minimum
deviation of the calculated elastic constants from the experimental values is determined;
the potential which is based on this particular cut-off is the one that is used in
subsequent calculations. Figure 3 shows the dependence of the embedding energy on
the scaled electron density for zinc. Figure 4 shows the total potential energy per atom
for zinc (¢/a = 1.85629) as a function of the lattice parameter a.

Zinc, a ucp metal, has five independent single crystal elastic constants. These elastic
constants were calculated [11, 14] using the EaM potential developed for zinc. Figure 5
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Figure 4. Variation of the total energy per atom with ~ Figure 5. Dependence of the root mean square
the lattice parameter, &, for zine {c/a = 1.85629) as  deviation of the predicted elastic constants from the
given by the Rose equation of state. experitniental values oa the cut-off distance for zine,
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Table 1. Physical properties of zinc. Al energies are in eV, distances in A and elastic
constants, bulk and shear moduli in eV A™".

Inputs used for fitting in equations (6), (9)-(12) and (14)

a 2.665

¢la 1.85629

£ 0.5

{B), 0.4381

E, 1.35
Elastic constants Experimental Calcnlated
o 0.9851 0.9565
Cin 0.1969 (1,3432
Cis 0.2965 0.2190
Cy3 0.385 0.4677
Cas 0.25 0.3735
(&Y, 0.2843 03174

shows the variation of the root-mean-square deviation of the predicted elastic constants
from the experimental ones with the cut-off. Certain elastic constants, C; in particuiar,
varied quite drastically with the cut-off. From figure 5 it can be noted that the rms
deviation was minimum for a cut-off distance of 4.84 A on which the potential for Zn
that was used in subsequent calculations was based. Table | compares experimental
values of various properties with those predicied by the EaM potential. It can be seen
that, with the exception of Cy,, there is reasonable agreement in the elastic constants.

3. Computational procedure

Clusters which were part of the Hee, Fec and icosahedral lattices were generated and
relaxed to equilibrium at 0K by a molecular-dynamics technique [19]. It is worth
mentioning here that an icosahedron (figure 6) is a geometric structure that has 12
vertices and 20 faces and has six 5-fold symmetry axes, To get the cluster configurations
at temperatures other than 0K, a Metropolis Monte Carlo scheme [20] was used to
obtain the expectation values of the coordinates of the cluster atoms, the average
potential energies and the principal moments of inertia at a temperature 7. The
procedure begins with an equilibrium (T~ 0K) cluster and from this a Boltzmann-
weighted set of configurations is generated by random displacements of the atoms in the
cluster. The following resuits were based on 10000 such configurations which were
accumilated for averaging for each temperature of the simulation.

The partition function of a cluster is evaluated in the same way one wouid evaluate

Figure 6. An icosahedron.
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that of a polyatomic molecule. The cluster Hamiltonian is assumed to be separable:
H = Hyy, + Hyo + Hy (15)
enabling the cluster partition function to be written as a produet
g = GuivdrotFc (16)

The individual terms in the product are evaluated from standard statistical mechanical
formulas using the harmonic approximation to evatuate the vibrational component gy,
the rigid-rotor approximation to evaluate the rotational component g, and the
perfeci-gas approximation to evaluate the tramslational component gy;.

U\ 435 exp (—hd,/2kT)
QJI;Vib - exp (E) j=l 1 - exp ("h'ﬂj/kT) (17)
172 3/2
T 87°kT
dirot = (T)( 7 ) (IAIBIC)UZ (18)
nk TN [2amikTN?
Gipr = (T) (T) (19)

where P is the partial pressure of #atom clusters, m is the mass of a single atom, 4 is
Planck’s constant, U/ the averaged potential energy of the cluster and I, Ig, Ic, the
principal moments of inertia. The vibrational partition function is calculated by normal
mode analysis. This involves diagonalization of the force-constant matrix whose
elements are for an i-atom cluster, the (3i)° second derivatives of the cluster’s
equilibrium potential energy [21]. The elements of the force-constant matrix are
evaluated by inserting equilibrium coordinaie values of the atoms into the above
analytic expression for the second derivatives. The normal frequencies of oscillation are
obtained from the eigenvalues wj?' of this matrix by the relation 2my; = w;. These
partition functions are used to calculate the Helmholtz free energy of formation of the
cluster as

A(i, T) = —kT In(g). (20)

Since our motivation in this work stems primarily from interest in determining the
critical conditions for nucleation of clusters from the vapour, the quantity that is
eventually calculated is the critical supersaturation pressure, the pressure at which the
vapour becomes metastable relative to an i-atom cluster. To calculate the critical value,
and equilibrium theory of rates is assumed. The critical supersaturation pressure is
identified as the pressure at which the rate of nucleation becomes large. In practice, this
identification of the critical supersaturation pressure can be made with little ambiguity
since the calculated rate increases quite drastically from a very small to a very large
value as the pressure is increased through the critical value. The steady-state rate of
nucleation was calculated as

J = [P/ (2amkT)")S(i e (AL [3nkTE2) 2 exp (—AA*[kT) (21)

where i* is the size, S(i*) the surface area and AA4" the Helmholtz free energy of
formation of the cluster with the largest free energy of formation.
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4. Results and discussion
4.1. Clusters at 0K

As mentioned before, each equilibrium cluster is formed by relaxing a non-equilibrium
cluster. The most stable 4-atom cluster is found to be the one having a dense regular
tetrahedral structure as shown in figure 7. We note that certain other approaches such
as the self-consistent local spin density (LsD} calculations [22], or the generalized valence
bond (GvB)} approach [23] give different results in that they predict the 4-atom Na and
Li clusters with a planar-rhombus geometry to be more stable. This geometry is not
likely to emerge as a stable one for an EAM model because there an intrinsic dependence
on bond angle is needed to favour a rhombus over a tetrahedron but this is a feature
lacking in the EaM potential. The most stable 5-atom cluster was the one obtained when
an atom was placed on one of the faces of the tetrahedral 4-atom cluster.,

From this point on, to generate clusters in a systematic way, and since clusters with
more than five atoms have at least one metastable configuration, three distinct
symmetry patterns, namely HcP, Fcc and icosahedral were followed.

An octahedral cluster is the most stable 6-atom cluster. This is an Fcc close-packed
structure as shown in figure 7. The first instance of a cluster with the geometric structure
of a pentagonal bipyramid is a 7-atom cluster which falls in the category of icosahedral
clusters, since a pentagonal bipyramid is part of an icosahedron. A picture of a 7-atom
cluster is shown in figure 7. Five regular tetrahedra fit almost perfectly around a
common edge to form a pentagonal bipyramid, but not quite; some distortion (about a
1% change in bond angle and bond length) is necessary in each of the tetrahedra in

4-atom cluster 6-atom cluster
(tetrahedron) (octahedron)

7-atom cluster 13-atom cluster
(pentagonal bipyramid) (icosahedron) 55-atom cluster-(icosahedron)

Figure 7. Equilibrium clusters,
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order to make a perfect fit. This is also the reason why the basic building block of an
icosahedral packing is a distorted tetrahedron. This 7-atom pentagonal bipyramidal
cluster was quite stable and, in fact, the 7-atom rce cluster was unstable relative to the
icosahedral geometry. As a further indication of the relative stability of the icosahedral
lineage, there is a very large drop in energy per atom on going from 6- to 7-atoms as
shown in figure 8. The most stable 8-atom cluster also had icosahedral symmetry with a
substantially smaller drop in energy per atom than the 6- to 7-atom step indicating that
the 7-atom cluster is a particularly stable structure. It is also interesting to note that the
energy per atom of Hce 6- and 7-atom clusters was higher than that of the 5-atom
cluster. Mention of this will be made later when discussing free energy and nucleation-
kinetics considerations. The most stable clusters with atoms from 9 to 14 had
icosahedral symmetry; the energy difference between the 12- and 13-atom clusters was
much greater than that between the 13- and 14-atom clusters; the reason for this is that
the 13-atom cluster is the smallest cluster with an atom not on the surface. The 13-atom
icosahedral cluster, shown in figure 7, has a potential energy which is about 3.5% less
than that of the corresponding Hcp cluster. The most stable 15-atom cluster was a HCP
cluster. From this point on, the icosahedral configuration was most preferred for
clusters up to 57 atoms.

It is worthwhile to examine some clusters which have closed-shell configurations
and other types of special symmetry. HCP clusters with 19-, 21-, 39-, 51- and 57-atoms
have completely filled second, third, fourth, fifth and sixth shells respectively; of the rcc
clusters, the 19-, 43- and 55-atom clusters have fully filled second, third and fourth
shells. The above may suggest that these clusters could have the lowest energy, but
calculations show that the icosahedral clusters (as large as 57 atoms/cluster) are the
ones which have lowest energy for clusters with more than 6 atoms at 0 K.

The 23-atom icosahedral cluster (the most stable 23-atom cluster} has the geometry
of a pentagonal bipyramid as shown in figure 7. Another cluster of interest is the lowest
energy 55-atom cluster, also shown in figure 7, which has the geometric structure of an
icosahedron; this cluster has a filled third shell in this geometry while the 13-atom
icosahedral cluster has a filled first shell. Figure 8 shows the potential energy per atom
of zinc clusters versus the number of atoms per cluster from which it is evident that
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Figure 8. Potential energy per atom of Zn clusters versus numbers of atoms per cluster for
three types of symmetry patterns.
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clusters with 7, 13, 19, 55 atoms exhibit special stability. These numbers — 7, 13, 19, 55
— are referred to as magic numbers.

4.2. Nucleation of clusters from vapour
The free energies of formation of the clusters were calculated from

AA( T, Py = AL, T)+ (1 = )kTIn P (22)
where

ALY, T) = A°(i, T) — na%(1,T) (23)

is the standard Helmholtz free energy of formation of an i-atom cluster. 4°(1, T) is the
free energy of a l-atom cluster which is the gas and is given by

AY(1,T) = —kT In (g10)- (24)

The standard free energy of formation of zinc clusters at 1650 K for HCP, icosahedral
and rcc growth schemes as a function of cluster size is given in figure 9. It can be seen
that the free energy of formation of the 7-atom BcP cluster is more than twice as large as
that of the 7-atom icosahedral cluster. The fact that the 7-atom nce cluster is so
unstable when compared to the 7-atom icosahedral cluster is, to a large extent,
suggestive of a high nucleation barrier to the growth of the Hcp clusters. This will be
discussed below. The low stability of this particular ree cluster only supports the earlier
results, obtained at 0 K by molecular dynamics calculations, that the 7-atom Hcp cluster
has higher potential energy per atom than the 5-atom cluster.

The free energy of formation was studied as a function of the number of atoms per
cluster in the temperature range 1450 K-1650K. The trend that was noticed was that
the most stable 6-atom cluster was a rce cluster; for clusters with more than 6 atoms but
13 or less atoms the icosahedral clusters were the most stable. Thereafter, the Hcp
clusters were the ones with lowest free energy of formation with the exception of the 16-
atom cluster, in which case the icosahedral symmetry was preferred. Nucleation rates
were then calculated as a function of temperature and pressure and subsequently the
critical supersaturation pressures were identified at different temperatures as those
pressures at which the nucleation rates increased from a very small to a very large value.
Figure 10 shows the dependence of the critical supersaturation pressure on temperature
for the Hep, Fcc and icosahedral zine clusters. As was expected the nucleation kinetics
favoured the ucp and Fcc growth patterns least.

The free energy curves were then used to plot stability diagrams at 1atm. and
0.5atm. as shown in figure 11. It is evident thai though small icosahedral clusters are
more strongly favoured at low temperatures, the Hep configuration having more than 13
atoms (with the exception of the 16-atom cluster) is more stable at higher temperatures.
At temperatures close to absolute zero, the icosahedral configuration could be stable for
zine clusters having up to at least 57 atoms; however, as the temperature is increased,
the HCP structure is entropically favoured and so the Hce clusters become stable. The
EAM version of zinc as presented here has a slightly higher boiling point than the actual
value. The boiling point of Zn is about 1400 K as predicted by these calculations when
compared to the actual boiling point which is 1180 K. It is also worth noting that the
features present in this diagram are noi simply characteristic of the EAM, since, in a
similar study by us [12] on EaM aluminum clusters, the corresponding phase diagram
was considerably different. showing much less structure than here.
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Figure 9. Standard free energy of formation of zinc  Figure 10. Temperatere versus the critical super-

clusters as a function of the number of atoms per saturation pressure for zinc clusters.
cluster at T = 1650K.

In the above discussion, several model calculations of clusters using an EAM
potential were presented. As was just mentioned, such calculations inevitably contain
elements of uncertainty associated with the potentials, approximations due to ignoring
the effects of vibrational anharmonicity and the steady-state approximations involved
in the calculation of the nucleation rates. However, calculations of the type reported
here are instructive and are the first step in the development of understanding of
clusters on an atomic level. An approach on this level helps to reduce uncertainties and
ambiguities concerning the exact nature of micro clusters.

5. Summary

Resuits that were obtained in the present study can be summarized as follows.

(i) Icosahedral short-range order is strongly favoured at temperatures close to
absolute zero in the small clusters of zinc atoms having up to 57 atoms; clusters with 7,
13, 19, 55 {(magic numbers) atoms exhibited special stability.

(ii) The study of critical supersaturation pressure as a function of temperature
indicated that the HcP clusters had the smallest driving force for nucleation. The reason
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Figure 11. Stability diagrams for Zn at (a) P = l2tm and (b} P = 0.5atm,
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for this behaviour was probably due to the low stability of the 7-atom Hcp cluster which
manifested itself both in the molecular dynamics and the Monte Carlo simulations.

(iii) The stability diagrams showed that, at high temperatures, clusters with more
than 13 atoms preferred the Hcp configuration; the reason being that the nce
configuration is entropically more favoured at high temperatures.

Acknowledgments

The authors would like to thank Professor J P Hirth for useful discussions and Dr S M
Foiles for his invaluable suggestions. We would also like to express our appreciation for
the use of the computing facilities at the Washington State University and for the
support of this work by NSF under grant CTS-8912430.

References

[1]1 Kear B H, Cross L E, Keem J E, Siegel R W, Spaepen F, Taylor K C, Thomas E L and Tu K N 1989
Research Opportunities for Materials with Ultrafine Microstructures vol NMAB-454 (Washington,
DC: Natl. Acad. Sci.)
2] Andres R P, Averback R 8, Brown W L, Brus L E, Goddard W A, Kaldor A, Louie 8 G, Moskovits M,
Peercy P S, Riley 8 J, Siegel R W, Spaepen F and Wang Y 1989 J. Marer. Res. 4 704
[3] Gleiter H 1981 Deformation of Polycrystals: Mechanisms and Microstructures ed N Hansen et al
{Roskilde, Denmark: Rise National Laboratory) p 13
[4] Birringer R, Herr U and Gleiter H 1986 Trans. Japan. Inst. Met. Suppl. 27 43
[5] Siegel R W and Hahn H 1987 Current Trends in the Physics of Materiais ed M Yussouff p 403
[6] Daw M S and Baskes M I 1984 Phys. Rev, 29 6443
[l Daw M S and Baskes M I 1983 Phys. Rev. Letr. 50 1285
{8] Baskes M I er o February 1988 MRS Bulletin p 28
[9] Hoare M R and Pal P 1971 Adv. Phys, 20 16]
[10] Lee J K, Barker J A and Abraham F F 1973 J. Chem. Phys. 58 3166
[11] MeGinty D T 1971 J. Chem. Phys. 55 2 580
[12] Ramprasad R and Hoagland R G 1992 Nanocrystalline and nanophase materials Thermodynamic
Properties of Small Clusters of Aluminum Atoms; TMS Conf. Proc. (San Diego, 1992} at press
[13] Reiss H, Katz J L and Cohen R E 1968 J. Chens. Phys. 48 5553
Lothe J and Pound G M 1968 J. Chem. Phys. 48 1349
[14] Ob D J and Johnson R A 1988 J. Marer. Res. 3 471
[15] Ob D J and Johnson R A 1989 J. Mater. Res. 4 1195
[16] Foiles S M 1985 Phys. Rev. B 32 7685
[17] Clementti E and Roetti C 1974 Atomic Data Nucl. Data Tables 14 177
[18] Rose J H, Smith J R, Guinea F and Ferrante J 1984 Phys. Rev. B 29 2963
[19]1 Allen M A and Tildesley D J Computer Simulation of Liguids (Oxford: Oxford Science Publications)
[20] Metropolis N and Ulam § 1949 J. Am. Srar. Assoc. 44 335
[21] Herzberg G 1950 Molecular Spectra and Molecular Structure (New York: Van Nostrand) vol 2
[22] Martins J L, Buttet J and Car R 1985 Phys. Rev. B 31 1804
23] McAddon M H and Goddard W A 1985 J. Nen-Cryst. Solids 75 149; 1987 J. Phys. Chem. 91 2607, 1985
Phys. Rev. Lert. 55 2563



